Silicon Carbide (SiC) Module - EliteSiC, 6 mohm, 1200 V, SiC M3 MOSFET, 2-PACK Half Bridge Topology, F2 Package with HPS DBC

NXH006P120M3F2PTHG

The NXH006P120M3F2PTHG is a power module containing 6 m Ω / 1200 V SiC MOSFET half-bridge and a thermistor with HPS DBC in an F2 package.

Features

- $6 \text{ m}\Omega$ / 1200 V M3S SiC MOSFET Half-Bridge
- HPS DBC
- Thermistor
- Pre-Applied Thermal Interface Material (TIM)
- Press-Fit Pins
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

Typical Applications

- Solar Inverter
- Uninterruptible Power Supplies
- Electric Vehicle Charging Stations
- Industrial Power

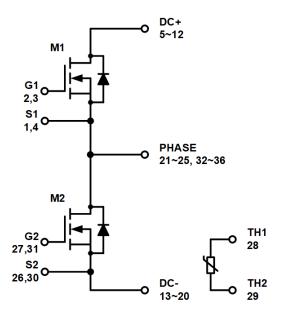
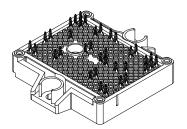
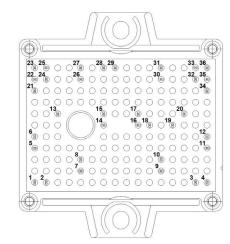



Figure 1. NXH006P120M3F2 Schematic Diagram

PACKAGE PICTURE

PIM36 56.7x42.5 (PRESS FIT) CASE 180BY


MARKING DIAGRAM

NXH006P120M3F2PTHG ATYYWW

 $\begin{array}{ll} {\sf NXH006P120M3F2PTHG} = {\sf Specific\ Device\ Code} \\ {\sf AT} &= {\sf Assembly\ \&\ Test\ Site} \\ \end{array}$

YWW = Year and Work Week

PIN CONNECTIONS

See Pin Function Description for pin names

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	S1	Q1 Kelvin Emitter (High side switch)
2	G1	Q1 Gate (High side switch)
3	G1	Q1 Gate (High side switch)
4	S1	Q1 Kelvin Emitter (High side switch)
5	DC+	DC Positive Bus connection
6	DC+	DC Positive Bus connection
7	DC+	DC Positive Bus connection
8	DC+	DC Positive Bus connection
9	DC+	DC Positive Bus connection
10	DC+	DC Positive Bus connection
11	DC+	DC Positive Bus connection
12	DC+	DC Positive Bus connection
13	DC-	DC Negative Bus connection
14	DC-	DC Negative Bus connection
15	DC-	DC Negative Bus connection
16	DC-	DC Negative Bus connection
17	DC-	DC Negative Bus connection
18	DC-	DC Negative Bus connection
19	DC-	DC Negative Bus connection
20	DC-	DC Negative Bus connection
21	PHASE	Center point of half bridge
22	PHASE	Center point of half bridge
23	PHASE	Center point of half bridge
24	PHASE	Center point of half bridge
25	PHASE	Center point of half bridge
26	S2	Q2 Kelvin Emitter (Low side switch)
27	G2	Q2 Gate (Low side switch)
28	TH1	Thermistor Connection 1
29	TH2	Thermistor Connection 2
30	S2	Q2 Kelvin Emitter (Low side switch)
31	G2	Q2 Gate (Low side switch)
32	PHASE	Center point of half bridge
33	PHASE	Center point of half bridge
34	PHASE	Center point of half bridge
35	PHASE	Center point of half bridge
36	PHASE	Center point of half bridge

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
SIC MOSFET			•
Drain-Source Voltage	V _{DSS}	1200	V
Gate-Source Voltage	V _{GS}	+22/-10	V
Continuous Drain Current @ T_c = 80 °C (T_J = 175 °C)	I _D	191	Α
Pulsed Drain Current (T _J = 175 °C)	I _{Dpulse}	382	Α
Maximum Power Dissipation @ T_c = 80 °C (T_J = 175 °C)	P _{tot}	556	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
THERMAL PROPERTIES			
Storage Temperature Range	T _{stg}	-40 to 150	°C
TIM Layer Thickness	T _{TIM}	160 ±20	μ m
INSULATION PROPERTIES			
Isolation Test Voltage, t = 1 s, 60 Hz	V _{is}	4800	V_{RMS}
Creepage Distance		12.7	mm
СТІ		600	
Substrate Ceramic Material		HPS	
Substrate Ceramic Material Thickness		0.38	mm
Substrate Warpage (Note 2)	W	Max 0.18	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	T_J	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_J = 25 °C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS						
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 1200 V	_	_	300	μΑ
Drain-Source On Resistance	R _{DS(ON)}	V _{GS} = 18 V, I _D = 100 A, T _J = 25 °C	_	6.5	8	mΩ
		V _{GS} = 18 V, I _D = 100 A, T _J = 125 °C	_	10.8	-	
		V _{GS} = 18 V, I _D = 100 A, T _J = 150 °C	_	12.4	-	
		V _{GS} = 18 V, I _D = 100 A, T _J = 175 °C	_	14.6	-	
Gate-Source Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 80 \text{ mA}$	1.8	2.8	4.4	V
Gate Leakage Current	I _{GSS}	$V_{GS} = -10 \text{ V} / 20 \text{ V}, V_{DS} = 0 \text{ V}$	-400	_	400	nA
Gate-Resistance	R_{G}	f = 1 MHz	_	0.375	-	Ω
Input Capacitance	C _{ISS}	$V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}, f = 100 \text{ kHz}$	_	11914	-	pF
Reverse Transfer Capacitance	C _{RSS}		_	48	-	
Output Capacitance	C _{OSS}		_	669	-	

^{1.} Refer to ELECTRICAL CHĂRACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

^{2.} Height difference between horizontal plane and substrate copper bottom.

ELECTRICAL CHARACTERISTICS (T_J = 25 °C unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS	•					•
Total Gate Charge	Q _{G(TOTA}	$V_{DS} = 800 \text{ V}, V_{GS} = -5/20 \text{ V}, I_D = 100 \text{ A}$	-	622	-	nC
Gate-Source Charge	Q_{GS}		-	109	_	nC
Gate-Drain Charge	Q_{GD}		-	120	_	nC
Turn-on Delay Time	t _{d(on)}	T _J = 25 °C	-	40.53	_	ns
Rise Time	t _r	$V_{DS} = 600 \text{ V}, I_D = 100 \text{ A}$ $V_{GS} = -5 \text{ V} / 18 \text{ V}, R_G = 1 \Omega$	-	13.61	_	
Turn-off Delay Time	t _{d(off)}		-	109	-	1
Fall Time	t _f		-	8.54	_	
Turn-on Switching Loss per Pulse	E _{ON}		-	0.89	_	mJ
Turn-off Switching Loss per Pulse	E _{OFF}		-	0.44	_	1
Turn-on Delay Time	t _{d(on)}	T _J = 150 °C	-	38.21	_	ns
Rise Time	t _r	$V_{DS} = 600 \text{ V}, I_{D} = 100 \text{ A}$ $V_{GS} = -5 \text{ V} / 18 \text{ V}, R_{G} = 1 \Omega$	-	12.92	_	1
Turn-off Delay Time	t _{d(off)}	as a garage	-	118	_	1
Fall Time	t _f		-	8.73	_	1
Turn-on Switching Loss per Pulse	E _{ON}		-	1.12	_	mJ
Turn-off Switching Loss per Pulse	E _{OFF}		-	0.44	_	1
Diode Forward Voltage	V_{SD}	I _D = 100 A, T _J = 25 °C	-	5.31	7.5	V
		I _D = 100 A, T _J = 125 °C	-	4.91	_	1
		I _D = 100 A, T _J = 150 °C	-	4.82	_	1
Thermal Resistance - Chip-to-Case	R _{thJC}	M1, M2	-	0.171	_	°C/W
Thermal Resistance – Chip-to-Heatsink	R _{thJH}	Thermal grease, Thickness = 2 Mil +2%, A = 2.8 W/mK	-	0.288	-	°C/W
THERMISTOR CHARACTERISTICS	•			•		•
Nominal Resistance	R ₂₅	T _{NTC} = 25 °C	-	5	_	kΩ
Nominal Resistance	R ₁₀₀	T _{NTC} = 100 °C	-	493	_	Ω
Nominal Resistance	R ₁₅₀	T _{NTC} = 150 °C	-	159.5	_	Ω
Deviation of R ₁₀₀	ΔR/R	T _{NTC} = 100 °C	-5	-	5	%
Power Dissipation – Recommended Limit	P _D	0.15 mA, non-self-heating effect	-	0.1	-	mW
Power Dissipation – Absolute Maximum	P _D	5 mA	-	34.2	_	mW
Power Dissipation Constant			-	1.4	_	mW/K
B-value	<u> </u>	B(25/50), tolerance ±2%	-	3375	-	K
B-value	1	B(25/100), tolerance ±2%	-	3436	_	К

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH006P120M3F2PTHG	NXH006P120M3F2PTHG	F2HALFBR: Case 180BY Press-fit Pins with pre-applied thermal interface material (TIM) (Pb-Free / Halide Free)	20 Units / Blister Tray

TYPICAL CHARACTERISTIC

(M1/M2 SiC MOSFET CHARACTERISTIC)

ID, DRAIN CURRENT (A)

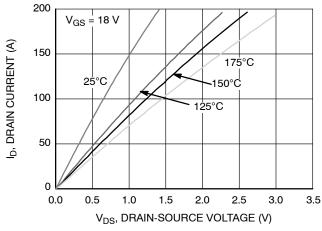


Figure 2. MOSFET Typical Output Characteristic

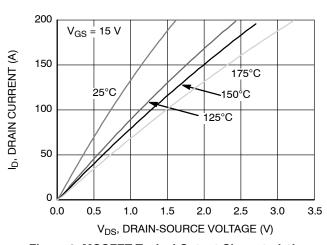


Figure 3. MOSFET Typical Output Characteristic

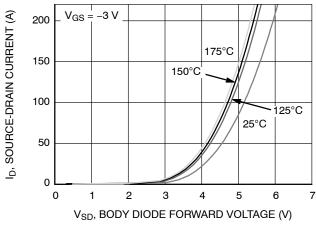


Figure 4. MOSFET Typical Transfer Characteristic

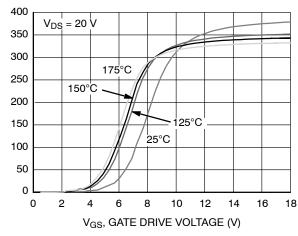


Figure 5. Body Diode Forward Characteristic

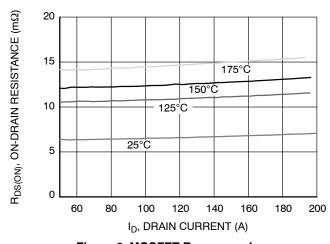


Figure 6. MOSFET $R_{DS(ON)}$ vs. I_D

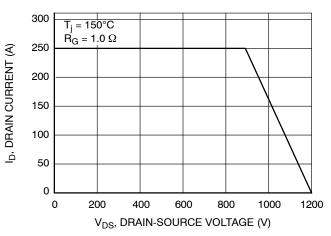


Figure 7. MOSFET RBSOA

TYPICAL CHARACTERISTIC

(M1/M2 SiC MOSFET CHARACTERISTIC)

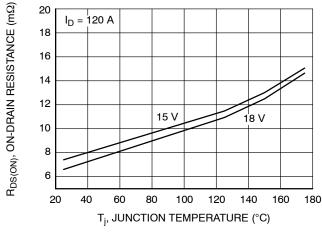


Figure 8. MOSFET $R_{DS(ON)}$ vs. T_j

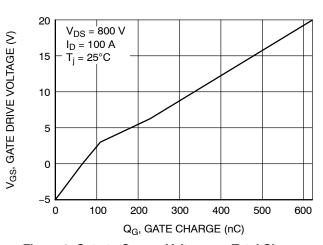


Figure 9. Gate-to-Source Voltage vs. Total Charge

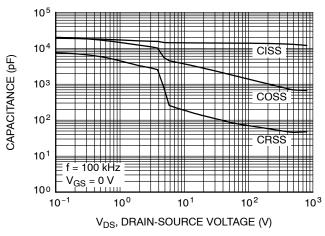


Figure 10. Capacitance vs. Drain-to-Source Voltage

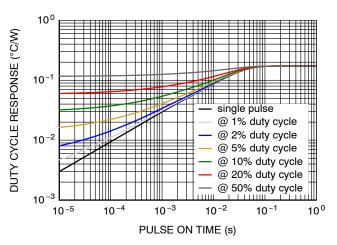


Figure 11. MOSFET Junction-to-Case Transient Thermal Impedance

TYPICAL CHARACTERISTIC

(M1/M1 SiC MOSFET SWITCHING CHARACTERISTIC)

Eon, TURN ON LOSS (mJ)

Eoff, TURN OFF LOSS (mJ)

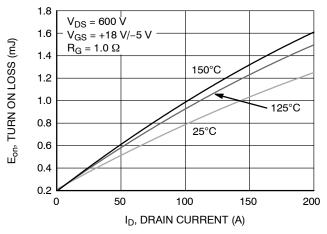


Figure 12. Typical Switching Loss Eon vs. ID



Figure 13. Typical Switching Loss Eon vs. R_G

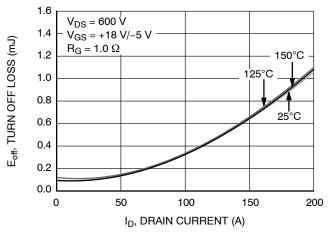


Figure 14. Typical Switching Loss Eoff vs. ID

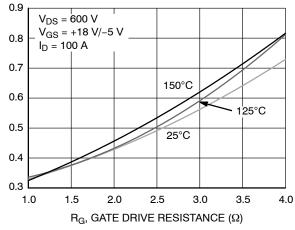
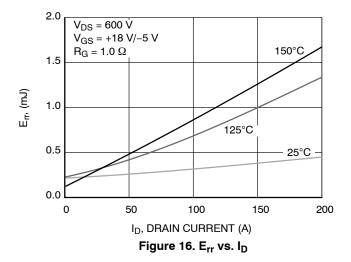
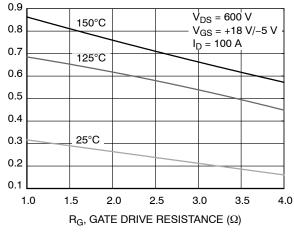




Figure 15. Typical Switching Loss E_{off} vs. R_{G}

TYPICAL CHARACTERISTIC

(M1/M1 SiC MOSFET SWITCHING CHARACTERISTIC)

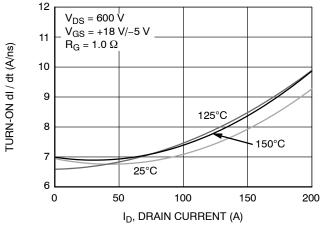


Figure 18. di/dt ON vs. I_{D}

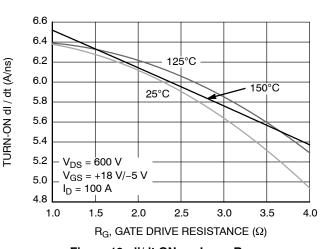


Figure 19. di/dt ON vs. I_D vs. R_G

Figure 20. di/dt OFF vs. I_D

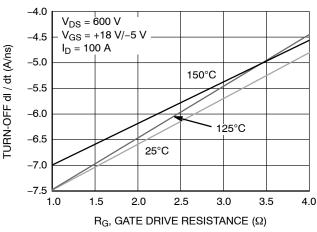


Figure 21. di/dt OFF vs. R_G

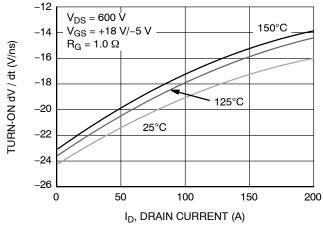


Figure 22. dv/dt ON vs. ID

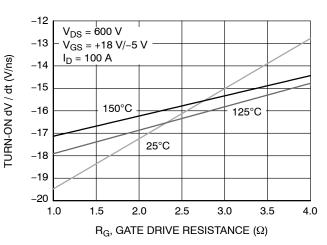


Figure 23. dv/dt ON vs. R_G

TYPICAL CHARACTERISTIC

(M1/M1 SiC MOSFET SWITCHING CHARACTERISTIC)

TURN-OFF dV / dt (V/ns)

t_{don}, TIME DELAY ON (ns)



Figure 24. dv/dt OFF vs. I_D vs. I_D

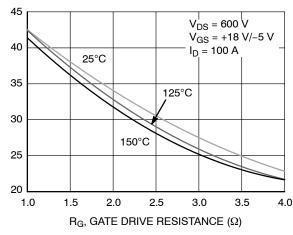


Figure 25. dv/dt OFF vs. I_D vs. R_G

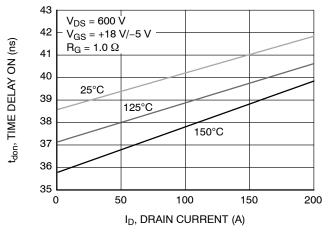


Figure 26. Typical Switching Loss t_{don} vs. I_D

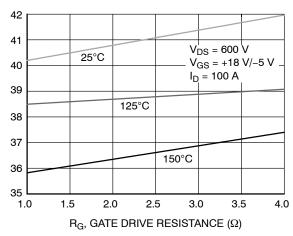


Figure 27. Typical Switching Loss t_{don} vs. R_G

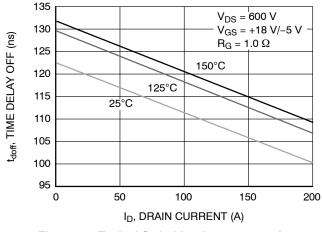


Figure 28. Typical Switching Loss t_{doff} vs. I_D

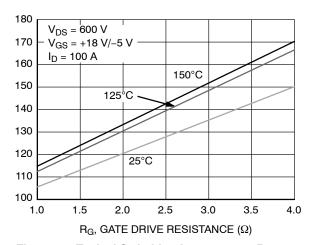


Figure 29. Typical Switching Loss t_{doff} vs. R_G

doff, TIME DELAY OFF (ns)

TYPICAL CHARACTERISTIC

(M1/M1 SiC MOSFET SWITCHING CHARACTERISTIC)

t, RISE TIME (ns)

tf, FALL TIME (ns)

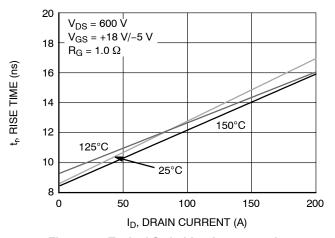


Figure 30. Typical Switching Loss t_r vs. I_D

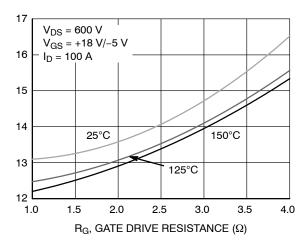


Figure 31. Typical Switching Loss t_r vs. R_G

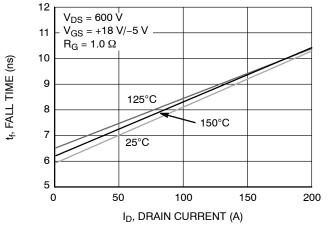


Figure 32. Typical Switching Loss tf vs. ID

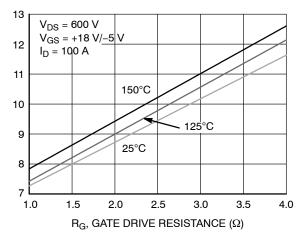


Figure 33. Typical Switching Loss tf vs. RG

Table 1. FOSTER NETWORKS - M1, M2

	M1		M	2	
Foster Element #	Rth (K/W)	Cth (Ws/K)	Rth (K/W)	Cth (Ws/K)	
1	0.007128913	0.014726553	0.007362625	0.014806718	
2	0.012161919	0.065733420	0.012250209	0.068123520	
3	0.007181004	0.193791778	0.008111627	0.172318664	
4	0.016285510	0.295329029	0.015759800	0.310819905	
5	0.129692183	0.184203426	0.130218477	0.185033159	

Table 2. CAUER NETWORKS - M1, M2

	M1		N	12
Cauer Element #	Rth (K/W)	Cth (Ws/K)	Rth (K/W)	Cth (Ws/K)
1	0.014060112	0.010299454	0.014544451	0.010347568
2	0.031541811	0.030614887	0.032745986	0.030654208
3	0.047951752	0.086377861	0.047636505	0.089568373
4	0.041739058	0.071218233	0.042559339	0.069836041
5	0.037156796	0.209773695	0.036216457	0.216319284

PIM36 56.70x42.50x12.00 CASE 180BY ISSUE E **DATE 20 DEC 2023** NOTES: 1. CONTROLLING DIMENSION: MILLIMETERS 2. PIN POSITION TOLERANCE IS ± 0.4mm PACKAGE MARKING LOCATION 3. PRESS FIT PIN MILLIMETERS NOM. MAX. DIM MIN. 11.65 12.35 12.00 Α1 16.10 16.50 16.90 A2 0.00 0.35 0.60 Ė2 А3 13.35 12.95 13.75 1.15 1,20 1.25 b b1 0.59 0.64 0.69 D 56.40 56.70 57.00 D1 4.40 4.50 4.60 D2 50.85 51.00 51.15 47.70 48.00 48.30 42.35 42.50 E1 42.65 ØΡ E2 52.90 53.00 53.10 **E**3 62.30 62.80 63.30 SIDE VIEW TOP VIEW E4 4.90 5.00 5.10 Р 2.20 2.30 2.40 25.5 24.0 24.0 20.8 20.8 11.2 **END VIEW** DBC EXPOSAL **GENERIC MARKING DIAGRAM* ATYYWW** Ø0.94~1.09 PLATED THRU HOLE FRONTSIDE MARKING Ø9.0 2D RECOMMENDED CODE **MOUNTING PATTERN**

DESCRIPTION:	 Printed Versions are uncontrolled except when stamped CONTROLLED	PAGE 1 OF 1	
DOCUMENT NUMBER:	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		

may not follow the Generic Marking.

*This information is generic. Please refer to device data

sheet for actual part marking. Pb-Free indicator, "G" or

microdot " • ", may or may not be present. Some products

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

BACKSIDE MARKING

YYWW = Year and Work Week Code

= Assembly & Test Site Code

XXXXX = Specific Device Code

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

