

DEMO MANUAL DC1700A

LTC3613EWKH Fast, High Efficiency Step-Down Regulator

DESCRIPTION

Demonstration circuit 1700A is a fast, high efficiency synchronous buck DC/DC converter with 4.5V to 24V input range. It can supply 15A maximum load current at 1.5V output. The demo board features the LTC®3613EWKH regulator. No external MOSFETs are required. The controlled on-time constant frequency valley current mode architecture allows for both fast transient response and constant frequency switching in steady-state operation. Differential output voltage sensing along with a precision internal reference combine to offer an accurate output regulation. The LTC3613 is ideal for applications such as distributed power systems, servers and point-of-load converters. The LTC3613EWKH is in a 7mm × 9mm 54-pin QFN package.

The light load operation mode of the converter is determined with the MODE/PLLIN pin. Use JP2 jumper to select discontinuous mode (DCM) or forced continuous mode (CCM) operation. Switching frequency is pre-set at about 350kHz. This frequency can be modified from 200kHz to 1MHz by changing the value of a resistor (R18). The converter can also be externally synchronized from 200kHz to 1MHz through the MODE/PLLIN pin (PLLIN terminal on the board). To shut down the converter, one simple way is to force the RUN pin below 1.1V (JP1: OFF). The power good output (PGOOD terminal) is low when the output voltage is outside of the ±7.5% regulation window.

Design files for this circuit board are available at http://www.linear.com/demo

(T, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY (T_A = 25°C)

PARAMETER	CONDITIONS	VALUE
Input Voltage Range		4.5V to 24V
Output Voltage, V _{OUT}	$V_{IN} = 4.5V$ to 24V, $I_{OUT} = 0A$ to 15A	1.5V ±2%
Maximum Output Current, I _{OUT}	V _{IN} = 4.5V to 24V, V _{OUT} = 1.5V	15A
Typical Output Ripple	V _{IN} = 12V, I _{OUT} = 15A (20MHz BW)	40mV _{P-P}
Typical Efficiency	V _{IN} = 12V, V _{OUT} = 1.5V, I _{OUT} = 15A	87.5%
Typical Switching Frequency		350kHz

QUICK START PROCEDURE

Demonstration circuit 1700A is easy to set up to evaluate the performance of the LTC3613. Refer to Figure 1 for the proper measurement equipment setup and follow the procedure below:

- 1. With power off, connect the input power supply to V_{IN} (4.5V to 24V) and GND (input return).
- 2. Connect the 1.5V output load between V_{OUT} and GND (Initial load: no load).
- 3. Connect the DVMs to the input and outputs.
- 4. Turn on the input power supply and check for the proper output voltages. V_{OUT} should be 1.5V ±2%.

Once the proper output voltages are established, adjust the loads within the operating range and observe the output voltage regulation, ripple voltage and other parameters.

Note: When measuring the output or input voltage ripple, do not use the long ground lead on the oscilloscope probe. See Figure 2 for the proper scope probe technique. Short, stiff leads need to be soldered to the (+) and (-) terminals of an output capacitor. The probe's ground ring needs to touch the (-) lead and the probe tip needs to touch the (+) lead.

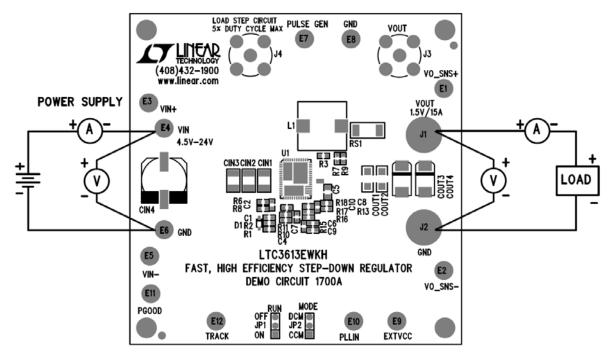


Figure 1. Proper Measurement Equipment Setup

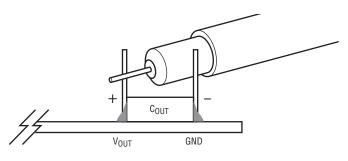


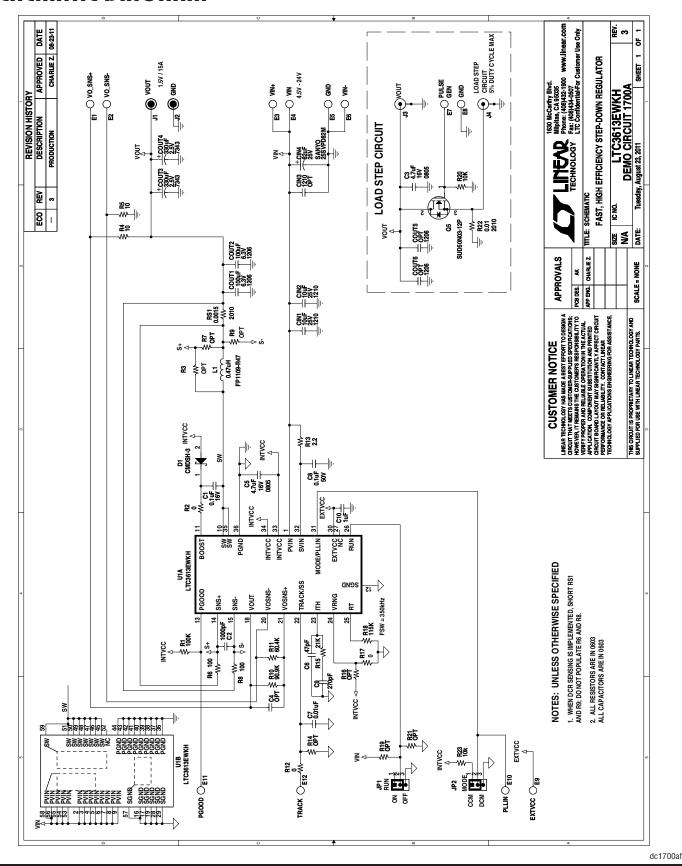
Figure 2. Measuring Output Voltage Ripple

dc1700af

QUICK START PROCEDURE

Figure 3. Efficiency vs Load Current ($V_{IN} = 12V$, $V_0 = 1.5V$, CCM)

DEMO MANUAL DC1700A


PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Require	d Circuit	Components		
1	2	CIN1, CIN2	CAP, 1210 10µF 10% 16V X5R	AVX, 1210YD106KAT
2	1	CIN4	CAP, 82µF, 25V, Sanyo	SANYO, 25SVPD82M
3	2	COUT1, COUT2	CAP, 1206 100µF 20% 6.3V X5R	MURATA, GRM31CR60J107ME39L
4	2	COUT3, COUT4	CAP, 7343 330µF 20% 2.5V POSCAP	SANYO 2R5TPE330M9
5	2	C1, C8	CAP, 0603 0.1µF 10% 25V X7R	TDK C1608X7R1E104K
6	1	C2	CAP, 0603 1000pF 10% 50V X7R	AVX, 06035C102KAT
7	2	C3, C5	CAP, 0805 4.7µF 10% 16V X5R	TDK C2012X5R1C475K
8	1	C6	CAP, 0603 47pF 10% 25V NPO	AVX, 06033A470KAT2A
9	1	C7	CAP, 0603 0.01µF 10% 50V X7R	AVX, 06035C103KAT
10	1	C9	CAP, 0603 270pF 10% 25V NPO	AVX, 06033A271KAT2A
11	1	C10	CAP, 0603 1µF 10% 25V X5R	AVX, 06033D105KAT
12	1	D1	DIODE,CMDSH-3 SOD323	CENTRAL CMDSH-3
13	1	L1	IND., 0.47µH, FP1109 series	COILTRONICS, FP1109-R47-R
14	1	Q5	XSTR, MOSFET, DPAK-T0252AA	VISHAY SUD50N03-12P-E3
15	1	RS1	RES, 2010 0.0015Ω 1% 1/2W	VISHAY WSL20101L500FEA
16	1	R1	RES, 0603 100k 1% 1/10W	VISHAY CRCW0603100KFKEA
17	3	R2, R12, R17	RES, 0603 0Ω JUMPER	VISHAY CRCW06030000Z0EA
18	2	R4, R5	RES, 0603 10Ω 1% 1/10W	VISHAY CRCW060310R0FKEA
19	2	R6, R8	RES, 0603 100Ω 1% 1/10W	PANASONIC, ERJ-3EKF1000V
20	1	R10	RES, 0603 90.9k 1% 1/10W	PANASONIC, ERJ-3EKF9092V
21	1	R11	RES, 0603 60.4k 1% 1/10W	VISHAY, CRCW060360K4FKEA
22	1	R13	RES, 0603 2.2Ω 1% 1/10W	NIC, NRC06F2R20TRF
23	1	R15	RES, 0603 21k 1% 1/10W	VISHAY, CRCW060321K0FKEA
24	1	R18	RES, 0603 115k 1% 1/10W	VISHAY, CRCW0603115KFKEA
25	2	R20, R23	RES, 0603 10k 1% 1/10W	NIC, NRC06F1002TRF
25	1	R22	RES, 2010 0.01Ω 1% 1/2W	VISHAY WSL2010R0100FEA
27	1	U1	LTC3613EWKH	QFN-56-7X9
Addition	al Demo	Board Circuit Components		
28	1	CIN3	OPT, 1210	
29	2	COUT5, COUT6	OPT	
30	3	C4, R9, R16	OPT	
31	1	R3	OPT	
32	4	R7, R14, R19, R21	OPT	
Demo B	oard Onl	у		
33	12	E1, E2, E3, E4, E5, E6, E7, E8,	TURRET	MILL-MAX 2501-2-00-80-00-00-07-0
34		E9, E10, E11, E12		
35	2	JP1, JP2	HEADER, 3PIN, 2mm	SAMTEC TMM-103-02-L-S
36	2	XJP1, XJP2	SHUNT, 2mm	SAMTEC 2SN-BK-G
37	2	J1, J2	JACK, BANANA	KEYSTONE 575-4
38	2	J3, J4	CONN, BNC, 5 PINS	CONNEX 112404

dc1700af

SCHEMATIC DIAGRAM

DEMO MANUAL DC1700A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

