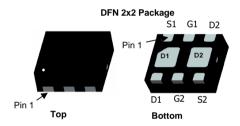
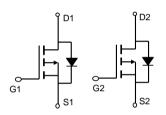


AON2803

20V Dual P-Channel MOSFET


General Description


The AON2803 uses advanced trench technology to provide excellent $R_{\rm DS(ON)},$ low gate charge and operation with gate voltage as low as 1.8V. This device is suitable for use as a load switch or in PWM applications.

Product Summary

 $\begin{array}{lll} V_{DS} & -20V \\ I_{D} \; (at \; V_{GS} \!\!=\!\! -4.5V) & -3.8A \\ R_{DS(ON)} \; (at \; V_{GS} \!\!=\!\! -4.5V) & <70m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \!\!=\!\! -2.5V) & <90m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \!\!=\!\! -1.8V) & <115m\Omega \end{array}$

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V _{DS}	-20	V				
Gate-Source Voltage		V_{GS}	±8	V				
Continuous Drain Current	T _A =25°C		-3.8					
	T _A =70°C	I _D	-3	Α				
Pulsed Drain Current ^C		I _{DM}	-20					
	T _A =25°C	Ь	1.5	W				
Power Dissipation ^A	T _A =70°C	P_{D}	0.95	VV				
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C				

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	35	45	°C/W			
Maximum Junction-to-Ambient A	Steady-State	$R_{\theta JA}$	65	85	°C/W			
Maximum Junction-to-Ambient ^B	t ≤ 10s	$R_{ heta JA}$	120	155	°C/W			
Maximum Junction-to-Ambient ^B	Steady-State	IN _θ JA	175	235	°C/W			

Electrical Characteristics (T₁=25°C unless otherwise noted)

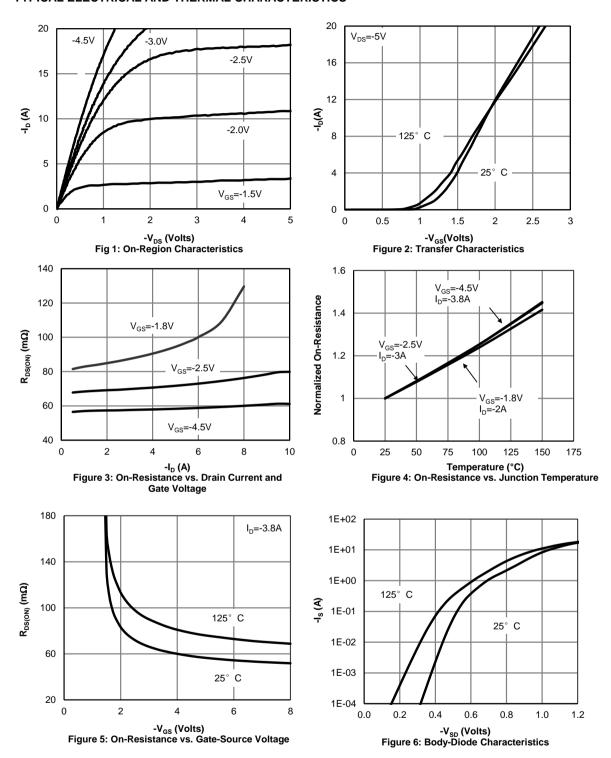
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-20			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-20V, V _{GS} =0V			-1	μА			
		T _J =55°0			-5				
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±8V			±100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-0.4	-0.6	-1	V			
I _{D(ON)}	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V	-20			Α			
R _{DS(ON)} Static Drain-Source	Chatia Drain Cauras On Desistance	V _{GS} =-4.5V, I _D =-3.8A		58	70	mΩ			
		T _J =125°0		78	94	11122			
	Static Dialii-Source On-Resistance	V_{GS} =-2.5V, I_D =-3A		70	90	$m\Omega$			
		V_{GS} =-1.8V, I_D =-2A		85	115	mΩ			
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-3.8A		15		S			
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.66	-1	V			
Is	Maximum Body-Diode Continuous Curre			-2	Α				
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance			560		pF			
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-10V, f=1MHz		80		pF			
C_{rss}	Reverse Transfer Capacitance			70		pF			
R_g	Gate resistance	$V_{GS}=0V$, $V_{DS}=0V$, $f=1MHz$		15	30	Ω			
SWITCHI	NG PARAMETERS								
Q_g	Total Gate Charge			8.5	12	nC			
Q_{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-10V, I_{D} =-3.8A		1.2		nC			
Q_{gd}	Gate Drain Charge			2.1		nC			
t _{D(on)}	Turn-On DelayTime			7.2		ns			
t _r	Turn-On Rise Time	V_{GS} =-4.5V, V_{DS} =-10V, R_L =2.6 Ω ,		36		ns			
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		53		ns			
t _f	Turn-Off Fall Time	7		56		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =-3.8A, dI/dt=100A/μs		37		ns			
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =-3.8A, dI/dt=100A/μs		27		nC			

A: The value of R $_{0JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25 $^\circ$ C. The Power dissipation P_{DSM} is based on R $_{\theta JA}$ and the maximum allowed junction temperature of 150 $^{\circ}$ C.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

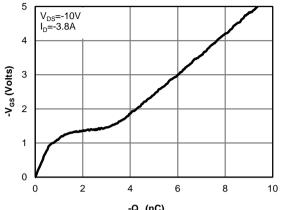
AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

B. The value of R $_{0,JA}$ is measured with the device mounted on a minimum pad board. Copper, in a still air environment with T $_A$ =25° C. The Power dissipation P_{DSM} is based on R $_{\theta JA}$ and the maximum allowed junction temperature of 150 $^{\circ}$ C.

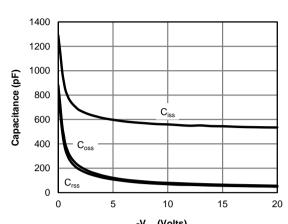

C. The R $_{\theta JA}$ is the sum of the thermal impedance from junction to case R $_{\theta JC}$ and case to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with T _A=25° C. The SOA curve provides a single pulse rating.



TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 $-Q_g$ (nC) Figure 7: Gate-Charge Characteristics

-V_{DS} (Volts)
Figure 8: Capacitance Characteristics

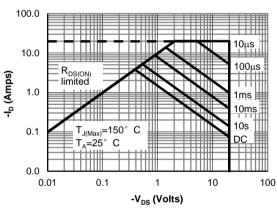
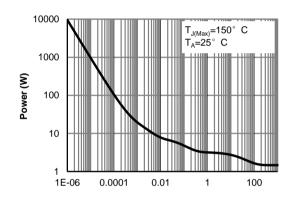



Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toAmbient (Note E)

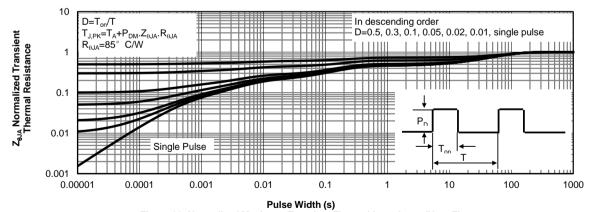
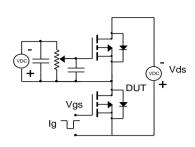
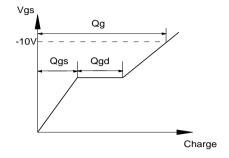
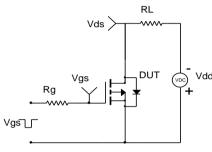
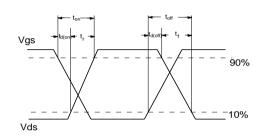
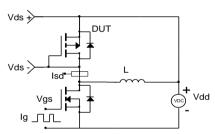
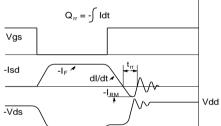




Figure 11: Normalized Maximum Transient Thermal Impedance (Note E)




Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

