
	1								REVISI	ONS			T				1			
LTR	DESCRIPTION												DA	ATE (Y	R-MO-I	DA)		APPR	OVED	
A	Char	Changes in accordance with NOR 5962-R214-94 – jak.							ık.		94/06/15			М	Monica L. Poelking					
В	Char	nges in	accord	cordance with NOR 5962-R141-98 – jak.					ık.					98/0	9/09		М	Monica L. Poelking		ing
С		awn wi PRF-38			Jpdate	the boi	lerplate	e to the	curren	nt requir	ements	s of		08-1	10-17		ר	Thomas	M. He	ss
REV	1	1	ı	1		1			1				1	1	1	1	1	1		
SHEET																				
REV	С	С	С																	
SHEET	15	16	17																	
REV STATUS			l	REV	,	l	С	С	С	С	С	С	С	С	С	С	С	С	С	С
OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A				PRE	PAREI Jose	D BY eph A. I	Kerby	<u>I</u>					COLUI	MBUS	, OHIO	3 432	18-39	JMBUS	8	I
STAI MICRO DRA		CUIT		CHE	CKED Thor	BY nas J F	Ricciuti			http://www.dscc.dla.mil										
FOR U DEPA	THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS		APPROVED BY Monica L. Poelking				MICROCIRCUIT, DIGITAL, ADVANCED BIPOLAR CMOS, OCTAL BUFFER/DRIVER WITH NON-INVERTING THREE-STATE OUTPUTS,													
AND AGEN DEPARTMEN				DRA		APPR(08-11	OVAL E)ATE		TTL		MPA						THIC		
				REV	ISION	LEVEL				SI	ZE		GE CC			50	262	921	17	
AM	SC N/A	١				(2			-	4	(6726	8			JUZ-	JZ 1	+1	
										SHE	ET		1	I OF	17					

DSCC FORM 2233 APR 97

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.
 - 1.2 PIN. The PIN is as shown in the following example:

- 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
 - 1.2.2 Device type(s). The device type(s) identify the circuit function as follows:

Device type	Generic number	Circuit function
01	54ABT244	Octal buffer/driver with non-inverting three-state outputs,

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class

Device requirements documentation

M Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A

Q or V Certification and qualification to MIL-PRF-38535

1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
R	GDIP1-T20 or CDIP2-T20	20	Dual-in-line
S	GDFP2-F20 or CDFP3-F20	20	Flat pack
2	CQCC1-N20	20	Square leadless chip carrier

1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q₂ and V or MIL-PRF-38535, appendix A for device class M.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 2

1.3 Absolute maximum ratings. 1/ 2/ 3/

1.4 Recommended operating conditions. 2/ 3/

Supply voltage range (V _{CC})	+4.5 V dc to +5.5 V dc
Input voltage range (V _{IN})	+0.0 V dc to V _{CC}
Output voltage range (V _{OUT})	+0.0 V dc to V _{CC}
Maximum low level input voltage (V _{IL})	0.8 V
Minimum high level input voltage (V _{IH})	
Case operating temperature range (T _C)	55°C to +125°C
Minimum input edge rate ($\Delta V/\Delta t$)	5 ns/V
Maximum high level output current (I _{OH})	
Maximum low level output current (I _{OL})	
. (52)	

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 3

^{1/} Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

^{2/} Unless otherwise noted, all voltages are referenced to GND.

 $[\]underline{3}$ / The limits for the parameters specified herein shall apply over the full specified V_{CC} range and case temperature range of -55°C to +125°C.

^{4/} The input and output negative voltage rating mat be exceeded provided that the input and output clamp current rating is observed.

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.
 - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 herein.
 - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
 - 3.2.3 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.
- 3.2.5 Ground bounce waveforms and test circuit. The ground bounce waveforms and test circuit shall be as specified on figure 4.
 - 3.2.6 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 5.
- 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 4

- 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.
- 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.
- 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affects this drawing.
- 3.9 <u>Verification and review for device class M.</u> For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
- 3.10 <u>Microcircuit group assignment for device class M.</u> Device class M devices covered by this drawing shall be in microcircuit group number 126 (see MIL-PRF-38535, appendix A).

STANDARD MICROCIRCUIT DRAWING	SIZE A	
TENCE CURRLY CENTER COLUMBIA		

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS. OHIO 43218-3990

	T	ABLE I. Electrical per	formance charac	teristics.				
Test and MIL-STD-883 test method 1/	Symbol	Test condi -55°C ≤ T _C : +4.5 V ≤ V _{CC} unless otherwi	≤ +125°C ₃ ≤ +5.5 V	V _{cc}	Group A subgroups	<u>.</u>	mits <u>3</u> /	Unit
						Min	Max	
High level output voltage 3006	V _{OH1}	For all inputs affectir under test, V _{IN} = 2.0 I _{OH} = -3.0 mA		4.5 V	1, 2, 3	2.5		V
	V _{OH2}	For all inputs affectir under test, V _{IN} = 2.0 I _{OH} = -3.0 mA		5.0 V	1, 2, 3	3.0		
	V _{OH3}	For all inputs affectir under test, V _{IN} = 2.0 I _{OH} = -24 mA		4.5 V	1, 2, 3	2.0		
Low level output voltage 3007	V _{OL}	For all inputs affectir test, V _{IN} = 2.0 V, V _I I _{OL} = 48 mA	•	4.5 V	1, 2, 3		0.55	V
Three-state output leakage current, high 3021	I _{OZH} <u>4</u> / <u>5</u> /	For control inputs af under test, V _{IN} = 2.0 V _{OUT} = 2.7 V		5.5 V	1, 2, 3		10.0	μА
Three-state output leakage current, low 3020	I _{OZL} <u>4</u> / <u>5</u> /	For control inputs af under test, V _{IN} = 2.0 V _{OUT} = GND		5.5 V	1, 2, 3		-10.0	μΑ
Negative input clamp voltage 3022	V _{IC} -	For input under test,	I _{IN} = -18 mA	4.5 V	1, 2, 3		-1.2	V
Off-state leakage current	I _{OFF}	For output under tes V_{IN} or $V_{OUT} = 4.5 \text{ V}$ All other pins at 0.0		0.0 V	1		±100	μА
High-state leakage current	I _{CEX}	For output under tes V _{OUT} = 5.5 V Outputs at high logic		5.5 V	1, 2, 3		50	μА
Input current high 3010	I _{IH}	For input under test	$V_{IN} = V_{CC}$	5.5 V	1, 2, 3		2.0	μА
Input current low 3009	I _{IL}	For input under test,	V _{IN} = GND	5.5 V	1, 2, 3		-2.0	μА
Off-state leakage current 3011	I _O 6/	V _{OUT} = 2.5 V		0.0 V	1	-50	+180	μΑ
Quiescent supply current delta, TTL input level 3005	Δl _{CC} <u>7</u> /	Data inputs outputs For input under test, For all other inputs, $V_{IN} = V_{CC}$ or GND		5.5 V	1, 2, 3		2.5	mA
		Data inputs outputs For input under test, For all other inputs, V _{IN} = V _{CC} or GND		5.5 V	1, 2, 3		50	μА
		Control inputs For input under test, For all other inputs, $V_{IN} = V_{CC}$ or GND	V _{IN} = 3.4 V	5.5 V	1, 2, 3		2.5	mA
See footnotes at end of table.						,		
STAN MICROCIRCU		VING	SIZE A			5	5962-9	2147
DEFENSE SUPPLY C COLUMBUS, OF	CENTER C	OLUMBUS		REVISIO	ON LEVEL C	SH	EET 6	

TABLE I. <u>Electrical performance characteristics</u>.

Test and MIL-STD-883	Symbol	Test conditions $\underline{2}/$ -55°C \leq T _C \leq +125°C +4.5 V \leq V _{CC} \leq +5.5 V	V _{CC}	Group A subgroups		nits <u>3</u> /	Unit	
test method 1/		unless otherwise specified						
					Min	Max	<u> </u>	
Quiescent supply current, outputs high 3005	I _{CCH}	For all inputs, $V_{IN} = V_{CC}$ or GND $I_{OUT} = 0$ A	5.5 V	1, 2, 3		250	μА	
Quiescent supply current, outputs low 3005	I _{CCL}		5.5 V	1, 2, 3		30.0	mA	
Quiescent supply current, outputs disabled 3005	I _{CCZ}		5.5 V	1, 2, 3		250	μА	
Input capacitance 3012	C _{IN}	See 4.4.1d T _C = +25°C	5.0 V	4		11.0	pF	
Output capacitance 3012	Соит		5.0 V	4		16.0	pF	
Low level ground bounce noise	V _{OLP} <u>8</u> /	V _{IH} = 3.0 V V _{IL} = 0.0 V	5.0 V	4		1200	mV	
	V _{OLV} <u>8</u> /	T _A = +25°C See figure 4	5.0 V	4		-1800	mV	
High level V _{CC} bounce noise	V _{OHP} <u>8</u> /	see 4.4.1c	5.0 V	4		1500	mV	
	V _{OHV} <u>8</u> /		5.0 V	4	_	-1100	mV	
Functional test	<u>9</u> /	V _{IL} = 0.8 V V _{IH} = 2.0 V	4.5 V	7, 8	L	Н		
		Verify output V _O See 4.4.1d	5.5 V	7, 8	L	Н		
Propagation delay time, mAn to mYn	t _{PLH} 10/	C_L = 50 pF minimum R_L = 500 Ω	5.0 V	9	1.0	4.1	ns	
3003	10,	See figure 5	4.5 V and 5.5 V	10, 11	1.0	5.3		
	t _{PHL} 10/	1	5.0 V	9	1.0	4.2	ns	
	10/		4.5 V and 5.5 V	10, 11	1.0	5.0		
Propagation delay time, output enable,	t _{PZH}	$C_L = 50 \text{ pF minimum}$	5.0 V	9	1.1	5.5	ns	
OEn to mYn 3003		$R_L = 500 \Omega$ See figure 5		4.5 V and 5.5 V	10, 11	0.8	6.5	=
	t _{PZL}	1	5.0 V	9	2.1	5.6	ns	
	<u>10</u> /		4.5 V and 5.5 V	10, 11	1.2	7.9		

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 7

TABLE I. Electrical performance characteristics.

Test and MIL-STD-883 test method 1/	Symbol	Test conditions $\underline{2}/$ -55°C \leq T _C \leq +125°C +4.5 V \leq V _{CC} \leq +5.5 V unless otherwise specified	V _{cc}	Group A subgroups	Limits	<u>4</u> /	Unit
Propagation delay time, output disable, OEn to mYn 3003	t _{PHZ} <u>10</u> /	C_L = 50 pF minimum R_L = 500 Ω See figure 5	5.0 V 4.5 V and 5.5 V	9 10, 11	2.1 1.2	5.6 7.6	ns
	t _{PLZ} <u>10</u> /		5.0 V 4.5 V and 5.5 V	9 10, 11	1.5	5.6 7.9	ns

- 1/ For tests not listed in the referenced MIL-STD-883 (e.g. ΔI_{CC}), utilize the general test procedure under the conditions listed herein.
- 2/ Each input/output, as applicable, shall be tested at the specified temperature for the specified limits, to the tests in table I herein. Output terminals not designated shall be high level logic, low level logic, or open, except for all I_{CC} and I_{CC} tests, where the output terminals shall be open. When performing these tests, the current meter shall be placed in the circuit such that all current flows through the meter. For input terminals not designated, $V_{IN} = GND$ or $V_{IN} \ge 3.0$ V.
- 3/ For negative and positive voltage and current values, the sign designates the potential difference in reference to GND and the direction of current flow, respectively; and the absolute value of the magnitude, not the sign, is relative to the minimum and maximum limits, as applicable, listed herein. All devices shall meet or exceed the limits specified in table I if tested at $4.5 \text{ V} \leq \text{V}_{CC} \leq 5.5 \text{ V}$.
- $\underline{4}'$ This test shall be guaranteed, if not tested, to the limits specified in table I herein, when performed with control inputs that affect the state of the output under test at V_{IN} = 0.8 V or 2.0 V.
- $\underline{5}$ / Due to tester limitations, this test may be performed at V_{IH} = 3.0 V but shall be guaranteed at V_{IN} = 2.0 V.
- 6/ Not more than one output should be tested at one time, and the duration of the test condition should not exceed one second.
- 7/ This test may be performed either one input at a time (preferred method) or with all input pins simultaneously at $V_{IN} = V_{CC}$ -2.1 V (alternate method. Classes Q and V shall use the preferred method. When the test is performed using the alternate test method, the maximum limit is equal to the number of inputs at a high TTL input level times 1.5 mA, and the preferred method and limits are guaranteed.

STANDARD		
MICROCIRCUIT DRAWING		

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990

SIZE A		5962-92147
	REVISION LEVEL C	SHEET 8

	DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET	
	STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147	
<u>10</u> /	roi propagation delay tests, all patris must be tested.				
<u>9</u> /	Tests shall be performed in sequence, attributes data only. patterns used for fault detection. The test vectors used to vinput and output. All possible input to output logic patterns in figure 2 herein. Functional tests shall be performed in sedevices. After incorporating allowable tolerances per MIL-SH ≥ 2.0 V.	verify the truth table per function shall equence as approv	le shall, at a minimum, te be guaranteed, if not tes /ed by the qualifying activ	est all functions of each ted, to the truth table vity on qualified	
	The device inputs shall be conditioned such that all outputs conditioned such that they switch simultaneously and the o switched from V_{OL} to V_{OH} . V_{OLP} and V_{OLV} are then measure peaks, respectively (see figure 4). This is then repeated with	utput under test reed from the nomination	emains at V_{OL} as all other al V_{OL} level to the largest	outputs possible are positive and negative	
	The device inputs shall be conditioned such that all outputs conditioned such that they switch simultaneously and the o switched from V_{OH} to V_{OL} . V_{OHV} and V_{OHP} are then measur peaks, respectively (see figure 4). This is then repeated with	utput under test reed from the nomin	emains at V_{OH} as all other all V_{OH} level to the larges	r outputs possible are it negative and positive	
<u>8</u> /	This test is for qualification only. Ground and V_{CC} bounce to are used to measure the magnitude of induced noise cause performed on a low noise bench test fixture. For the device resistance and a minimum of 50 pF of load capacitance (see The output load components shall be located as close as prossible, this distance be kept to less than 0.25 inches. Deground. The device manufacturer shall determine the value and V_{CC} bounce noise is measured at the quiet output using impedance.	ed by other simultate under test, all out the figure 4). Only tossible to the development of these of these decoupling capacitos of these decoupling the decoupling these decoupling these decoupling these decoupling the	aneously switching output the shall be loaded with chip capacitors and resistice outputs. It is suggestors shall be placed in parapling capacitors. The low	ts. The test is h 500Ω of load stors shall be used. Led that, whenever allel from V_{CC} to V_{CC} and high level ground	

Device type	01
Case outlines	R, S, 2
Terminal number	Terminal symbol
1	OE1
2	1A1
3	2Y4
4	1A2
5	2Y3
6	1A3
7	2Y2
8	1A4
9	2Y1
10	GND
11	2A1
12	1Y4
13	2A2
14	1Y3
15	2A3
16	1Y2
17	2A4
18	<u>1Y1</u>
19	OE2
20	V _{CC}

Terminal descriptions				
Terminal symbol	Description			
mAn (m = 1 to 2, n = 1 to 4)	Data inputs			
OEn (n = 1 to 2)	Output enable control inputs (active low)			
mYn (m = 1 to 2, n = 1 to 4)	Outputs (non-inverting)			

FIGURE 1. Terminal connections.

Input	S	Outputs
mOE	mAn	mYn
L	Н	Н
L	L	L
Н	X	Z

L = Low voltage level H = High voltage level X = Irrelevant

Z = Disabled

FIGURE 2. Truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 10

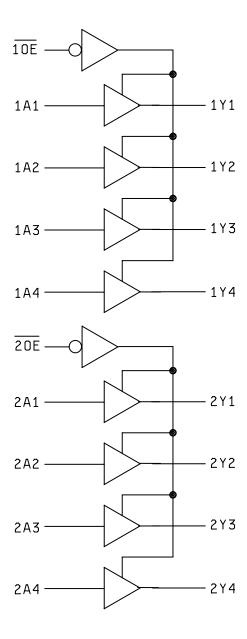
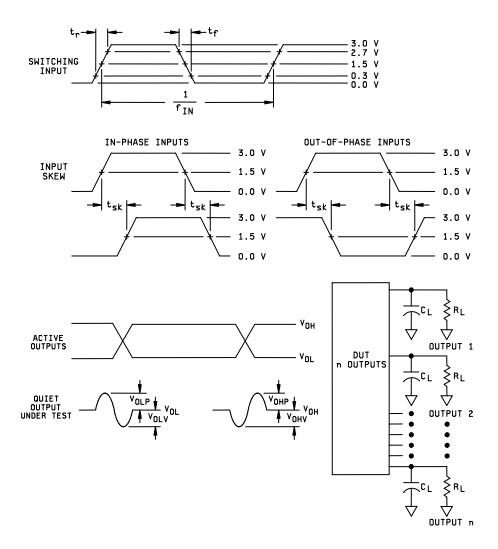
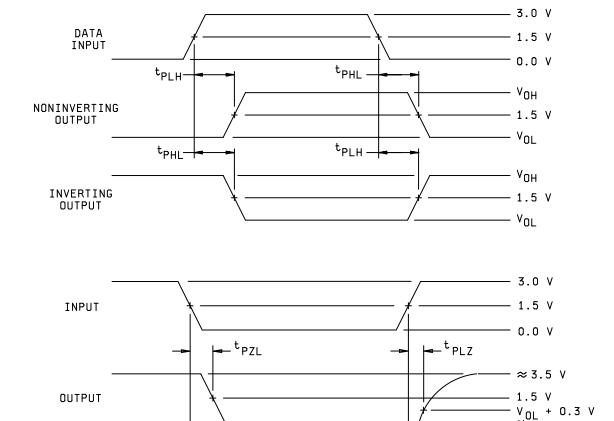



FIGURE 3. Logic diagram.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 11



NOTES:

- C_L includes a 47 pF chip capacitor (-0 percent, +20 percent) and at least 3 pF of equivalent capacitance from the test jig
- R_L = 450 Ω ±1 percent, chip resistor in series with a 50 Ω termination. For monitored outputs, the 50 Ω termination shall be the 50Ω characteristic impedance of the coaxial connector to the oscilloscope.
- Input signal to the device under test:
 - a. V_{IN} = 0.0 V to 3.0 V; duty cycle = 50 percent; $f_{IN} \ge 1$ MHz.
 - b. t_r , t_f = 3.0 ns \pm 1.0 ns. For input signal generators incapable of maintaining these values of t_r and t_f , the 3.0 ns limit may be increased up to 10 ns, as needed, maintaining the ± 1.0 ns tolerance and guaranteeing the results at 3.0 ns ± 1.0 ns; skew between any two switching input signals (t_{sk}) : ≤ 250 ps.

FIGURE 4. Ground bounce waveforms and test circuit.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 12

NOTES:

1. When measuring t_{PLZ} and t_{PZL} : V_{TEST} = 7.0 V.

OUTPUT

- 2. When measuring t_{PHZ} , t_{PZH} , t_{PLH} , and t_{PHL} : V_{TEST} = Open.
- 3. The t_{PZL} and t_{PLZ} reference waveform is for the output under test with internal conditions such that the output is at V_{OL} except when disabled by the output enable control. The t_{PZH} and t_{PHZ} reference waveform is for the output under test with internal conditions such that the output is at V_{OH} except when disabled by the output enable control.

t_{PHZ}

V_{OH} - 0.3 V

- 1.5 V - ≈ GND

4. $C_L = 50$ pF minimum or equivalent (includes test jig and probe capacitance).

PZH

- 5. $R_L = 500\Omega$ or equivalent. $R_T = 50\Omega$ or equivalent.
- 6. Input signal from pulse generator: V_{IN} = 0.0 V to 3.0 V; PRR \leq 10 MHz; $t_r \leq$ 2.5 ns; $t_f \leq$ 2.5 ns; t_r and t_f shall be measured from 0.3 V to 2.7 V and from 2.7 V to 0.3 V, respectively; duty cycle = 50 percent.
- 7. Timing parameters shall be tested at a minimum input frequency of 1MHz.
- 8. The outputs are measured one at a time with one transition per measurement.

FIGURE 5. Switching waveforms and test circuit.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 13

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.
 - 4.2.1 Additional criteria for device class M.
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - Interim and final electrical test parameters shall be as specified in table II herein.
 - 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
 - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.
- 4.3 <u>Qualification inspection for device classes Q and V.</u> Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
- 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 14

4.4.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. C_{IN} and C_{OUT} , shall be measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} and C_{OUT} shall be measured between the designated terminal and GND at a frequency of 1 MHz. This test may be performed at 10 MHz and guaranteed, if not tested, at 1 MHz. The DC bias for the pin under test (V_{BIAS}) = 2.5 V or 3.0 V. For C_{IN} and C_{OUT} , test all applicable pins on five devices with zero failures.
- c. Ground and V_{CC} bounce tests are required for all device classes. These tests shall be performed only for initial qualification, after process or design changes which may affect the performance of the device, and any changes to the test fixture. V_{OLP} , V_{OLV} , V_{OHP} , and V_{OHV} shall be measured for the worst case outputs of the device. All other outputs shall be guaranteed, if not tested, to the limits established for the worst case outputs. The worst case outputs tested are to be determined by the manufacturer. Test 5 devices assembled in the worst case package type supplied to this document. All other package types shall be guaranteed, if not tested, to the limits established for the worst case package. The package type to be tested shall be determined by the manufacturer. The device manufacturer will submit to DSCC-VA data that shall include all measured peak values for each device tested and detailed oscilloscope plots for each V_{OLP} , V_{OLV} , V_{OHP} , and V_{OHV} from one sample part per function. The plot shall contain the waveforms of both a switching output and the output under test.

Each device manufacturer shall test product on the fixtures they currently use. When a new fixture is used, the device manufacturer shall inform DSCC-VA of this change and test the 5 devices on both the new and old test fixtures. The device manufacturer shall then submit to DSCC-VA data from testing on both fixtures that shall include all measured peak values for each device tested and detailed oscilloscope plots for each V_{OLP} , V_{OLP} , V_{OHP} , and V_{OHV} from one sample part per function. The plot shall contain the waveforms of both a switching output and the output under test.

- d.. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table in figure 2 herein. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2, herein. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device; these tests shall
- 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein.
- 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:
 - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - b. $T_A = +125$ °C, minimum.
 - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 15

- 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the post-irradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.

TABLE II. Electrical test requirements.

Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	Subgroups (in accordance with MIL-PRF-38535, table III)	
	Device class M	Device class Q	Device class V
Interim electrical parameters (see 4.2)			1
Final electrical parameters (see 4.2)	<u>1</u> / 1, 2, 3, 7, 8, 9	<u>1</u> / 1, 2, 3, 7, 8, 9, 10, 11	<u>2</u> / 1, 2, 3, 7, 8, 9, 10, 11
Group A test requirements (see 4.4)	1, 2, 3, 4, 7, 8, 9, 10, 11	1, 2, 3, 4, 7, 8, 9, 10, 11	1, 2, 3, 4, 7, 8, 9, 10, 11
Group C end-point electrical parameters (see 4.4)	1, 2, 3	1, 2, 3	1, 2, 3, 7, 8, 9, 10, 11
Group D end-point electrical parameters (see 4.4)	1, 2, 3	1, 2, 3	1, 2, 3
Group E end-point electrical parameters (see 4.4)	1, 7, 9	1, 7, 9	1, 7, 9

^{1/} PDA applies to subgroup 1.

- 4.5 Methods of inspection. Methods of inspection shall be specified as follows:
- 4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92147
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 16

^{2/} PDA applies to subgroups 1 and 7.

- 6.1.2 Substitutability. Device class Q devices will replace device class M devices.
- 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.
- 6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.
- 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.
 - 6.6 Sources of supply.
- 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.
- 6.6.2 <u>Approved sources of supply for device class M.</u> Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD	
MICROCIRCUIT DRAWING	

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990

SIZE A		5962-92147
	REVISION LEVEL C	SHEET 17

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 08-10-17

Approved sources of supply for SMD 5962-92147 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-9214701M2A	01295	SNJ54ABT244FK
5962-9214701M2A	0C7V7	54ABT244LMQB
5962-9214701MRA	01295	SNJ54ABT244J
5962-9214701MRA	0C7V7	54ABT244DMQB
5962-9214701MSA	01295	SNJ54ABT244W
5962-9214701MSA	0C7V7	54ABT244FMQB
5962-9214701Q2A	0C7V7	54ABT244E-QML
5962-9214701QRA	0C7V7	54ABT244J-QML
5962-9214701QSA	0C7V7	54ABT244W-QML
5962-9214701VRA	27014	54ABT244J-QMLV
5962-9214701VSA	27014	54ABT244W-QMLV
5962-9214701V2A	27014	54ABT244E-QMLV

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed, contact the vendor to determine its availability.
- <u>2/</u> <u>Caution</u>. Do not use this number for item acquisition . Items acquired to this number after that date may not satisfy the performance requirements of this drawing.

Vendor CAGE number	Vendor name and address
01295	Texas Instruments Inc. Semiconductor Group 8505 Forest Ln. P.O. Box 660199 Dallas, TX 75243 Point of contact: U.S. Highway 75 South P.O. Box 84, M/S 853 Sherman, TX 75090-9493
0C7V7	QP Semiconductor 2945 Oakmead Village Court Santa Clara, CA 95051
27014	National Semiconductor 2900 Semiconductor Dr PO Box 58090 Santa Clara, CA 95052-8090

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.