

Customer Part:

Description

 The IQXT-270-9 Temperature Compensated Crystal Oscillator (TCXO) employs an analogue ASIC for the oscillator and a high order temperature compensation circuit in a 2.0 x 1.6mm size package.

■ Model IQXT-270-9

Model Issue number

Frequency Parameters

■ Frequency 19.20MHz
 ■ Frequency Tolerance ±1.00ppm
 ■ Frequency Stability ±0.50ppm

■ Operating Temperature Range -30.00 to 85.00°C

■ Ageing ±1ppm max per year at 25°C

 Frequency Tolerance: Offset from nominal frequency measured at 25°C ±2°C.

 Reflow Shift (two consecutive reflows as per profile after 1 hour relaxation at 25°C): ±1ppm max

 Frequency Stability: Referenced to the midpoint between minimum and maximum frequency value over the specified temperature range. Control voltage set to midpoint of control voltage (note 1).

 Frequency Slope (minimum of one frequency reading every 2°C, over -10 to 60°C - note 1): 0.05ppm/°C max

■ Frequency drift (calculated from frequency slope with temperature varied at a maximum of 1.92°C/min (0.032°C/s) over -10°C to 60°C, note 5): 1.6ppb/sec max

 Frequency Slope (minimum of one frequency reading every 2°C, over -30°C to -85°C, note 1): 0.1ppm/°C max

 Frequency drift (calculated from frequency slope with temperature varied at a maximum of 0.96°C/min (0.016°C/s) over -30°C to 85°C, note 5): 1.6ppb/sec max

Small thermal cycle frequency slope (measured at 0.5°C intervals over any 5°C heating and 5°C cooling cycle, at a minimum rate of 1°C/minute within the operating temperature range, note 6): 50ppb/°C max

 Small thermal cycle hysteresis (difference in frequency measurements over any 5°C heating and 5°C cooling cycle, at a minimum rate of 1°C/minute within the operating temperature range): 50ppb pk-pk max

Supply Voltage Variation (±5% change at 25°C): ±0.1ppm max

Load Variation (±10% change at 25°C): ±0.2ppm max

Electrical Parameters

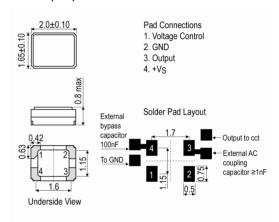
Supply Voltage 1.8V ±5%Current Draw 2.000mA

Supply Current (at Vs max - note 2)

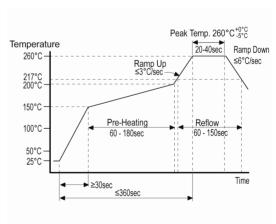
Frequency Adjustment

■ Pulling ±15.6ppm to ±24ppm

Control Voltage 1.4V ±1.0VInput Impedance 500kΩ min


 Control voltage range: the nominal control voltage value is midway between the minimum and maximum. Voltage control should not exceed the supply voltage +0.2V or GND.

Linearity (deviation from straight line curve fit): 10% max



Outline (mm)

Pb-Free Reflow

Sales Office Contact Details:

UK: +44 (0)1460 270200 France: 0800 901 383 Germany: 0800 1808 443 USA: +1.760.318.2824 Email: info@iqdfrequencyproducts.com Web: www.iqdfrequencyproducts.com

Part No. + Packaging: LFTVXO070167Cutt

Customer Part:

Output Details

■ Output Compatibility Clipped Sine
■ Drive Capability 10kΩ//10pF ±10%

Output: DC coupled (note 3)

Output Voltage Level (at Vs min - note 2): 0.8V pk-pk min

Noise Parameters

■ Phase Noise (typ @ 25°C):

-64dBc/Hz @ 1Hz

-93dBc/Hz @ 10Hz

-118dBc/Hz @ 100Hz

-137dBc/Hz @ 1kHz

-149dBc/Hz @ 10kHz

-151dBc/Hz @ 100kHz

Phase Noise (max @ 25°C):

-57dBc/Hz @ 1Hz

-86dBc/Hz @ 10Hz

-111dBc/Hz @ 100Hz

-133dBc/Hz @ 1kHz

-144dBc/Hz @ 10kHz

-148dBc/Hz @ 100kHz

Environmental Parameters

- Shock: MIL-STD-202 M213 (note 4): Half sine-wave acceleration of 3000G peak amplitude, duration 0.3ms, velocity 12.3ft/s.
- Moisture Resistance: MIL-STD-202 M106g (note 4): 1000 hours at 85°C, 85% relative humidity. Biased.
- Thermal Cycling: JESD22 Method JA-104C (note 4): 1000 temperature cycles, where each cycle consists of a 25 minutes soak time at -40°C followed by a 25 minute soak time at 85°C, with a 60 second maximum transition time between temperatures. Air to air transition.
- Vibration: JESD22-B103-B (also see note 4): 10G peak acceleration for 20 minutes 12 cycles in each of the 3 orientations, swept from 10-2000Hz.
- Storage Temperature Range: -40 to 85°C

Manufacturing Details

- Maximum Process Temperature: 260°C (40secs max)
- Note 1: Parts should be shielded from drafts causing unexpected thermal gradients. Temperature changes due to ambient air currents can lead to short term frequency drift.
- Note 2: Specified for the load stated in Output Details above, at 25°C.
- Note 3: External AC coupling capacitor required; 1nF or greater recommended.
- Note 4: Frequency shift of ±1ppm max after environmental conditions.
- Note 5: Frequency drift rate is calculated from the equation ppb/s=°C/s x ppb/°C
- Note 6: Discard the first 0.5°C interval of each heating and cooling cycle.

Compliance

RoHS Status (2015/863/EU) Compliant
 REACh Status Compliant
 MSL Rating (JDEC-STD-033): Not Applicable

Sales Office Contact Details:

UK: +44 (0)1460 270200 France: 0800 901 383 Germany: 0800 1808 443 USA: +1.760.318.2824 Email: info@iqdfrequencyproducts.com Web: www.iqdfrequencyproducts.com

TCVCXO Specification

Part No. + Packaging: LFTVX0070167Cutt

Customer Part:

Packaging Details

■ Pack Style: Cutt In tape, cut from a reel

Pack Size: 100

Alternative packing option available

Sales Office Contact Details:

UK: +44 (0)1460 270200 Germany: 0800 1808 443 France: 0800 901 383 USA: +1.760.318.2824 Email: info@iqdfrequencyproducts.com Web: www.iqdfrequencyproducts.com