Filter specification **TFS 261B** 1/5 Microchip

**Measurement condition** 

Ambient temperature  $T_A$ : 23 ٥С Input power level: 0 dBm Terminating impedance: \* Input:

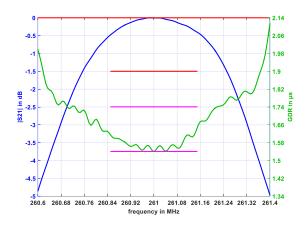
655  $\Omega$  || -6.1 pF 521  $\Omega$  || -6.9 pF Output:

### Characteristics

The reference level for the relative attenuation  $a_{rel}$  of the TFS 261B is the minimum of the pass band attenuation  $a_{min}$ . The minimum of the pass band attenuation  $a_{min}$  is defined as the insertion loss  $a_{\theta}$ . The centre frequency  $f_{C}$  is the arithmetic mean value of the upper and lower frequencies at the 1.5 dB filter attenuation level relative to the insertion loss  $a_{\theta}$ . The nominal frequency  $f_{N}$  is fixed at 261.0 MHz without any tolerance. The given values for both the relative attenuation  $a_{rel}$  and the group delay ripple have to be achieved at the frequencies given below even if the centre frequency  $f_c$  is shifted due to the temperature coefficient of frequency  $TC_f$  in the operating temperature range and due to a production tolerance for the centre frequency  $f_C$ .

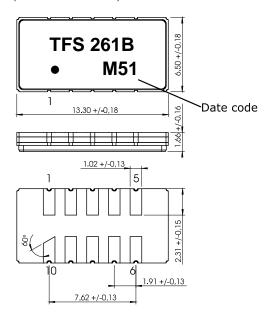
| Data                                        |                     | typ. value |                    | tolerance / limit |       |     |
|---------------------------------------------|---------------------|------------|--------------------|-------------------|-------|-----|
| Insertion loss<br>(reference level)         | a <sub>e</sub>      | 7.5        |                    | max.              | 11.0  | dB  |
| Nominal frequency                           | $f_N$               | -          |                    |                   | 261.0 | MHz |
| Centre frequency                            | $f_C$               | 261.0      | MHz                |                   | -     |     |
| Pass band                                   | РВ                  | -          |                    | f <sub>N</sub> ±  | 150.0 | kHz |
| Pass band ripple                            |                     | 0.14       | dB                 | max.              | 1.0   | dB  |
| Pass band variation                         |                     | 1          | dB                 | max.              | 1.5   | dB  |
| Relative attenuation                        | a <sub>rel</sub>    |            |                    |                   |       |     |
| $f_N$ $f_N$ ± 150.0                         | kHz                 | 1          | dB                 | max.              | 1.5   | dB  |
| $f_N$ - 260.0 MHz $f_N$ - 0.8               | MHz                 | 46         | dB                 | min.              | 40    | dB  |
| $f_N + 0.8$ MHz $f_N + 1.8$                 | MHz                 | 38         | dB                 | min.              | 35    | dB  |
| $f_N$ + 1.8 MHz $f_N$ + 239.0               | MHz                 | 46         | dB                 | min.              | 40    | dB  |
| Group delay at $f_N$                        | @ 25 °C             | 1.56       | μs                 | max.              | ±100  | ns  |
| Group delay ripple within PB                |                     | 144        | ns                 | max.              | 200   | ns  |
| Return loss within f <sub>N</sub> ± 100 kHz |                     | 22         | dB                 | min.              | 15    | dB  |
| Input power level *                         | *                   | -          |                    | max.              | 20    | dBm |
| Operable temperature range                  |                     | -          |                    | - 40 °C + 105 °C  |       |     |
| Operating temperature range OTR             |                     | -          |                    | - 40 °C + 85 °C   |       |     |
| Storage temperature range                   |                     | -          |                    | - 62 °C + 125 °C  |       |     |
| Frequency inversion temperature             |                     | 49         | °C                 |                   | -     |     |
| Temperature coefficient of frequency        | TC <sub>f</sub> *** | -0.03      | ppm/K <sup>2</sup> |                   | -     |     |

<sup>\*)</sup> The terminating impedances depend on parasitics and q-values of matching elements and the board used, and are to be understood as reference values only. Should there be additional questions do not hesitate to ask for an application note or contact our design team. \*\*) for short term operation only, cycle time 1:1000; 15 dBm max for continuous operation \*\*\*)  $\Delta f = TC_f(T - T_0)^2 f_N$ 


| Generated:          |  |  |
|---------------------|--|--|
|                     |  |  |
|                     |  |  |
| Checked / Approved: |  |  |

**Microchip Frequency Technology GmbH** Potsdamer Straße 18 D 14 513 TELTOW / Germany Tel: (+49) 3328 4784-0 / Fax: (+49) 3328 4784-30

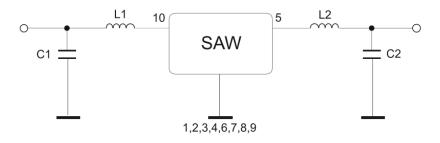
Microchip Filter specification TFS 261B 2/5


# Filter characteristic





# Construction and pin connection


(All dimensions in mm)



| 1  | Ground |
|----|--------|
| 2  | Ground |
| 3  | Ground |
| 4  | Ground |
| 5  | Output |
| 6  | Ground |
| 7  | Ground |
| 8  | Ground |
| 9  | Ground |
| 10 | Input  |

Date code: Year + week M 2020 N 2021 P 2022 ...

### 50 Ω Test circuit



Microchip Frequency Technology GmbH Potsdamer Straße 18 D 14 513 TELTOW / Germany Tel: (+49) 3328 4784-0 / Fax: (+49) 3328 4784-30

Microchip Filter specification TFS 261B 3/5

# Stability characteristics, reliability

After the following tests the filter shall meet the whole specification:

1. Shock: 500 g, 1 ms, half sine wave, 3 shocks each plane;

DIN IEC 60068 T2 - 27

2. Vibration: 10 Hz to 2000 Hz, 0.35 mm or 5 g respectively, 1 octave per min, 10 cycles per

plane, 3 planes; DIN IEC 60068 T2 - 6

3. Change of

temperature: -55 °C to 125 °C / 15 min. each / 100 cycles

DIN IEC 60068 part 2 - 14 Test N

4. Resistance to

solder heat (reflow): reflow possible: three times max.;

for temperature conditions refer to the attached "Air reflow temperature conditions" on page 4;

5. SAW devices are Electrostatic Discharge (ESD) sensitive devices.

This filter is RoHS compliant (2011/65/EU+2015/863/EU)

# **Packing**

Tape & Reel: IEC 286 – 3, with exception of value for N and minimum bending radius;

tape type II, embossed carrier tape with top cover tape on the upper side;

reel of empty components at start:

min. 300 mm
reel of empty components at start including leader:

min. 500 mm
trailer:

min. 300 mm

Pull Off Direction

 Tape (all dimensions in mm)

 W
 : 24.00 +0.30/-0.10

 Po
 : 4.00 ±0.1

 Do
 : 1.50 +0.1/0

 E
 : 1.75 ±0.10

11.50 ±0.10 G(min) 0.60 P2 2.00 ±0.1 12.00 ±0.1 D1(min) 1.50 Αo 7.00 ±0.10 Во 13.80 ±0.10 Ct 21 00 +0 1 2.10 ±0.10 Ko

t : 0.30 ±0.05

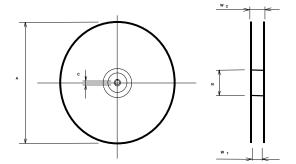
Reel (all dimensions in mm)
A :330 or 180
W1 : 24.4 +2/-0
W2(max) : 30.40

N(min) : 60.00 C : 13.0 +0.5/-0.2 PN Marker

Po P2

PN Marker

Po P2


P2

No P3

No P4

No P5

No P



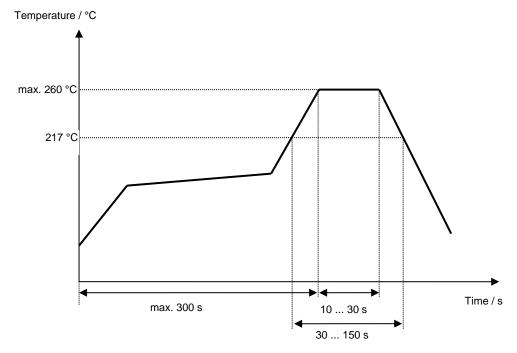
The minimum bending radius is 45 mm.

Microchip Frequency Technology GmbH Potsdamer Straße 18 D 14 513 TELTOW / Germany Tel: (+49) 3328 4784-0 / Fax: (+49) 3328 4784-30

Filter specification

10.12.2020 TO.12.2020

**TFS 261B** 


4/5

# Air reflow temperature conditions

**Microchip** 

| Conditions                                  | <u>Exposure</u>             |
|---------------------------------------------|-----------------------------|
| Average ramp-up rate (30 °C to 217 °C)      | less than 3 °C / second     |
| > 100 °C                                    | between 300 and 600 seconds |
| > 150 °C                                    | between 240 and 500 seconds |
| > 217 °C                                    | between 30 and 150 seconds  |
| Peak temperature                            | max. 260 °C                 |
| Time within 5 °C of actual peak temperature | between 10 and 30 seconds   |
| Cool-down rate (Peak to 50 °C)              | less than 6 °C / second     |
| Time from 30 °C to Peak temperature         | no greater than 300 seconds |

# Chip-mount air reflow profile



Microchip Frequency Technology GmbH Potsdamer Straße 18 D 14 513 TELTOW / Germany Tel: (+49) 3328 4784-0 / Fax: (+49) 3328 4784-30

| Micro   | hip                                                                       | Filter specification T                     |                     | TFS 261B |            |
|---------|---------------------------------------------------------------------------|--------------------------------------------|---------------------|----------|------------|
| History |                                                                           |                                            |                     |          |            |
| Version | Reason of Changes                                                         |                                            |                     | Name     | Date       |
| 1.0     | - Generation of development specifica                                     | tion                                       |                     | Strehl   | 20.01.2009 |
| 1.1     | - add of terminating impedances, typic - change of time domain parameters | al values, filter characteristics and mate | ching configuration | Pfeiffer | 19.05.2009 |
| 2.0     | - back to development status, change                                      | of package, change terminating impeda      | ance to t.b.d.      | Bonnen   | 31.08.2020 |

16.12.2020

Bonnen

Microchip Frequency Technology GmbH Potsdamer Straße 18 D 14 513 TELTOW / Germany Tel: (+49) 3328 4784-0 / Fax: (+49) 3328 4784-30

- remove pulse response requirements

3.0

- Generation of filter specification with agreed relaxations