

Dual Operational Amplifiers and Voltage Reference

DESCRIPTION

The TS103 is a monolithic IC specifically designed to control the output current and voltage levels of switch mode battery chargers and power supplies. The device contains two operational amplifiers and a precision shunt regulator. OP AMP 1 is designed for voltage control, whose non-inverting input internally connects to the output of the shunt regulator. OP AMP 2 is for current control with both inputs uncommitted. The IC offers the power converter designer a control solution that features increased precision with a corresponding reduction in system complexity and cost.

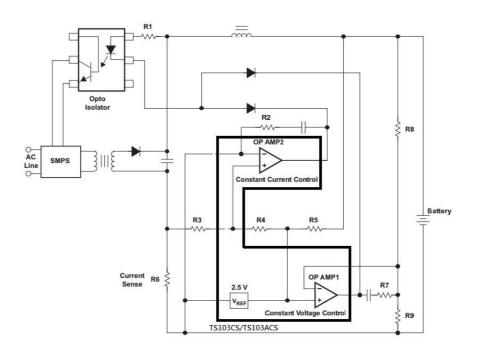
FEATURES

- Input Offset Voltage: 0.5mV
- Supply Current: 250µA per OP AMP @ 5V
- Unity Gain Bandwidth: 1MHz
- Output Voltage Swing: 0∼(V_{CC} 1.5) V
- Power Supply Voltage: 3~18V
- Fixed Output Voltage Reference: 2.5V±1%
- Sink Current Capability from 0.2~80mA
- Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC.
- Halogen-free according to IEC 61249-2-21

APPLICATION

- Battery chargers
- Switch-Mode Power Supplies
- Linear voltage regulation

SOP-8



Pin Definition:

- 1. Output A 8. V_{CC}
- 2. Input A (-) 7. Output B
- 3. Input A (+) / V_{KA} 6. Input B (-)
- 4. GND 5. Input B (+)

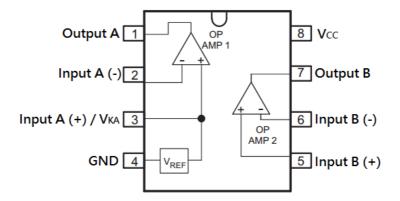
Note: MSL 3 (Moisture Sensitivity Level) per J-STD-020

TYPICAL APPLICATION CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Note 1)					
PARAMETER	SYMBOL	LIMIT	UNIT		
Power Supply Voltage (V _{CC} to GND)	V _{cc}	20	V		
Op Amp 1 and 2 Input Voltage Range (Pins 2,5,6)	V _{IN}	-0.3 to V _{CC} +0.3	V		
Op Amp 2 Input Differential Voltage (Pins 5,6)	V _{ID}	20	V		
Voltage Reference Cathode Current (Pin 3)	I _K	100	mA		
Power Dissipation	P _D	500	mW		
Storage Temperature Range	T _{STG}	-65 to 150	°C		
ESD Protection Voltage (Machine Model)		≥200	V		

RECOMMENDED OPERATING CONDITIONS (Note 3)					
PARAMETER	SYMBOL	CONDITIONS	UNIT		
Supply Voltage	V _{cc}	3 ~ 18	V		
Operating Ambient Temperature Range	T _{OPA}	-40 to +85	°C		

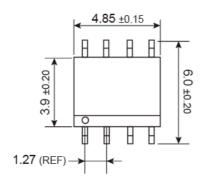
PARAMETER	ECIFICA	CONDITIONS	MIN	TYP	MAX	UNIT
PARAMETER			IVIIIV	IIP	IVIAA	ONII
Total Supply Current, excluding Current in Voltage Reference		$V_{CC} = 5V$, no load, -40°C $\leq T_A \leq 85$ °C		0.5	0.8	- mA
		$V_{CC} = 18V$, no load, -40°C≤ $T_A \le 85$ °C		0.6	1.2	
Voltage Reference Se	ction					
	TC402	I _{KA} = 10mA	2.475	2.500	2.525	
Deference Veltere	TS103	I _{KA} = 10mA @ -40°C ≤T _A ≤85°C	2.45	2.500	2.55	.,
Reference Voltage	T0400A	I _{KA} = 10mA	2.490	2.500	2.510	V
	TS103A	I _{KA} = 10mA @ -40°C ≤T _A ≤85°C	2.475	2.500	2.525	
Reference Voltage Deviation Over Full Temperature Range		$I_{KA} = 10 \text{mA},$ $T_{A} = -40 \text{ to } 85^{\circ}\text{C}$		5 5	24 17	mV
Minimum Cathode Curre for Regulation	ent			0.2	1.0	mA
Dynamic Impedance		V _{CC} = 1.0 to 80mA, f<1kHz		0.3	0.5	Ω
OP AMP 1 Section (V _C	_C = 5V, V _O =	1.4V, T _A = 25°C, unless otherwise no	oted)			
Input Offset Voltage		T _A = 25°C (TS103)		0.5	3	
		T _A = 25°C (TS103A)		0.5	2	mV
		T _A = -40 to 85°C			5	
Input Offset Voltage Temperature Drift		T _A = -40 to 85°C		7		μV/°C
Input Bias Current (Inverting Input Only)		T _A = 25°C		20	150	nA
Large Signal Voltage Gain		$V_{CC} = 15V, R_{L} = 2k\Omega,$ $V_{O} = 1.4 \text{ to } 11.4V$	85	100		dB

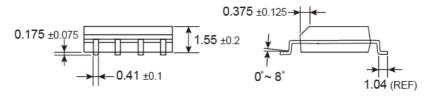

ELECTRICAL SPECIFICATIONS (V _{CC} = 18V, T _A = 25°C unless otherwise noted)						
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
Power Supply Rejection Ratio		V _{CC} = 5 to I8V	70	90		dB
Output Current	Source	$V_{CC} = 15V, V_{ID} = 1V, V_{O} = 2V$	20	40		mA
Output Current	Sink	$V_{CC} = 15V, V_{ID} = -1V, V_{O} = 2V$	10	20		mA
Output Voltage Swing (H	ligh)	$V_{CC} = 18V, R_{L} = 10k\Omega, V_{ID} = 1V$	16	16.5		V
Output Voltage Swing (L	ow)	$V_{CC} = 18V, R_{L} = 10k\Omega, V_{ID} = -1V$		17	100	mV
Slew Rate		$V_{CC} = 18V, R_{L} = 2k\Omega, A_{V} = 1,$ $V_{IN} = 0.5 \text{ to } 2V, C_{L} = 100 \text{pF}$	0.2	0.5		V/µs
Gain Bandwidth Product	i	$V_{CC} = 18V, R_{L} = 2k\Omega, C_{L} = 100pF$ $V_{IN} = 10mV, f = 100kHz$	0.5	1		MHz
OP AMP 2 Section (V _C	_C = 5V, V _O =	1.4V, T _A = 25°C, unless otherwise no	ted)			•
		T _A = 25°C (TS103)		0.5	3	
Input Offset Voltage		T _A = 25°C (TS103A)		0.5	2	mV
		T _A = -40 to 85°C			5	
Input Offset Voltage Temperature Drift		T _A = -40 to 85°C		7		μV/°C
Input Bias Current		T _A = 25°C		20	150	nA
Input Voltage Range		V _{CC} = 0~18V	0	00	Vcc-1.5	V
Large Signal Voltage Gain		$V_{CC} = 15V, R_L = 2k\Omega,$ $V_O = 1.4 \text{ to } 11.4V$	85	100		dB
Power Supply Rejection	Ratio	V _{CC} = 5 to I8V	70	90		dB
Output Current	Source	$V_{CC} = 15V, V_{ID} = 1V, V_{O} = 2V$	20	40		mA
Output Current	Sink	$V_{CC} = 15V, V_{ID} = -1V, V_{O} = 2V$	10	20		mA
Output Voltage Swing (High)		$V_{CC} = 18V, R_{L} = 10k\Omega, V_{ID} = 1V$	16	16.5		V
Output Voltage Swing (Low)		$V_{CC} = 18V, R_L = 10k\Omega, V_{ID} = -1V$		17	100	mV
Slew Rate		$V_{CC} = 18V, R_L = 2k\Omega, A_V = 1,$ $V_{IN} = 0.5 \text{ to } 2V, C_L = 100pF$	0.2	0.5		V/µs
Gain Bandwidth Product		$V_{CC} = 18V, R_L = 2k\Omega, C_L = 100pF$ $V_{IN} = 10mV, f = 100kHz$	0.5	1		MHz

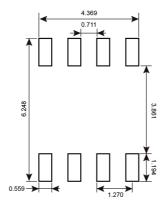
ORDERING INFORMATION

PART NO.	PACKAGE	PACKING
TS103CS RLG	SOP-8	2,500pcs / 13"Reel
TS103ACS RLG	SOP-8	2,500pcs / 13"Reel

BLOCK DIAGRAM


PIN DESCRIPTION


PIN NO.	NAME	FUNCTION
1	Output A	OP AMP 1 output
2	Input A (-)	OP AMP 1 inverting input
3	Input A (+) / V _{KA}	OP AMP 1 non-inverting input and shunt reference cathode terminal
4	GND	Negative supply voltage
5	Input B (+)	OP AMP 2 output
6	Input B (-)	OP AMP 2 non-inverting input
7	Output B	OP AMP 2 output
8	V _{CC}	Positive supply voltage


PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

SOP-8

SUGGESTED PAD LAYOUT (Unit: Millimeters)

MARKING DIAGRAM

Y = Year Code

M = Month Code for Halogen Free Product

O =Jan P =Feb Q =Mar R =Apr

S =May T =Jun U =Jul V =Aug W =Sep X =Oct Y =Nov Z =Dec

L = Lot Code (1~9, A~Z)

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.