

2 OUTPUT PCIE GEN1/2 SYNTHESIZER

IDT5V41065

Recommended Applications

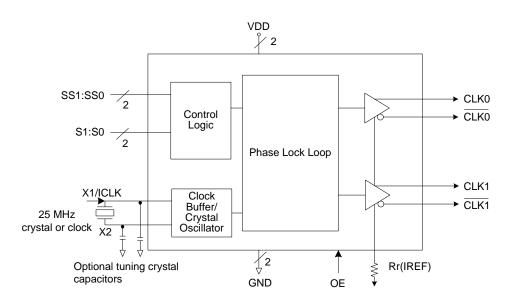
2 Output synthesizer for PCIe Gen1/2 and Ethernet

General Description

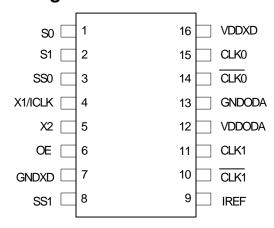
The IDT5V41065 is a PCIe Gen2 compliant spread spectrum capable clock generator. The device has 2 differential HCSL outputs and can be used in communication or embedded systems to substantially reduce electro-magnetic interference (EMI). The spread amount and output frequency are selectable via select pins. The IDT5V41065 can also supply 25 MHz, 125 MHz and 200 MHz outputs for applications such as Ethernet.

Output Features

2 - 0.7V current mode differential HCSL output pairs


Features/Benefits

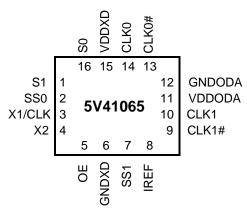
- 16-pin TSSOP and QFN packages; small board footprint
- Spread-spectrum capable; reduces EMI
- Outputs can be terminated to LVDS; can drive a wider variety of devices
- 25 MHz, 125 MHz and 200 MHz output frequencies; TSSOP only
- 100MHz and 200MHz output frequencies; VFQFPN package
- OE control pin; greater system power management
- Spread% and frequency pin selection; no software required to configure device
- Industrial temperature range available; supports demanding embedded applications
- For PCle Gen3 applications, see the 5V41235


Key Specifications

- Cycle-to-cycle jitter < 100 ps
- Output-to-output skew < 50 ps
- PCIe Gen2 phase jitter < 3.0ps RMS

Block Diagram

Pin Assignment


16-pin (173 mil) TSSOP

Output Select Table 1 (MHz)-TSSOP only

S1	S0	CLK(1:0), CLK(1:0)
0	0	25M
0	1	100M
1	0	125M
1	1	200M

Spread Selection Table 2-TSSOP only

SS1	SS0	Spread%
0	0	No Spread
0	1	Down -0.5
1 0		Down -0.75
1	1	No Spread

16-pin VFQFPN

Output/Spread Select Table 3 - VFQFPN Only

S1	S0	SS1	SS0	Output	Spread%	
0	0	0	0	100MHz	-0.5	
0	0	0	1	200MHz	-0.5	
0	0	1	0	100MHz	No spread	
0	0	1	1	Res	served	
0	1	0	0	100MHz	-1	
0	1	0	1	200MHz	-1	
0	1	1	0	Reserved		
0	1	1	1	Reserved		
1	0	0	0	100MHz	-1.5	
1	0	0	1	200MHz	-1.5	
1	0	1	0	Res	served	
1	0	1	1	Res	served	
1	1	0	0	Reserved		
1	1	0	1	200MHz No spread		
1	1	1	0	Reserved		
1	1	1	1	Res	served	

Pin Descriptions

VFQFPN	TSSOP	Pin	Pin	Pin Description
Pin	Pin	Name	Type	
Number	Number			
16	1	S0	Input	Select pin 0. See Table1. Internal pull-up resistor.
1	2	S1	Input	Select pin 1. See Table 1. Internal pull-up resistor.
2	3	SS0	Input	Spread Select pin 0. See Table 2. Internal pull-up resistor.
3	4	X1/ICLK	Input	Crystal or clock input. Connect to a 25 MHz crystal or single ended clock.
4	5	X2	Output	Crystal connection. Leave unconnected for clock input.
5	6	OE	Input	Output enable. Tri-states outputs and device is not shut down. Internal pull-up resistor.
6	7	GNDXD	Power	Connect to ground.
7	8	SS1	Input	Spread Select pin 1. See Table 2. Internal pull-up resistor.
8	9	IREF	Output	Precision resistor attached to this pin is connected to the internal current reference.
9	10	CLK1	Output	HCSL complementary clock output 1.
10	11	CLK1	Output	HCSL true clock output 1.
11	12	VDDODA	Power	Connect to voltage supply +3.3 V for output driver and analog circuits
12	13	GNDODA	Power	Connect to ground.
13	14	CLK0	Output	HCSL complementary clock output 0.
14	15	CLK0	Output	HCSL true clock output 0.
15	16	VDDXD	Power	Connect to voltage supply +3.3 V for crystal oscillator and digital circuit.

Applications Information

External Components

A minimum number of external components are required for proper operation.

Decoupling Capacitors

Decoupling capacitors of 0.01 μF should be connected between each VDD pin and the ground plane, as close to the VDD pin as possible. Do not share ground vias between components. Route power from power source through the capacitor pad and then into ICS pin.

Crystal

A 25 MHz fundamental mode parallel resonant crystal should be used. This crystal must have less than 300 ppm of error across temperature in order for the IDT5V41065 to meet PCI Express specifications.

Crystal Capacitors

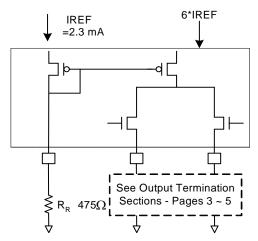
Crystal capacitors are connected from pins X1 to ground and X2 to ground to optimize the accuracy of the output frequency.

C_L= Crystal's load capacitance in pF

Crystal Capacitors (pF) = $(C_1 - 8) * 2$

For example, for a crystal with a 16 pF load cap, each external crystal cap would be 16 pF. (16-8)*2=16.

Current Source (Iref) Reference Resistor - RR


If board target trace impedance (Z) is 50Ω , then R_R = 475Ω (1%), providing IREF of 2.32 mA. The output current (I_{OH}) is equal to 6*IREF.

Output Termination

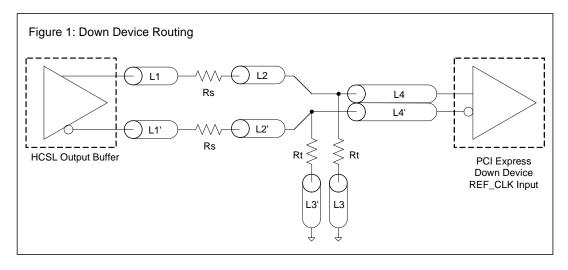
The PCI-Express differential clock outputs of the IDT5V41065 are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in the **PCI-Express Layout Guidelines** section.

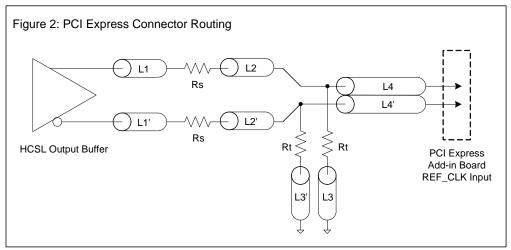
The IDT5V41065 can also be configured for LVDS compatible voltage levels. See the LVDS Compatible Layout Guidelines section.

Output Structures

General PCB Layout Recommendations

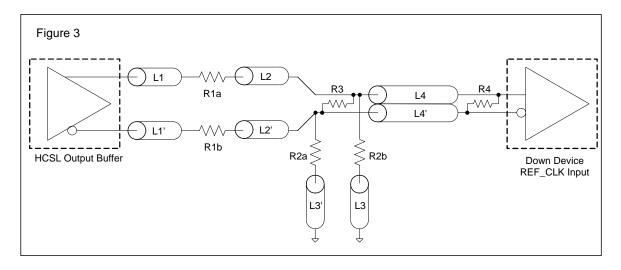
For optimum device performance and lowest output phase noise, the following guidelines should be observed.

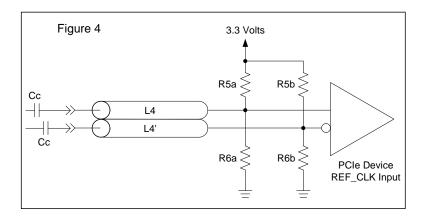

- 1. Each $0.01\mu F$ decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible.
- 2. No vias should be used between decoupling capacitor and VDD pin.
- 3. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.
- 4. An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (any ferrite beads and bulk decoupling capacitors can be mounted on the back). Other signal traces should be routed away from the IDT5V41065. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.


Layout Guidelines

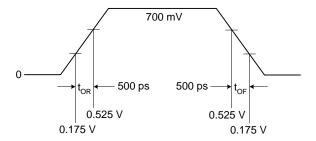
SRC Reference Clock						
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure			
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1			
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1			
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1			
Rs	33	ohm	1			
Rt	49.9	ohm	1			

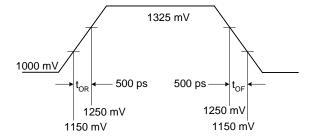
Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1


Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



	Alternative Termination for LVDS and other Common Differential Signals (figure 3)							
Vdiff Vp-p Vcm R1 R2 R3 R4 Note							Note	
0.45v	0.22v	1.08	33	150	100	100		
0.58	0.28	0.6	33	78.7	137	100		
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible	
0.60	0.3	1.2	33	174	140	100	Standard LVDS	


R1a = R1b = R1R2a = R2b = R2


Cable Connecte	Cable Connected AC Coupled Application (figure 4)						
Component	Value	Note					
R5a, R5b	8.2K 5%						
R6a, R6b	1K 5%						
	0.1 μF						
Vcm	0.350 volts						

Typical PCI-Express (HCSL) Waveform

Typical LVDS Waveform

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT5V41065. These ratings are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDDXD, VDDODA	4.6 V
All Inputs and Outputs	-0.5 V to VDD+0.5 V
Ambient Operating Temperature (commercial)	0 to +70°C
Ambient Operating Temperature (industrial)	-40 to +85°C
Storage Temperature	-65 to +150°C
Junction Temperature	125°C
Soldering Temperature	260°C
ESD Protection (Input)	2000 V min. (HBM)

DC Electrical Characteristics

Unless stated otherwise, VDD = 3.3 V ±5%, Ambient Temperature -40 to +85°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V		3.135	3.3	3.465	V
Input High Voltage ¹	V _{IH}	S0, S1, OE, ICLK, SS0, SS1	2.2		VDD +0.3	V
Input Low Voltage ¹	V _{IL}	S0, S1, OE, ICLK, SS0, SS1	VSS-0.3		0.8	V
Input Leakage Current ²	I _{IL}	0 < Vin < VDD	-5		5	μΑ
Operating Supply Current	I _{DD}	$R_S=33\Omega$, $R_P=50\Omega$, $C_L=2$ pF		63	85	mA
@100 MHz	I _{DDOE}	OE =Low		42	50	mA
Input Capacitance	C _{IN}	Input pin capacitance			7	pF
Output Capacitance	C _{OUT}	Output pin capacitance			6	pF
X1, X2 Capacitance	C _{INX}				5	pF
Pin Inductance	L _{PIN}				5	nΗ
Output Impedance	Z _O	CLK outputs	3.0			kΩ
Pull-up Resistor	R _{PU}	S0, S1, OE, SS0, SS1		100		kΩ

- 1. Single edge is monotonic when transitioning through region.
- 2. Inputs with pull-ups/-downs are not included.

AC Electrical Characteristics - CLK0/CLK1, CLK0/CLK1

Unless stated otherwise, VDD=3.3 V ±5%, Ambient Temperature -40 to +85°C

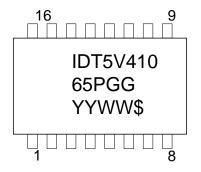
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency				25		MHz
Output Frequency		HCSL termination	25		200	MHz
		LVDS termination	25		100	MHz
Output High Voltage ^{1,2}	V _{OH}	HCSL			850	mV
Output Low Voltage ^{1,2}	V _{OL}	HCSL	-150			mV
Crossing Point Voltage ^{1,2}		Absolute	250		550	mV
Crossing Point Voltage ^{1,2,4}		Variation over all edges			140	mV
Jitter, Cycle-to-Cycle ^{1,3}					100	ps
Frequency Synthesis Error		All outputs		0		ppm
Modulation Frequency		Spread spectrum	30	32.9	33	kHz
Rise Time ^{1,2}	t _{OR}	From 0.175 V to 0.525 V	175		700	ps
Fall Time ^{1,2}	t _{OF}	From 0.525 V to 0.175 V	175		700	ps
Rise/Fall Time Variation ^{1,2}					125	ps
Output to Output Skew					50	ps
Duty Cycle ^{1,3}			45		55	%
Output Enable Time ⁵		All outputs		50	100	ns
Output Disable Time ⁵		All outputs		50	100	ns
Stabilization Time	t _{STABLE}	From power-up VDD=3.3 V			1.8	ms
Spread Spectrum Transition Time	t _{SPREAD}	Stabilization time after spread spectrum changes	7		30	ms

- Note 1: Test setup is $R_S=33\Omega$, $R_P=50\Omega$ with $C_I=2$ pF, $R_I=475\Omega$ (1%).
- Note 2: Measurement taken from a single-ended waveform.
- Note 3: Measurement taken from a differential waveform.
- Note 4: Measured at the crossing point where instantaneous voltages of both CLK and $\overline{\text{CLK}}$ are equal.
- Note 5: CLK pins are tri-stated when OE is low asserted. CLK is driven differential when OE is high.

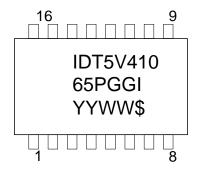
Electrical Characteristics - Differential Phase Jitter

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
	t _{jphasePLL}	PCle Gen1		32	86	ps (p-p)	1,2,3
Jitter, Phase	t _{jphaseLO}	PCIe Gen2, 10 kHz < f < 1.5 MHz		0.8	3	ps (RMS)	1,2,3
	t _{jphaseHIGH}	PCIe Gen2, 1.5 MHz < f < Nyquist (50 MHz)		2.3	3.1	ps (RMS)	1,2,3

- Note 1. Guaranteed by design and characterization, not 100% tested in production.
- Note 2. See http://www.pcisig.com for complete specs.
- Note 3: Applies to 100MHz, spread off and 0.5% down spread only.


Thermal Characteristics (16TSSOP)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	$\theta_{\sf JA}$	Still air		78		°C/W
Ambient	$\theta_{\sf JA}$	1 m/s air flow		70		°C/W
	$\theta_{\sf JA}$	3 m/s air flow		68		°C/W
Thermal Resistance Junction to Case	$\theta_{\sf JC}$			37		°C/W


Thermal Characteristics(16VFQFPN)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	$\theta_{\sf JA}$	Still air		63.2		°C/W
Ambient	$\theta_{\sf JA}$	1 m/s air flow		55.9		°C/W
	$\theta_{\sf JA}$	3 m/s air flow		51.4		°C/W
Thermal Resistance Junction to Case	θ JC			65.8		°C/W

Marking Diagram (5V41065PGG)

Marking Diagram (5V41065PGGI)

Notes:

- 1. Line 1 and 2: IDT part number.
- 2. Line 3: YYWW Date code; \$ Assembly location.
- 3. "G" after the two-letter package code designates RoHS compliant package.
- 4. "I" at the end of part number indicates industrial temperature range.
- 5. Bottom marking: country of origin if not USA.

Marking Diagram (5V41065NLGI)

Marking Diagram (5V41065NLGI)

Notes:

- 1. Line 1: Lot number.
- 2. Line 2: YWW Date code; \$ Assembly location.
- 3. "G" designates RoHS compliant package.
- 4. "I" at the end of part number indicates industrial temperature range.

© 2019 Renesas Electronics Corporation

01

SHEET 1 OF 2

PSC-4169

C

DO NOT SCALE DRAWING

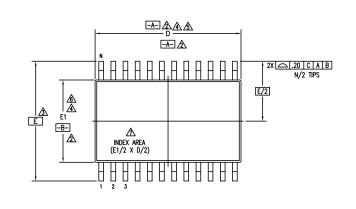
IDT® 2 OUTPUT PCIE GEN1/2 SYNTHESIZER

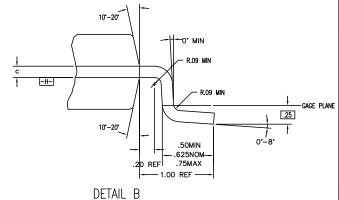
12

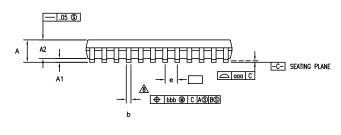
IDT5V41065

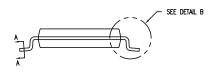
APRIL 17, 2017

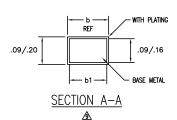
Package Outline and Package


Dimensions (16-pin QFN), cont.


REVISIONS REV DESCRIPTION DATE APPROVED INITIAL RELEASE 10/15/08 RC 9/17/13 COMBINE POD & LAND PATTERN 3.80 .50 **-** .80 → .25 3.80 2.20 1.80 .50 .80 1.80 NOTES: 1. ALL DIMENSION ARE IN mm. ANGLES IN DEGREES. 2. TOP DOWN VIEW. AS VIEWED ON PCB. 3. COMPONENT OUTLINE SHOW FOR REFERENCE IN GREEN. 4. LAND PATTERN IN BLUE. NSMD PATTERN ASSUMED. TOLERANCES UNLESS SPECIFIED 6024 Silver Creek Valley Road 5. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT San Jose, CA 95138 ® PHONE: (408) 284-8200 DECIMAL ANGULAR XX± ± XXX± FOR SURFACE MOUNT DESIGN AND LAND PATTERN. www.IDT.com FAX: (408) 284-8591 XXXXX NL/NLG16 PACKAGE OUTLINE 3.0 x 3.0 mm BODY APPROVALS DATE DRAWN RAC 10/15/08 CHECKED 0.5 mm PITCH QFN SIZE DRAWING No. REV 01 C PSC-4169 DO NOT SCALE DRAWING SHEET 2 OF 2


REVISIONS DATE CREATED DESCRIPTION AUTHOR T. VU REV 08/25/98 02 ADD 14 & 16 LD 07/10/99 03 ADD 8 LD T. VU 5/23/01 ADDED TOPMARK TO TITLE 04 10/14/04 05 ADD "GREEN" PGG NOMENCLATURE TU VU RAC 3/8/13 9/3/14 06 ADDED PACKAGE CODE 07 ADD TOLERANCE FOR A, A1, E AND b CK LEE 3/10/17 08 ADD OPTION T1 NOTE: REFER TO DCP FOR OFFICIAL RELEASE DATE


Package Outline and Package Dimensions (16-pin TSSOP)


IDT5V41065 2 OUTPUT PCIE GEN1/2 SYNTHESIZER

TOLERANCES UNLESS SPECIFIED DECIMAL ANGULAR XX± ± XXX± XXX±	WW.	IDT ™	2975 Stender Way Santa Clara, CA 9: PHONE: (408) 727- FAX: (408) 492-86	6116
	TITLE	PG/PGG PACKAGE (PG OR PA TOPM/ 4 mm BODY WIDTH	ARK CODE)	PITCH
	SIZE	DRAWING No.		REV
	С	PSC-	4056	08

DO NOT SCALE DRAWING

SHEET 1 OF 3

© 2019 Renesas Electronics Corporation

DATE		REVISIONS	
CREATED	REV	DESCRIPTION	AUTHO
08/25/98	02	ADD 14 & 16 LD	T. VL
07/10/99	03	ADD 8 LD	T. V
5/23/01	04	ADDED TOPMARK TO TITLE	
10/14/04	05	ADD "GREEN" PGG NOMENCLATURE	TU V
3/8/13	06	ADDED PACKAGE CODE	RAC
9/3/14	07	ADD TOLERANCE FOR A, A1, E AND b	CK LE
3/10/17	08	ADD OPTION T1	R.TAN
NOTE: F	REFER	TO DCP FOR OFFICIAL RELEASE DATE	

Package

Outline

and

Package

Dimensions

(16-pin

TSSOP), cont.

SHEET 2 OF 3

2 OUTPUT PCIE GEN1/2 SYNTHESIZER

		PG/P	PGC8 PG/PGC14 PG/PGC16				PG/PGG20			PG/PGG24				PG/PGG28										
S Y M	JEDE	C VARIAT	ION	N	JEDE	C VARIAT	ION	z	JEDE	C VARIAT	ION	ž	JEDE	C VARIAT	ION	N	JEDE	C VARIAT	ION	Ŋ	JEDE	C VARIAT	ION	Ŋ
B		AA] 두 [AB-1		J ₹ I		AB] 7		AC		🖁		AD		J Ŧ I		AE] 7
	MIN	NOM	MAX	E	MIN	NOM	MAX	E	MIN	NOM	MAX	E	MIN	NOM	MAX	E	MIN	NOM	MAX	E	MIN	NOM	MAX	E
Α	.85	1.10	1.20		.85	1.10	1.20		.85	1.10	1.20		.85	1.10	1.20		.85	1.10	1.20		.85	1.10	1.20	
A1	.05	.10	.15		.05	.10	.15		.05	.10	.15		.05	.10	.15		.05	.10	.15		.05	.10	.15	
A2	.80	1.00	1.05		.80	1.00	1.05		.80	1.00	1.05		.80	1.00	1.05		.80	1.00	1.05		.80	1.00	1.05	
D	2.90	3.00	3.10	4,5	4.90	5.00	5.10	4,5	4.90	5.00	5.10	4,5	6.40	6.50	6.60	4,5	7.70	7.80	7.90	4,5	9.60	9.70	9.80	4,5
Ε	6.20	6.40	6.60	3	6.20	6.40	6.60	3	6.20	6.40	6.60	3	6.20	6.40	6.60	3	6.20	6.40	6.60	3	6.20	6.40	6.60	3
E1	4.30	4.40	4.50	4,6	4.30	4.40	4.50	4,6	4.30	4.40	4.50	4,6	4.30	4.40	4.50	4,6	4.30	4.40	4.50	4,6	4.30	4.40	4.50	4,6
е		.65 BSC				.65 BSC				.65 BSC				.65 BSC				.65 BSC				.65 BSC		
b	.19	.25	.30		.19	.25	.30		.19	.25	.30		.19	.25	.30		.19	.25	.30		.19	.25	.30	
b1	.19	.22	.25		.19	.22	.25		.19	.22	.25		.19	.22	.25		.19	.22	.25		.19	.22	.25	
aaa	-	-	.10		_	-	.10		_	-	.10		_	-	.10		_	-	.10		_	_	.10	
bbb	-	-	.10		_	-	.10		-	-	.10		_	-	.10		_	-	.10		_	-	.10	
N		8				14				16				20				24				28		

NOTES:

•	Ι.	ALL	DIMENSIONING	AND	TOLERANCING	CONFORM	T0	ASME	Y14.5M-	1994

DATUMS —A— AND —B— TO BE DETERMINED AT DATUM PLANE —H—

DIMENSION E TO BE DETERMINED AT SEATING PLANE __C_

DIMENSIONS D AND E1 ARE TO BE DETERMINED AT DATUM PLANE __H_

DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED .15 mm PER SIDE

6 DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED .25 mm PER SIDE

DETAIL OF PIN 1 IDENTIFIER IS OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED

LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS .08 mm IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT

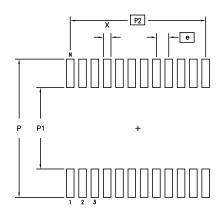
THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .10 AND .25 mm FROM THE LEAD TIP

10 ALL DIMENSIONS ARE IN MILLIMETERS

1 THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION MO-153, VARIATION AA, AB-1, AB, AC, AD & AE

SY M B L	JEDE	C VARIAT	ION	N
B		AB-1		N E
	MIN	NOM	MAX	Ė
Α	.90	1.10	1.20	
A1	.05	.10	.15	
A2	.80	1.00	1.05	
D	4.90	5.00	5.10	4,5
E	6.20	6.40	6.60	3
E1	4.30	4.40	4.50	4,6
е		.65 BSC		
Ь	.19	.25	.30	
b1	.19	.22	.25	
С	.09	-	.20	
aaa	-	-	.10	
bbb	-	-	.10	
N		14		

TOLERANCE UNLESS SE DECIMAL XX± XXX± XXXX±	Www.	W.IDT.com	2975 Stender Way Santa Clara, CA 95054 PHONE: (408) 727-6116 FAX: (408) 492-8674			
		PG/PGG PACKAGE (PG OR PA TOPM 4 mm BODY WIDTH	IARK CODE)	PITCH		
	SIZE	DRAWING No.		REV		
	C	PSC-	-4056	08		


DO NOT SCALE DRAWING

DATE		REVISIONS										
CREATED	REV	DESCRIPTION	AUTHO									
08/25/98	02	ADD 14 & 16 LD	T. VU									
07/10/99	03	ADD 8 LD	T. VU									
5/23/01	04	ADDED TOPMARK TO TITLE										
10/14/04	05	ADD "GREEN" PGG NOMENCLATURE	TU VL									
3/8/13	06	ADDED PACKAGE CODE	RAC									
9/3/14	07	ADD TOLERANCE FOR A, A1, E AND b	CK LE									
3/10/17	08	ADD OPTION T1	R.TAN									
NOTE: F	REFER	TO DCP FOR OFFICIAL RELEASE DATE										

Package Outline and Package Dimensions (16-pin TSSOP), cont.

IDT5V41065 2 OUTPUT PCIE GEN1/2 SYNTHESIZER

LAND PATTERN DIMENSIONS

	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Р	7.20	7.40	7.20	7.40	7.20	7.40	7.20	7.40	7.20	7.40	7.20	7.40
P1	4.20	4.40	4.20	4.40	4.20	4.40	4.20	4.40	4.20	4.40	4.20	4.40
P2	1.95	BSC	3.90	BSC	4.55	BSC	5.85	BSC	7.15	BSC	8.45	BSC
Х	.30	.50	.30	.50	.30	.50	.30	.50	.30	.50	.30	.50
е	.65 E	BSC	.65 E	3SC	.65 BSC		.65 BSC		.65 E	3SC	.65 E	BSC
N	8	3	1	4	1	6	2	0	24		2	8

TOLERANCES UNLESS SPECIFIED		75 Stender Way
DECIMAL ANGULAR XX± ± XXXX± XXXX±	PH	nta Clara, CA 95054 IONE: (408) 727–6116 X: (408) 492–8674
	TITLE PG/PGG PACKAGE O (PG OR PA TOPMAR 4.4 mm BODY WIDTH T	K CODE)
	SIZE DRAWING No.	REV
	C PSC-4	056 08
	OO NOT SCALE DRAWING	SHEET 3 OF 3

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
5V41065PGG	See Page 11	Tubes	16-pin TSSOP	0 to +70° C
5V41065PGG8		Tape and Reel	16-pin TSSOP	0 to +70° C
5V41065PGGI		Tubes	16-pin TSSOP	-40 to +85° C
5V41065PGGI8		Tape and Reel	16-pin TSSOP	-40 to +85° C
5V41065NLG	See Page 11	Trays	16-pin QFN	0 to +70° C
5V41065NLG8		Tape and Reel	16-pin QFN	0 to +70° C
5V41065NLGI		Trays	16-pin QFN	-40 to +85° C
5V41065NLGI8		Tape and Reel	16-pin QFN	-40 to +85° C

[&]quot;G" after the two-letter package code are the Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Originator	Date	Description of Change	
Α		07/15/08	New datasheet; Preliminary initial release.	
В	RDW	01/13/10	Added Gen2 to title; update Electrical tables per char; added Differential Phase Jitter table.	
С	RDW	04/27/10	Updated electrical tables per char; VDD is now 3.3 ±5%; released to final.	
D	RDW	07/19/10	Updated title and general description Updated cycle-to-cycle jitter spec from 125 to 100 ps.	
E	RDW	11/21/11	 Changed title to "2 Output PCIe GEN1/2 Synthesizer" Added note to Features section: "For PCIe Gen3 applications, see 5V41235" Updated Differential Phase Jitter table. 	
F	J, Chao	08/26/13	 Added 16VFQFPN notes in Features section Added pinout and "Output/Spread Selection" table for 16VFQFPN. Updated Pin Description table to include VFQFPN pin descriptions. Added Thermal Characteristics table for 16VFQFPN. Added marking diagrams for 16VFQFPN. Added Package Dimensions/Drawing for 16VFQFPN. Updated Ordering Information to include 16VFQFPN. 	
G	C.P.	04/17/17	Replaced package outline drawings with latest NLG16 and PGG16 drawings. Updated legal disclaimer.	

IDT5V41065 2 OUTPUT PCIE GEN1/2 SYNTHESIZER

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/