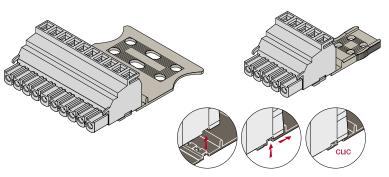
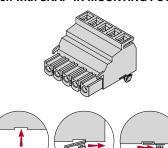


Contents

Accessories for A.D.O. Connectors	104
Coding accessories	104
Comb-type jumper bar	105
Andring	100



Accessories


Accessories for A.D.O. Connectors

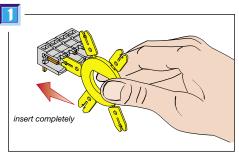
Version with PT2 cable clamp

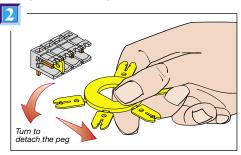
Version with PT1 cable clamp

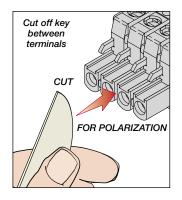
Version with SNAP-IN MOUNTING FOOT

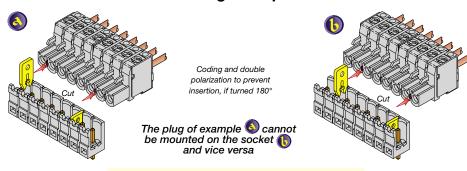
Accessories

Description			Туре	Order code	Spacing	Packaging	Weight kg
Cable clamp plug	3 to 7 poles	grey □	PT1	1SSA 299 226 R 01 00	5.08 mm	50	0.0012
Cable clamp plug	8 to 16 poles	grey □	PT2	1SSA 299 227 R 01 00	5.08 mm	50	0.0033
Cable clamp plug	3 poles	black ■	PT1	1SSS 299 253 R 22 00	7.62 mm	20	0.0016
Cable clamp plug	8 poles	black ■	PT2	1SSS 299 254 R 22 00	7.62 mm	20	0.0018
Snap-in mounting fo	ot	grey □		1SSA 299 257 R 00 00		20	0.0001

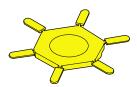

Coding accessories


Coding peg


RECOMMENDED SOLUTION *Efficient system with few parts.*


Example of coding peg mounting

Coding examples

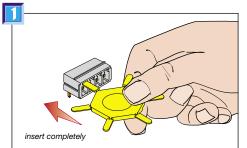

The **COPE** coding peg, mounted on a male socket or plug, is not compatible with female plugs ${\bf L}$ 245 300 and ${\bf L}$ 245 600.

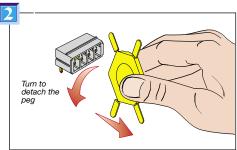
Accessories

Description	,	Туре	Order code	Packaging	Weight kg
Coding peg	vellow 🗖	COPE	1SNA 199 322 R 22 00	10	0.0010

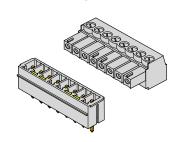
Accessories

Coding peg 1SSA 299 084 R0600

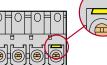

L 252 and L 253 series coding



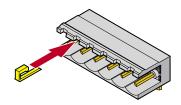
Attention to the correct position of the coding peg while inserting.


Example of coding peg mounting

CUT **POLARIZATION**


Coding example

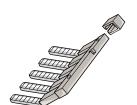
Female plugs coding


Attention to the correct position of the coding peg while inserting.

Accessories

Description		Туре	Order code	Packaging	Weight kg
Coding peg	yellow	COCF	1SNA 199 320 R 04 00	10	0.0010
Coding peg	yellow		1SSA 299 084 R 06 00	50	0.0005

Coding peg 1SSA 299 085 R0600



Accessories

Description	Туре	Order code	Packaging	Weight kg
Coding peg	yellow ☐ COCE	1SNA 199 321 R0100	10	0.0010
Coding peg	yellow □	1SSA 299 085 R 06 00	50	0.0005

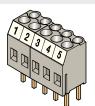
Comb-type jumper bar

This accessory can be used only on the terminal blocks with at least one compression clamp connection. It permits the electrical connection of 2 to 10 blocks.

Interconnection of non-consecutive blocks is possible by $removing \, the \, teeth \, in \, front \, of \, the \, block \, which \, are \, not \, connected.$

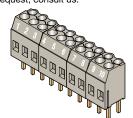
The comb-type jumper bars can be cut using pliers (or a saw). In this case the use of an insulating tip EIP is recommended where possible. The comb is placed in the compression clamp before tightening the screws, above the conductor.

Accessories


Description		Туре	Order code	Current	Packaging	Weight kg
Insulating tip for comb		EIP	1SNA 113 550 R 24 00			
Comb-type jumper bar	2 poles	PC5	1SNA 113 542 R1000	30 A		
Comb-type jumper bar	10 poles	PC5	1SNA 113 544 R1200	30 A		

105 P200088

Marking


RBA Sticker marking

Card of 240 markers - Dimension 5 mm Each strip is pre-cut to make tearing-off easy.
Material : Polyester.

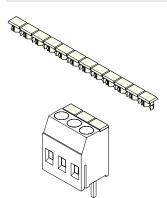
Special marking on request, consult us.

Custom printing on the product on request, consult us.

entrelec	
MADE IN FRANCE	Réf.: 178 623.02

Description	Spacing	Туре	Order code	Width	Packaging	Weight kg
Blank	5.08 mm	RB3A	1SNA 178 639 R1200	3 mm		
Blank	5.08 mm	RB5A	1SNA 178 623 R 02 00	5 mm		

	_	71					C									Re	ēf.	: 1	78	62	0.	13	
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	


Description	Spacing	Туре	Order code	Width	Packaging	Weight kg
Preprinted 30 x 1 à 8	5.08 mm	RB3A	1SNA 178 636 R 07 00	3 mm		
Preprinted 20 x 1 à 12	5.08 mm	RB3A	1SNA 178 632 R 03 00	3 mm		
Preprinted 10 x 1 à 24	5.08 mm	RB3A	1SNA 178 630 R 15 00	3 mm		
Preprinted 10 x 25 à 48	5.08 mm	RB3A	1SNA 178 631 R0200	3 mm		
Preprinted 20 x 1 à 12	5 mm	RB5A	1SNA 178 626 R 05 00	5 mm		
Preprinted 10 x 1 à 24	5 mm	RB5A	1SNA 178 624 R 03 00	5 mm		
Preprinted 10 x 25 à 48	5 mm	RB5A	1SNA 178 625 R 04 00	5 mm		
Preprinted 30 x 1 à 8	5.08 mm	RB5A	1SNA 178 620 R 13 00	5 mm		
Preprinted 20 x 1 à 12	5.08 mm	RB5A	1SNA 178 629 R 10 00	5 mm		
Preprinted 10 x 1 à 24	5.08 mm	RB5A	1SNA 178 627 R 06 00	5 mm		
Preprinted 10 x 25 à 48	5.08 mm	RB5A	1SNA 178 628 R1700	5 mm		

entrele	r	
MADE IN FRA	_	Réf.: 178 621 00
L1 L2 L3 N PE	L1 L2 L3 N PE	L1 L2 L3 N PE
L1 L2 L3 N PE	L1 L2 L3 N PE	L1 L2 L3 N PE
L1 L2 L3 N PE	L1 L2 L3 N PE	L1 L2 L3 N PE
L1 L2 L3 N PE	L1 L2 L3 N PE	L1 L2 L3 N PE
L1 L2 L3 N PE	L1 L2 L3 N PE	L1 L2 L3 N PE
L1 L2 L3 N PE	L1 L2 L3 N PE	L1 L2 L3 N PE
L1 L2 L3 N PE	L1 L2 L3 N PE	L1 L2 L3 N PE
L1 L2 L3 N PE	L1 L2 L3 N PE	L1 L2 L3 N PE
L1 L2 L3 N PE	L1 L2 L3 N PE	L1 L2 L3 N PE
L1 L2 L3 N PE	L1 L2 L3 N PE	L1 L2 L3 N PE

Description	Spacing	Туре	Order code	Width	Packaging	Weight kg
Preprinted 2 x 1 à 24	5 mm	RB5A		5 mm		
Preprinted 2 x 25 à 48	5 mm	RB5A		5 mm		
Preprinted 2 x 49 à 72	5 mm	RB5A	1SNA 179 652 R 10 00	5 mm		
Preprinted 2 x 73 à 96	5 mm	RB5A		5 mm		
Preprinted 2 x 97 à 120	5 mm	RB5A		5 mm		
Preprinted 2 x 1 à 24	5.08 mm	RB5A		5 mm		
Preprinted 2 x 25 à 48	5.08 mm	RB5A		5 mm		
Preprinted 2 x 49 à 72	5.08 mm	RB5A	1SNA 179 651 R 17 00	5 mm		
Preprinted 2 x 73 à 96	5.08 mm	RB5A		5 mm		
Preprinted 2 x 97 à 120	5.08 mm	RB5A		5 mm		
Preprinted - odd and even						
3 x 1, 3, 5 à 47	5.08 mm	RB5A		5 mm		
3 x 2, 4, 6 à 48	5.08 mm	RB5A	- 1SNA 179 653 R 11 00	5 mm		
2 x 49, 51, 53 à 93	5.08 mm	RB5A	13NA 1/8 003 H1100	5 mm		
2 x 50, 52, 54 à 96	5.08 mm	RB5A		5 mm		

RB Strip marking

Description	Spacing	Туре	Order code	Width	Packaging	Weight kg
Blank	5.08 mm	RB-12 W	1SNA 299 402 R 00 00	3.6 mm		
Blank	5 mm	RB5-12 W5	1SNA 299 488 R 06 00	3.6 mm		

106 P200089

Rated characteristics of P.C.B. terminal blocks and connectors

Rated operational voltage Ue (according to § 4.3.1.1. IEC 60947-1)

"A rated operational voltage of an equipment is a value of voltage which, combined with a rated operational current, determines the application of the equipment and to which the relevant tests and the utilization categories are referred." The rated operational voltage for <code>lmi</code> products is equal to the rated insulation voltage.

Rated insulation voltage Ui (according to § 4.3.1.2. IEC 60947-1)

"The rated insulation voltage of an equipment is the value of voltage to which dielectric tests and creepage distances are referred." To ensure an optimal rated insulation voltage, the creepage distances of **lmi**" terminal blocks and connectors are calculated according to the prescriptions of IEC 60664 and IEC 60947-1 § 7.2.3 standards. Tests are carried out according to IEC 60947-1 § 8.3.3.4.

Rated impulse withstand voltage Uimp (according to § 4.3.1.3. IEC 60947-1)

"The peak value of an impulse voltage of prescribed form and polarity which the equipment is capable of withstanding without failure under specified conditions of test and to which the values of the clearances are referred".

Clearances of **Imi*** terminal blocks and connectors are designed in accordance with the prescriptions of IEC 60664 and 60947-1 § 7.2.3., and tested according to IEC 60947-1 § 8.3.3.4.

Rated operational current le (according to § 4.3.2.3. IEC 60947-1)

"A rated operational current of an equipment is stated by the manufacturer and takes into account the rated operational voltage, the rated frequency, the rated duty, the utilization category and the type of protective enclosure, if appropriate".

Imi terminal blocks and connectors are designed for a temperature rise as per the requirements of IEC 60947-7-1 § 7.2.1, when used at the rated operational current.

Rated cross-section (according to § 4.3.4. IEC 60947-7-1)

"The rated cross-section of a terminal block is a value of connectable conductor cross-section, stated by the manufacturer, and to which certain thermal, mechanical and electrical requirements are referred".

Rated cross-sections of **lmi*** terminal blocks and connectors are tested according to IEC 60947-1 § 8.2.4.5.

Rated connecting capacity (according to § 4.3.5. IEC 60947-7-1)

"The rated connecting capacity of a terminal block is the range and/or number of rated cross-sections for which the terminal block is designed".

The connecting capacities of **lmi*** terminal blocks and connectors are optimized for their field of applications.

Environmental conditions: pollution degree (according to § 6.1.3.2. IEC 60947-1)

The § 6.1.3.2 of IEC 60947-1 defines 4 pollution degrees :

Pollution degree 1 : no pollution or only dry, non-conductive pollution exists ;

Pollution degree 2:

Normally, only non-conductive pollution exists. Occasionally, however, a temporary conductivity caused by condensation may be expected;

Pollution degree 3:

conductive pollution exists, or dry, non-conductive pollution exists which becomes conductive due to condensation;

Pollution degree 4:

the pollution generates persistent conductivity caused, for instance, by conductive dust or by rain or snow."

lmi° terminal blocks and connectors are designed for a pollution degree 3, according to IEC 60947-1 standard (clearances and creepage distances refer to the pollution degree).

Materials

I. Insulating materials

ABB was a precursor in using thermoplastic materials for products moulding. This development permitted to realize more complex shapes for terminal blocks, suitable for more and more demanding markets. Then, polyamide is at the present time one of the most used plastic materials, and it is recognized by all competent organisms

ABB is using polyamides without halogens, cadmium, phosphorus or asbestos. This modern insulating material shows a semi-crystal molecular structure, which guarantees good electrical and mechanical characteristics, flexibility and resistance to shocks. Its resistance to micro-organisms, bacteriums, enzymes, fungus and termits is very good. Indeed, polyamide materials are not a nutritional environment for biological organisms. Their good resistance to ageing and their insensitivity to ultraviolet rays mean a good resistance to the hardest climatic conditions.

Fire resistance: the various polyamides that we use for our terminal blocks answer to the most severe requirements of the market (transportation, chimistry/petrochemistry, energy). Indeed, for numerous applications, in particular railway transportation, the plastic material should not have any dangerous characteristic (combustion maintaining, toxic fumes...) for users and equipment.

Another plastic material used for P.C.B. blocks and connectors is polycarbonate. This one is rigid and has a good resistance to heat. Furthermore, it offers a good dimensional stability and absorb a very few quantity of water.

Some standards are famous in this area and define the test criteria of these plastic materials, regarding their resistance to fire/fume:

1) UL94 standard: this American standard is widely used in the world. It defines the resistance to fire, by defining several levels of resistance (from the less demanding to the most demanding):

a) not classified

b) HB d) V1

c) V2 e) V0

Note that whatever their classification may be (V0 to HB), plastic materials are considered as self-extinguishing, that is to say that they do not maintain fire.

Our terminal blocks are polyamide moulded, only in V0.

2) French standards: NF F 16-101 (1988) and NF F 16-102 (1992) Railway rolling stock - Behaviour against fire.

These standards relate all products designed for rolling stock applications. They define the instructions regarding selection of materials towards their behaviour against fire (reaction to fire, opacity of fumes and toxicity of gas emanations).

The material classification of A.D.O. connectors for railway applications is: **12F2**.

II. Metallic parts

The materials used by ABB are designed, manufactured and coated with the most modern techniques.

• Screw-clamp blocks :

- Wire-clamp and screw: they are made of chromium passivated steel III, in order to meet industrial requirements.
 This coating is suitable for normal industrial environment, tempered sea climate, hot wet climate.
- Conducting parts: for these parts, we use conducting materials such as copper or brass, characterized by a high conductivity as well as good mechanical characteristics. These pieces are tin coated, to guarantee a good contact and a good resistance to corrosion. Indeed, this malleable tin coating wraps around the copper wire and then ensures a gas-tight connection. This limits introduction of polluting elements (dust, corrosive atmosphere...) through the connections.

• A.D.O. blocks:

A.D.O. clamp: A.D.O. is one of the most performant technology as for vibration and corrosion resistance. For this purpose, ABB has carefully selected materials which can meet the extremely strict requirements that A.D.O. can face. The clamp is made of copper alloy joining

conductivity and mechanical tightness which allows to combine electrical and mechanical functions.

III. Conductors

Our terminal blocks are designed to be connected with flexible or solid wires (copper core without any special coating).

Note: tin, copper or nickel coated aluminium wires require no preparation.

