

MOSFET - Power, N-Channel, SUPERFET® III, Easy Drive

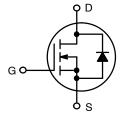
650 V, 24 A, 125 mΩ

FCP125N65S3R0

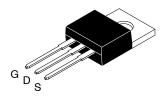
Description

SUPERFET III MOSFET is onsemi's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate.

Consequently, SUPERFET III MOSFET Easy drive series helps manage EMI issues and allows for easier design implementation.

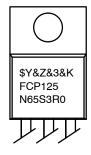

Features

- 700 V @ T_J = 150°C
- Typ. $R_{DS(on)} = 105 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 46 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 439 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free / BFR Free and are RoHS Compliant


Applications

- Telecom / Server Power Supplies
- Industrial Power Supplies
- UPS / Solar

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
650 V	125 mΩ @ 10 V	24 A



N-Channel MOSFET

TO-220-3LD CASE 340AT

MARKING DIAGRAM

= onsemi Logo &Z = Assembly Plant Code &3 = Numeric Date Code

= Lot Code

FCP125N65S3R0 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, Unless otherwise specified)

Symbol	Parame	Value	Unit	
V_{DSS}	Drain to Source Voltage		650	V
V_{GSS}	Gate to Source Voltage	DC	±30	V
		AC (f > 1 Hz)	±30	V
I _D	Drain Current	Continuous (T _C = 25°C)	24	Α
		Continuous (T _C = 100°C)	15	
I _{DM}	Drain Current	Pulsed (Note 1)	60	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		115	mJ
I _{AS}	Avalanche Current (Note 2)		3.7	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		1.81	mJ
dv/dt	MOSFET dv/dt Peak Diode Recovery dv/dt (Note 3)		100	V/ns
			20	1
P_{D}	Power Dissipation	(T _C = 25°C)	181	W
		Derate Above 25°C	1.45	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 s		300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse-width limited by maximum junction temperature. 2. $I_{AS} = 3.7 \text{ A}$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$. 3. $I_{SD} \le 12 \text{ A}$, $di/dt \le 200 \text{ A/µs}$, $V_{DD} \le 400 \text{ V}$, starting $T_J = 25^{\circ}\text{C}$.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ hetaJC}$	Thermal Resistance, Junction to Case, Max.	0.69	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Shipping
FCP125N65S3R0	FCP125N65S3R0	TO-220-3LD (Pb-Free / Halogen Free)	50 Units / Tube

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS		•	•		
BV _{DSS} Drain to Source 8	Drain to Source Breakdown Voltage	V _{GS} = 0 V, I _D = 1 mA, T _J = 25°C	650			V
		V _{GS} = 0 V, I _D = 1 mA, T _J = 150°C	700			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 1 mA, Referenced to 25°C		0.68		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V			1	μΑ
		V _{DS} = 520 V, T _C = 125°C		1.35		1
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
ON CHARACTE	ERISTICS				-	-
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 0.59 \text{ mA}$	2.5		4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 12 A		105	125	mΩ
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 12 A		16		S
YNAMIC CHA	RACTERISTICS			•		
C _{iss}	Input Capacitance	V _{DS} = 400 V, V _{GS} = 0 V, f = 1 MHz		1940		pF
C _{oss}	Output Capacitance	1		40		pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		439		pF
C _{oss(er.)}	Energy Related Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		62		pF
Q _{g(tot)}	Total Gate Charge at 10V	$V_{DS} = 400 \text{ V}, I_D = 12 \text{ A}, V_{GS} = 10 \text{ V}$		46		nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)		12		nC
Q _{gd}	Gate to Drain "Miller" Charge			19		nC
ESR	Equivalent Series Resistance	f = 1 MHz		0.5		Ω
WITCHING CH	HARACTERISTICS		-			
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, I_D = 12 \text{ A},$		21		ns
t _r	Turn-On Rise Time	V_{GS} = 10 V, R_g = 4.7 Ω (Note 4)		19		ns
t _{d(off)}	Turn-Off Delay Time			48		ns
t _f	Turn-Off Fall Time			4.6		ns
OURCE-DRAI	N DIODE CHARACTERISTICS				-	-
I _S	Maximum Continuous Source to Drain Diode Forward Current				24	Α
I _{SM}	Maximum Pulsed Source to Drain Diode Forward Current				60	Α
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 12 A			1.2	٧
t _{rr}	Reverse Recovery Time	$V_{DD} = 400 \text{ V}, I_{SD} = 12 \text{ A},$		339		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs		5.7		μС

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

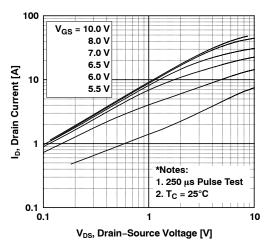


Figure 1. On-Region Characteristics

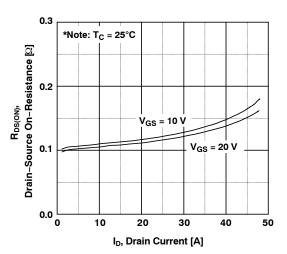


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

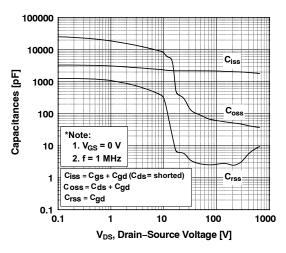


Figure 5. Capacitance Characteristics

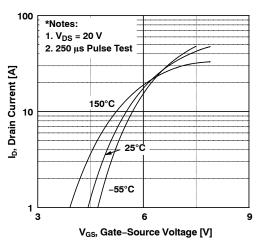


Figure 2. Transfer Characteristics

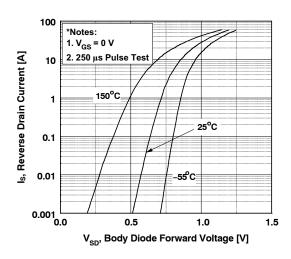


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

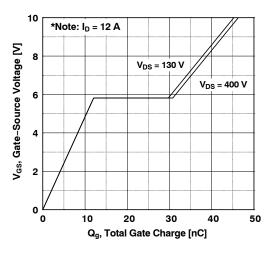


Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

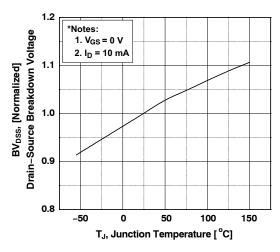


Figure 7. Breakdown Voltage Variation vs. Temperature

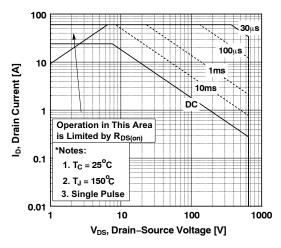


Figure 9. Maximum Safe Operation Area

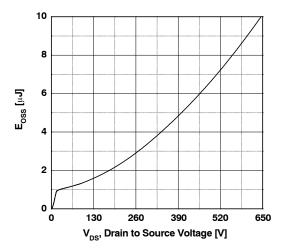


Figure 11. E_{OSS} vs. Drain to Source Voltage

Figure 8. On-Resistance Variant vs. Temperature

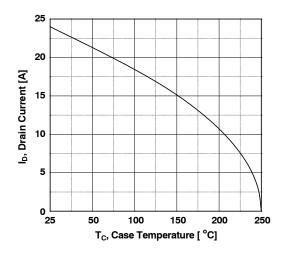


Figure 10. Maximum Drain Current vs. Case Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

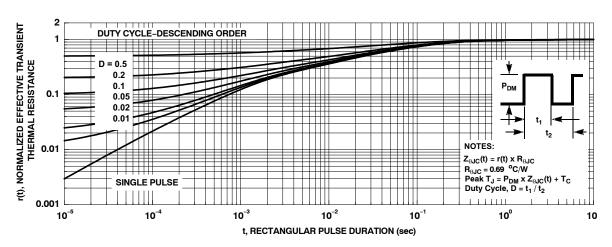


Figure 12. Transient Thermal Response Curve

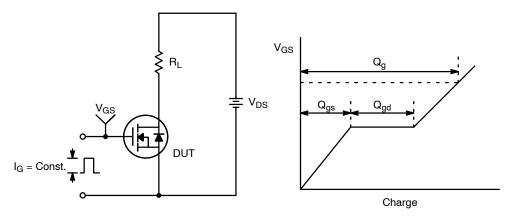


Figure 13. Gate Charge Test Circuit & Waveform

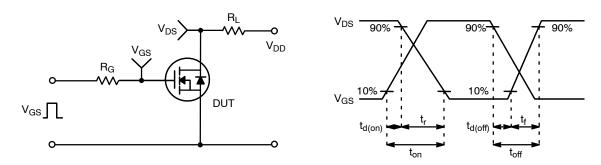


Figure 14. Resistive Switching Test Circuit & Waveforms

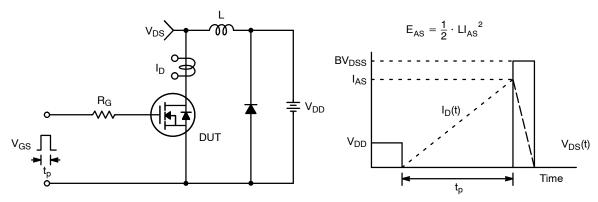
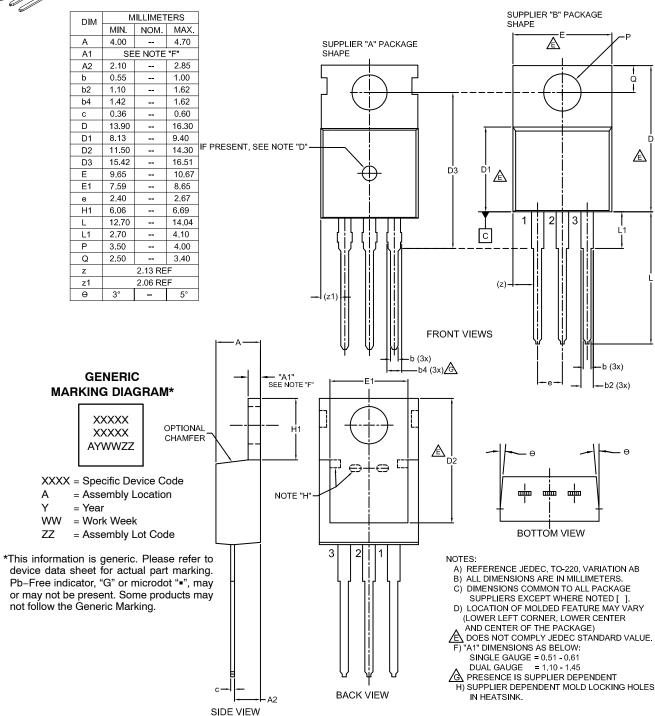


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms


SUPERFET is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

DIM MIN. A 4.00 A1 SE A2 2.10 b 0.55

TO-220-3LD CASE 340AT ISSUE B

DATE 08 AUG 2022

DOCUMENT NUMBER:	98AON13818G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

