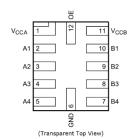


LXB0104

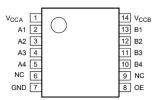
4-BITS BI-DIRECTIONAL LEVEL TRANSLATOR AUTO DIRECTION 110Mbps PUSH-PULL APPLICATIONS

Description

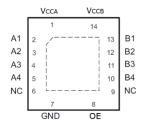
The LXB0104 is a 4-bits bi-directional level translator for push-pull applications which incorporates a buffered architecture with edge rate accelerators (one shots) to improve the overall data rate up to 110Mbps at 3.3V to 5.0V translation. This device is a universal level translator with A port operating from 1.2V to 3.6V (Vcca) and B port 1.65V to 5.5V (Vccb). This allows for universal low-voltage bi-directional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, and 5V voltage nodes. For proper operation, please be aware Vcca must not exceed Vccb and the device driving the data I/Os of the LXB0104 must have drive strength of at least $\pm 2\text{mA}$.


The OE pin is used to activate the device. When OE is HIGH, the translator switch is on. Otherwise, when OE is LOW, the translator switch is off, and a high-impedance OFF-state exists between ports. OE pin is the input for the device and should never be left floating. To ensure the high-impedance OFF-state during power-up or power-down, OE pin should be tied to GND through a pulldown resistor before V_{CCA} becomes stable, the value of the resistor is recommended to be $10k\Omega$ which is determined by the current-sourcing capability of the driver.

This device is fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the output, preventing the damaging backflow current through the device when it is powered down. This inhibits current backflow into the device which prevents damage to the device. If an external pullup or pulldown resistor is used on the device I/O ports, the resistor values must be larger than $50k\Omega$ to avoid affecting VOH or VOL.


Overall, the LXB0104 is designed for easy-to-use with auto direction. So, no need for a direction pin to minimize system effort. This device supports 5V tolerant I/O pins in only translate push-pull CMOS logic output applications.

Pin Assignments


(Top View)

U-QFN1720-12 (Type CJ)

TSSOP-14

V-QFN3535-14 (Type CJ)

Features

- Bi-Directional Voltage Translation for Push-Pull Applications
- Specified from -40°C to +125°C
- V_{CCA} for A Port: 1.2V to 3.6V
- Vccb for B Port: 1.65V to 5.5V
- Up & Down Translation Data Rate
 - \leq 110Mbps, C_L = 15pF, 3.3V to 5.0V Translation
 - ≤ 60Mbps, C_L = 15pF, 1.8V to 3.3V Translation
 - \leq 30Mbps, C_L = 15pF, 1.2V to 1.8V Translation
- IOFF Circuitry Provides Partial-Power-Down Mode Operation
- OE Pin Supports High-Impedance Exists Between Ports
- ESD Protection Exceeds JESD 22
 - 7000V HBM (B1 to B4 Port), 3000V HBM (A Port)
 - 1500V CDM (C101)
- Latchup Exceeds 100mA per JESD 17
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- An automotive-compliant part is available under a separate datasheet (<u>LXB0104Q</u>)

Applications

- GPIO, SPI, SDIO, UART
- Telecom infrastructures
- Industrial
- High-performance computing
- Wide array of products such as:
 - PCs, networking, notebooks
 - Smart phones
 - Tablets

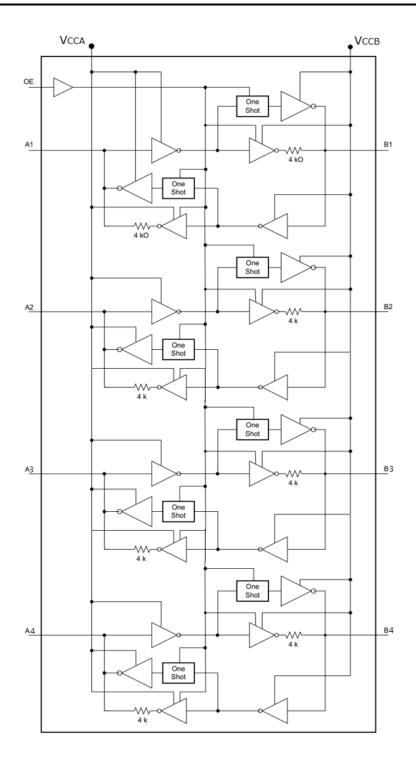
Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Descriptions

		Pin Number		
Pin Name	TSSOP-14	U-QFN1720-12 (Type CJ)	V-QFN3535-14 (Type CJ)	Function
Vcca	1	1	1	Supply Voltage, A Port
A1	2	2	2	Input/Output 1
A2	3	3	3	Input/Output 2
A3	4	4	4	Input/Output 3
A4	5	5	5	Input/Output 4
NC	6	_	6	No Connection. Not internally connected.
GND	7	6	7	Ground
OE	8	12	8	Output Enable; OE is high-active.
NC	9	_	9	No Connection. Not internally connected.
B4	10	7	10	Input/Output 4
В3	11	8	11	Input/Output 3
B2	12	9	12	Input/Output 2
B1	13	10	13	Input/Output 1
V _{CCB}	14	11	14	Supply Voltage, B Port

Absolute Maximum Ratings (Note 4)


Symbol	Parameter	Rating	Unit
ESD HBM	Human Body Model ESD Protection (B Port)	±7	kV
E2D UPINI	Human Body Model ESD Protection (A Port)	±3	kV
ESD CDM	Charged Device Model ESD Protection	±1.5	kV
V _{CCA} , V _{CCB}	Supply Reference Voltage Range	-0.5 to +6.0	V
Vı	Input Voltage Range	-0.5 to +6.0	V
Vo	Voltage Range Applied to Any Output in the High-Z or Power-Off State	-0.5 to +6.0	V
lıĸ	Input Clamp Current, V _I < 0	-50	mA
lok	Output Clamp Current, V _O < 0	-50	mA
1-	Continuous Output Current	±50	mA
lo	Continuous Current Through Vcca, Vccb, or GND	±100	mA
TJ	Operating Junction Temperature	-40 to +150	°C
Tstg	Storage Temperature	-65 to +150	°C

Note:

^{4.} Stresses greater than those listed under *Absolute Maximum Ratings* can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to *Absolute Maximum Ratings* for extended periods can affect device reliability.

Functional Diagram

For proper operation, please be aware:

- 1. VCCA must not exceed VCCB and the device driving the data I/Os of the LXB0104 must have drive strength of at least ±2mA.
- 2. OE pin is the input for the device and should never be left floating. OE pin should be tied to GND through a pulldown resistor before V_{CCA} becomes stable, the value of the resistor is recommended to be $10k\Omega$ which is determined by the current-sourcing capability of the driver.
- 3. If an external pullup or pulldown resistor is used on the device I/O ports, the resistor values must be larger than $50k\Omega$ to avoid affecting V_{OH} or V_{OL}.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
Vcca	Reference Voltage, A Port	1.2	3.6	V
Vссв	Reference Voltage, B Port	1.65	5.5	V
	Input Voltage, OE = Low (OFF), A1, A2	0	4.5	V
Vı	Input Voltage, OE = Low (OFF), B1, B2	0	5.5	V
	OE = High (ON)	0	Vcci (Note 5)	V
	Output Voltage, OE = Low (OFF), A1, A2	0	4.5	V
Vo	Output Voltage, OE = Low (OFF), B1, B2	0	5.5	V
	OE = High (ON)	0	Vcco (Note 5)	V
Δt/ΔV	Input Transition Rise or Fall Rate	0	40	ns/V
IPASS	Pass Transistor Current	_	64	mA
TA	Operating Free-Air Temperature	-40	+125	°C

Note: 5. V_{CCI} is the supply voltage associated with the input port; V_{CCO} is the supply voltage associated with the output port.

Electrical Characteristics (All typical values are measured at T_A = +25°C, unless otherwise specified, Notes 6 & 7.)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Vcca	A Port Supply Voltage	_	1.2	_	3.6	V
V _{CCB}	B Port Supply Voltage	_	1.65	_	5.5	V
VIH	Input High-Level Voltage	A port & B port, data input	Vcci × 0.65	_	Vccı	V
VIL	Input Low-Level Voltage	A port & B port, data input	0	_	V _{CCI} × 0.35	V
	Outrot Himb Lovel Maltana	A port, V _{CCA} = 1.2V, I _{OH} = -20µA	V _{CCA} × 0.8	_	_	V
V _{OHA}	Output High-Level Voltage	A port, V _{CCA} = 1.4V to 3.6V, I _{OH} = -20µA	V _{CCA} - 0.4	_	_	V
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Outrout Lavel Maltage	A port, V _{CCA} = 1.2V, I _{OL} = +20µA	_	_	Vcca × 0.2	V
V_{OLA}	Output Low-Level Voltage	A port, V _{CCA} = 1.4V to 3.6V, I _{OL} = +20μA	_	_	0.4	V
Vонв	Output High-Level Voltage	B port, I _{OH} = -20µA, V _{CCB} = 1.65V to 5.5V	Vccв - 0.4	_	_	V
V _{OLB}	Output Low-Level Voltage	B port, I _{OL} = +20μA, V _{CCB} = 1.65V to 5.5V	_	_	0.4	V
CIOE	OE Pin Capacitance	V _{CCA} = 1.2V to 3.6V	_	3	_	pF
C _{IOA}	A Port I/O Capacitance	V _{CCA} = 1.2V to 3.6V	_	5	_	pF
Сюв	B Port I/O Capacitance	V _{CCB} = 1.65V to 5.5V	_	11	_	pF
ICCA + ICCB	Total Supply Current	V _{IN} = GND, I _O = 0, V _{CCA} = 1.2V to 3.6V V _{CCB} = 1.65V to 5.5V	_	1	20	μΑ
		V _{IN} = GND, I _O = 0, V _{CCA} = 1.2V to 3.6V V _{CCB} = 1.65V to 5.5V	_	0.5	10	μΑ
ICCA	A Port Supply Current	V _{IN} = GND, I _O = 0, V _{CCA} = 3.6V, V _{CCB} = 0	_	0.5	8	μA
		V _{IN} = GND, I _O = 0, V _{CCA} = 0, V _{CCB} = 5.5V	_	0.5	-8	μΑ
		V _{IN} = GND, I _O = 0, V _{CCA} = 1.2V to 3.6V V _{CCB} = 1.65V to 5.5V	_	0.5	10	μΑ
ICCB	B Port Supply Current	V _{IN} = GND, I _O = 0, V _{CCA} = 3.6V, V _{CCB} = 0	_	0.5	-8	μΑ
		V _{IN} = GND, I _O = 0, V _{CCA} = 0, V _{CCB} = 5.5V	_	0.5	8	μΑ
I _{CCZA}	High Impedance State V _{CCA} Current	OE = V _{IN} = GND, I _O = 0, V _{CCA} = 1.2V to 3.6V V _{CCB} = 1.65V to 5.5V	_	0.5	5	μΑ
Іссхв	High Impedance State V _{CCB} Current	OE = V _{IN} = GND, I _O = 0, V _{CCA} = 1.2V to 3.6V V _{CCB} = 1.65V to 5.5V	_	0.5	5	μΑ
loz	Off-State Output Current	OE = GND, A port: 1.2V to 3.6V B port: 1.65V to 5.5V	_	±0.5	±5	μΑ
loss	Off State Leakage Current	A port, V _I or V _O = 0 to 3.6V, V _{CCA} = 0 V _{CCB} = 0 to 5.5V	_	±0.5	±10	μΑ
loff	Off-State Leakage Current	B port, V_1 or $V_0 = 0$ to 5.5V, $V_{CCB} = 0$ $V_{CCA} = 0$ to 3.6V	_	±0.5	±10	μΑ

lotes: 6. V_{CCA} must be less than or equal to V_{CCB} . V_{CCI} is the supply voltage associated with the input port.

7. All DC current are measured at T_A = +25°C as typical values and maximum values are measured among T_A = -40°C to +125°C.

Dynamic Switching Characteristics (Notes 8 & 9, unless otherwise specified.)

VCCA = 1.2V, TA = +25°C & +125°C

Parameter	From (Innut)	To (Output)	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	Unit
Parameter	From (Input)	10 (Output)	Max	Max	Max	Max	Offic
	Α	В	12.5	10.5	11.0	11.0	ns
t _{PD}	В	Α	17.5	16.5	17.0	17.0	ns
4	OE	Α	1.0	1.0	1.0	1.0	μs
ten	OE	В	1.0	1.0	1.0	1.0	μs
4	OE	Α	380	360	330	330	ns
tois	OE	В	350	330	320	320	ns
t _{RA} , t _{FA}	A port rise time and	d fall time	9.5	9.3	9.2	9.2	ns
t _{RB} , t _{FB}	B port rise time and	d fall time	5.5	5.3	5.2	5.2	ns
tsko	Skew time, between	en channels	0.5	0.5	0.5	0.5	ns
Data rate	_		30	30	30	30	Mbps

Test conditions: C_L = 15pF includes probe and jig capacitance. R_L = Load resistance. For measuring data rate, pulse width, propagation delay, output rise and fall time and enable time, R_L = 1M Ω . For measuring disable time, R_L = 50k Ω . All input pulses are supplied by generators having the following characteristics: PRR = 10MHz, ZO = 50 Ω , dv / dt \geq 1V/ns. See load circuit for details.

V_{CCA} = 1.8V, T_A = +125°C

Parameter	From (Input)	To (Output)	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	Unit
Parameter	From (mput)	10 (Output)	Max	Max	Max	Max	Oill
4	Α	В	_	7.4	7.1	7.0	ns
tpD	В	Α	_	8.5	7.9	7.6	ns
4	OE	Α	_	0.8	0.8	0.8	μs
ten	OE	В	_	0.8	0.8	0.8	μs
4	OE	Α	_	240	240	240	ns
tois	OE	В	_	210	210	210	ns
tra, tra	A port rise time and	fall time	_	6.2	6.1	6.0	ns
t _{RB} , t _{FB}	B port rise time and	B port rise time and fall time		5.3	4.9	4.8	ns
tsko	Skew time, between channels		_	0.5	0.5	0.5	ns
Data rate	_		_	55	65	65	Mbps

Test conditions: $C_L = 15pF$ includes probe and jig capacitance. $R_L = Load$ resistance. For measuring data rate, pulse width, propagation delay, output rise and fall time and enable time, $R_L = 1M\Omega$. For measuring disable time, $R_L = 50k\Omega$. All input pulses are supplied by generators having the following characteristics: PRR = 10MHz, ZO = 50Ω , dv / dt $\geq 1V/ns$. See load circuit for details.

V_{CCA} = 2.5V, T_A = +125°C

Parameter	From (Innut)	To (Output)	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	Unit
Parameter	From (Input)	To (Output)	Max	Max	Max	Max	Offic
tpD	Α	В	_	_	6.2	5.9	ns
LPD	В	Α	_	_	6.5	6.2	ns
ten	OE	Α	_	_	0.7	0.7	μs
LEIN	OE	В	_	_	0.7	0.7	μs
tois	OE	Α	_		220	220	ns
IDIS	OE	В	_		210	210	ns
tra, tfa	A port rise time and	d fall time	_	_	5.5	5.5	ns
trb, trb	A port rise time and fall time		_	_	4.8	4.7	ns
tsko	Skew time, between channels		_		0.5	0.5	ns
Data rate	_		_	_	75	80	Mbps

Test conditions: $C_L = 15$ pF includes probe and jig capacitance. $R_L = Load$ resistance. For measuring data rate, pulse width, propagation delay, output rise and fall time and enable time, $R_L = 1$ M Ω . For measuring disable time, $R_L = 50$ k Ω . All input pulses are supplied by generators having the following characteristics: PRR = 10MHz, ZO = 50 Ω , dv / dt \geq 1V/ns. See load circuit for details.

Notes: 8. For correct operation, the device driving the data I/Os of the LXB0104 must have a minimum drive capability of ±2mA.

^{9.} See Figure 1, t_{PD} is the same as t_{PLH} and t_{PHL}; t_{EN} is the same as t_{PZL} and t_{PZH}; t_{DIS} is the same as t_{PLZ} and t_{PHZ}.

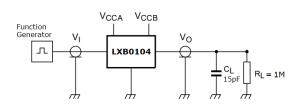
Dynamic Switching Characteristics (Notes 8 & 9, unless otherwise specified.) (continued)

V_{CCA} = 3.3V, T_A = +125°C

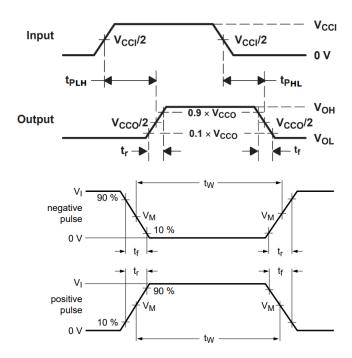
Parameter	From (Input)	To (Output)	V _{CCB} = 1.8V Max	V _{CCB} = 2.5V Max	V _{CCB} = 3.3V Max	V _{CCB} = 5.0V Max	Unit
4	Α	В	_	_	_	3.9	ns
tpD	В	Α	_	_	_	4.8	ns
4	OE	Α	_	_	_	0.7	μs
ten	OE	В	_	_	_	0.7	μs
45.0	OE	Α	_	_	_	210	ns
tois	OE	В	_	_	_	210	ns
tra, tfa	A port rise time and	d fall time	_	_	_	4.8	ns
trB, tFB	A port rise time and fall time		_	_	_	4.6	ns
tsko	Skew time, between	en channels	_	_	_	0.5	ns
Data rate	_		_	_	_	110	Mbps

Test conditions: $C_L = 15pF$ includes probe and jig capacitance. $R_L = Load$ resistance. For measuring data rate, pulse width, propagation delay, output rise and fall time and enable time, $R_L = 1M\Omega$. For measuring disable time, $R_L = 50k\Omega$. All input pulses are supplied by generators having the following characteristics: PRR = 10MHz, ZO = 50Ω , dv / dt $\geq 1V/ns$. See load circuit for details.

Notes:


- 8. For correct operation, the device driving the data I/Os of the LXB0104 must have a minimum drive capability of ±2mA.
- 9. See Figure 1, t_{PD} is the same as t_{PLH} and t_{PHL} ; t_{EN} is the same as t_{PZL} and t_{PZH} ; t_{DIS} is the same as t_{PLZ} and t_{PHZ} .

15pF


Parameter Measurement Information

DATA RATE and tPD MEASUREMENTS

ENABLE and DISABLE MEASUREMENTS tPZL, tPLZ = 2xVo tPHZ, tPLZ = 2xVo tPHZ, tPLZ = 50k LXB0104

VOLTAGE WAVEFORMS FOR PROPAGATION DELAY TIMES

DISABLE MEASUREMENT WAVEFORMS

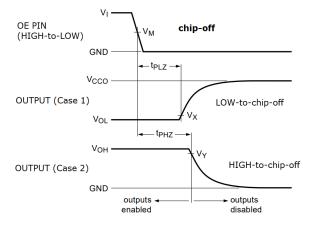
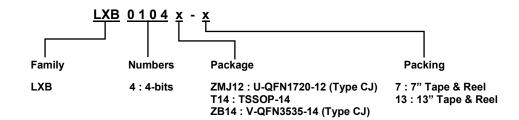


Figure 1. The LXB0104 must be driven at least ±2mA for proper operation. Load circuit and function generators having the following characteristics: PRR ≤ 10MHz, ZO = 50Ω, dv / dt ≥ 1.0V/ns


Package Characteristics

Symbol	Parameter	Package	Test Conditions	Min	Тур	Max	Unit
		U-QFN1720-12 (Type CJ)		ı	102	ı	
θ_{JA}	Thermal Resistance Junction-to-Ambient	TSSOP-14	Note 10	_	110	_	
		V-QFN3535-14 (Type CJ)		_	62	_	°C/W
		U-QFN1720-12 (Type CJ)		_	32	_	C/VV
θјс	Thermal Resistance Junction-to-Case	TSSOP-14	Note 10	_	54	_	
		V-QFN3535-14 (Type CJ)		_	25	_	

Note:

10. Test condition for each of the package type(s): device mounted on JEDEC standard PCB per JESD51, with minimum recommended pad layout.

Ordering Information

Orderable Part Number	Part Number	Dankara Cada	Dookogo	Packing	g (Note 11)
Orderable Part Number	Suffix	Package Code	ge Code Package		Carrier
LXB0104ZMJ12-7	-7	ZMJ12	U-QFN1720-12 (Type CJ)	3,000	7" Tape and Reel
LXB0104T14-13	-13	T14	TSSOP-14	2,500	13" Tape and Reel
LXB0104ZB14-13	-13	ZB14	V-QFN3535-14 (Type CJ)	5,000	13" Tape and Reel

Notes:

- 11. The taping orientation is located on our website at https://www.diodes.com/assets/Packaging-Support-Docs/AP02007.pdf.
- 12. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

 13. Pad layout as shown in Diodes Incorporated's package outline PDFs, which can be found on our website at http://www.diodes.com/packageoutlines.html.

Marking Information

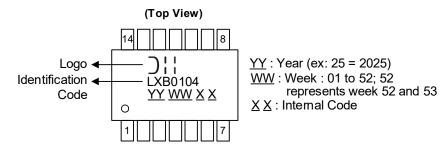
(1) U-QFN1720-12 (Type CJ)

(Top View)

<u>XX</u> Y W X XX: Identification Code

 \underline{Y} : Year: 0 to 9 (ex: 5 = 2025)

 \underline{W} : Week: A to Z: week 1 to 26; a to z: week 27 to 52; z represents week 52 and 53


X: Internal Code

Orderable Part Number	Package	Identification Code
LXB0104ZMJ12-7	U-QFN1720-12 (Type CJ)	BU

Marking Information (continued)

(2) TSSOP-14

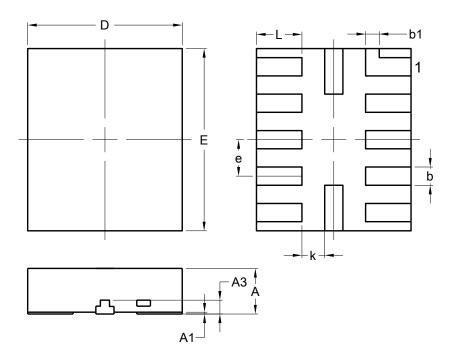
Orderable Part Number	Package	Identification Code
LXB0104T14-13	TSSOP-14	LXB0104

(3) V-QFN3535-14 (Type CJ)

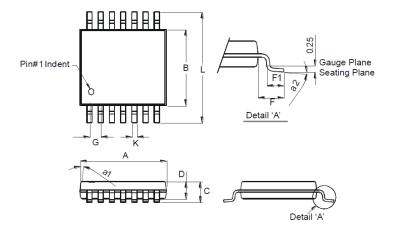
(Top View)

 \underline{XX} : Identification Code \underline{Y} : Year: 0 to 9 (ex: 5 = 2025) W: Week: A to Z: week 1 to 26; a to z: week 27 to 52; z represents week 52 and 53

X: Internal Code


Orderable Part Number	Package	Identification Code
LXB0104ZB14-13	V-QFN3535-14 (Type CJ)	BV

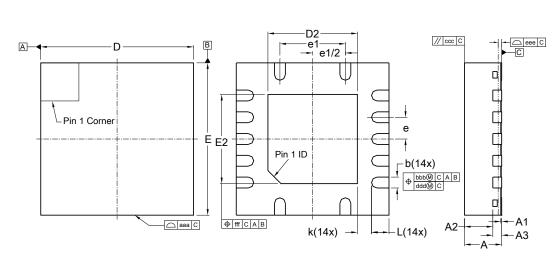
Package Outline Dimensions


Please see http://www.diodes.com/package-outlines.html for the latest version.

U-QFN1720-12 (Type CJ)

U-QFN1720-12			
	(Type CJ)		
Dim	Min	Max	Тур
Α	0.450	0.550	
A1	0.00	0.050	-
A3	0	.152 RE	F
b	0.150	0.250	
b1	0	.150 RE	F
D	1.600	1.800	-
Е	1.900	2.100	-
е	0.400 BSC		
k	0.250 REF		
Ĺ	0.400	0.600	
All Dimensions in mm			

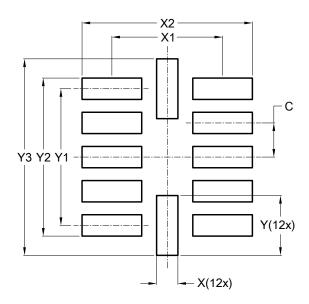
TSSOP-14


TSSOP-14		
Dim	Min	Max
a1	7° (4X)	
a2	0°	8°
Α	4.9	5.10
В	4.30	4.50
С	-	1.2
D	0.8	1.05
F	1.00 Typ	
F1	0.45	0.75
G	0.65 Typ	
K	0.19	0.30
Ĺ	6.40 Typ	
All Dimensions in mm		

Package Outline Dimensions (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

V-QFN3535-14 (Type CJ)

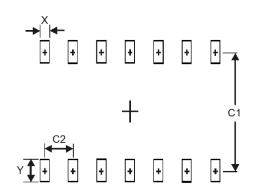


V-QFN3535-14			
(Type CJ)			
Dim	Min	Max	Тур
Α	0.80	0.90	0.85
A1	0.00	0.05	0.02
A2			0.65
A3	0	.203 R	EF
b	0.20	0.30	0.25
D	3.50 BSC		
D2		2.15	
Е	3.50 BSC		
E2	1.95	2.15	2.05
е	(0.50 BS	SC
e1		1.50 BS	SC
L		0.50	
k	0.325 REF		
aaa	0.1		
bbb	0.1		
CCC	0.1		
ddd	0.05		
eee	0.08		
fff	0.1		
All Dimensions in mm			

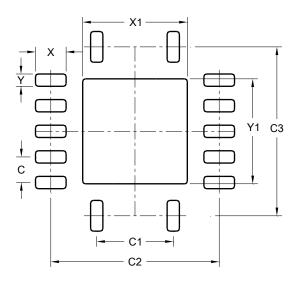
Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

U-QFN1720-12 (Type CJ)


Dimensions	Value (in mm)
С	0.400
X	0.250
X1	1.300
X2	2.000
Υ	0.700
Y1	1.600
Y2	1.850
Y3	2.300

Suggested Pad Layout (continued)


Please see http://www.diodes.com/package-outlines.html for the latest version.

TSSOP-14

Dimensions	Value (in mm)
Х	0.45
Υ	1.45
C1	5.9
C2	0.65

V-QFN3535-14 (Type CJ)

Dimensions	Value	
Dillielisiolis	(in mm)	
С	0.500	
C1	1.500	
C2	3.300	
C3	3.300	
X	0.600	
X1	2.050	
Υ	0.240	
Y1	2 050	

Mechanical Data

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3)
- Max Soldering Temperature +260°C for 30 secs as per JEDEC J-STD-020
- Weight:
 - U-QFN1720-12 (Type CJ): 21.5mg (Approximate)
 - TSSOP-14: 82.5mg (Approximate)
 - V-QFN3535-14 (Type CJ): 32.5mg (Approximate)

IMPORTANT NOTICE

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners.

© 2025 Diodes Incorporated. All Rights Reserved.

www.diodes.com