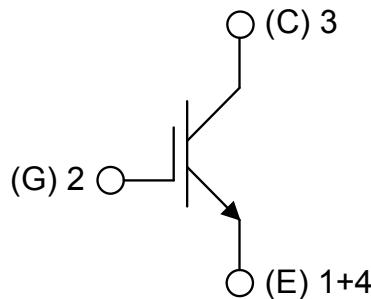


XPT IGBT

V_{CES} = 1200V
 I_{C25} = 100A
 $V_{CE(sat)}$ = 1.8V

Single IGBT


Part number

IXA70I1200NA

Backside: isolated

E72873

Features / Advantages:

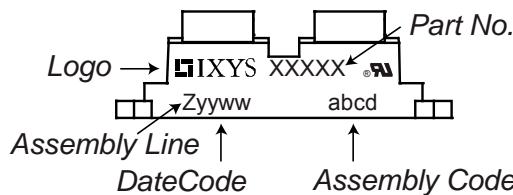
- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
 - short circuit rated for 10 μ sec.
 - very low gate charge
 - low EMI
 - square RBSOA @ 3x I_c
- Thin wafer technology combined with the XPT design results in a competitive low $V_{CE(sat)}$

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
- Switched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper internally DCB isolated
- Advanced power cycling
- Either emitter terminal can be used as main or Kelvin emitter


IGBT			Ratings				
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
V_{CES}	collector emitter voltage	$T_{VJ} = 25^\circ C$			1200	V	
V_{GES}	max. DC gate voltage				± 20	V	
V_{GEM}	max. transient gate emitter voltage				± 30	V	
I_{C25}	collector current	$T_c = 25^\circ C$			100	A	
I_{C80}		$T_c = 80^\circ C$			65	A	
P_{tot}	total power dissipation	$T_c = 25^\circ C$			350	W	
$V_{CE(sat)}$	collector emitter saturation voltage	$I_c = 50 A; V_{GE} = 15 V$	$T_{VJ} = 25^\circ C$	1.8	2.1	V	
			$T_{VJ} = 125^\circ C$	2.1		V	
$V_{GE(th)}$	gate emitter threshold voltage	$I_c = 2 mA; V_{GE} = V_{CE}$	$T_{VJ} = 25^\circ C$	5.4	5.9	6.5	V
I_{CES}	collector emitter leakage current	$V_{CE} = V_{CES}; V_{GE} = 0 V$	$T_{VJ} = 25^\circ C$		0.1	mA	
			$T_{VJ} = 125^\circ C$	0.1		mA	
I_{GES}	gate emitter leakage current	$V_{GE} = \pm 20 V$			500	nA	
$Q_{G(on)}$	total gate charge	$V_{CE} = 600 V; V_{GE} = 15 V; I_c = 50 A$		190		nC	
$t_{d(on)}$	turn-on delay time	inductive load $V_{CE} = 600 V; I_c = 50 A$ $V_{GE} = \pm 15 V; R_G = 15 \Omega$		70		ns	
t_r	current rise time			40		ns	
$t_{d(off)}$	turn-off delay time			250		ns	
t_f	current fall time			100		ns	
E_{on}	turn-on energy per pulse			4.5		mJ	
E_{off}	turn-off energy per pulse			5.5		mJ	
RBSOA	reverse bias safe operating area	$V_{GE} = \pm 15 V; R_G = 15 \Omega$	$T_{VJ} = 125^\circ C$				
I_{CM}		$V_{CEmax} = 1200 V$			150	A	
SCSOA	short circuit safe operating area	$V_{CEmax} = 1200 V$					
t_{sc}	short circuit duration	$V_{CE} = 900 V; V_{GE} = \pm 15 V$	$T_{VJ} = 125^\circ C$		10	μs	
I_{sc}	short circuit current	$R_G = 15 \Omega$; non-repetitive		200		A	
R_{thJC}	thermal resistance junction to case				0.35	K/W	
R_{thCH}	thermal resistance case to heatsink			0.10		K/W	

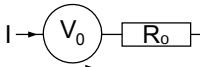
Package SOT-227B (minibloc)

Symbol	Definition	Conditions	Ratings			
			min.	typ.	max.	
I_{RMS}	RMS current	per terminal ¹⁾			150	A
T_{VJ}	virtual junction temperature		-40		150	°C
T_{op}	operation temperature		-40		125	°C
T_{stg}	storage temperature		-40		150	°C
Weight				30		g
M_D	mounting torque		1.1		1.5	Nm
M_T	terminal torque		1.1		1.5	Nm
$d_{Spp/App}$	creepage distance on surface / striking distance through air	terminal to terminal	10.5	3.2		mm
$d_{Spb/Abp}$		terminal to backside	8.6	6.8		mm
V_{ISOL}	isolation voltage	$t = 1$ second $t = 1$ minute	50/60 Hz, RMS; $I_{ISOL} \leq 1$ mA	3000 2500		V V

¹⁾ I_{RMS} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.

Product Marking

Part description

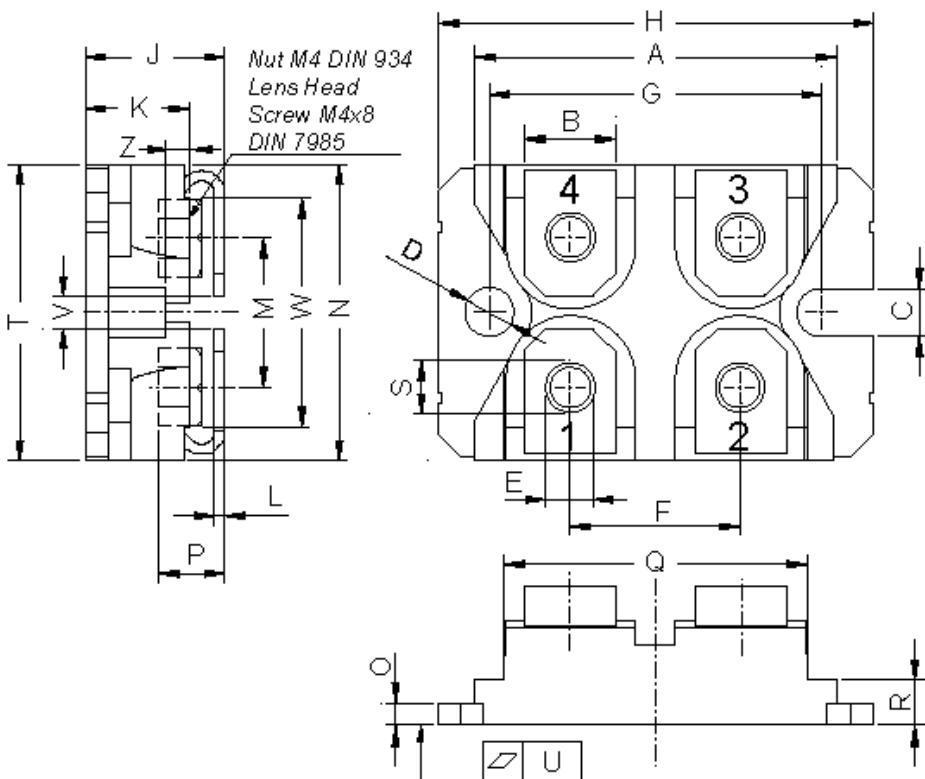

I = IGBT
 X = XPT IGBT
 A = Gen 1 / std
 70 = Current Rating [A]
 I = Single IGBT
 1200 = Reverse Voltage [V]
 NA = SOT-227B (minibloc)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	IXA70I1200NA	IXA70I1200NA	Tube	10	511265

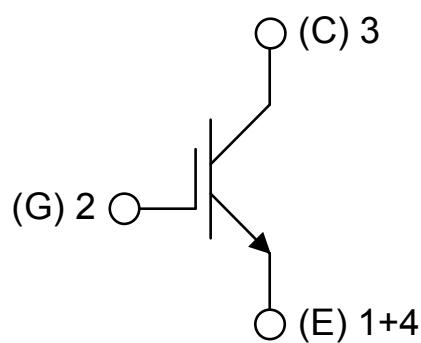
Similar Part	Package	Voltage class
IXA60IF1200NA	SOT-227B (minibloc)	1200

Equivalent Circuits for Simulation

* on die level


 $T_{VJ} = 150$ °C

IGBT


$V_{0\max}$ threshold voltage
 $R_{0\max}$ slope resistance *

1.1 V
 28 mΩ

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches	
	min	max	min	max
A	31.50	31.88	1.240	1.255
B	7.80	8.20	0.307	0.323
C	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
E	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
H	37.80	38.23	1.488	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.74	0.84	0.029	0.033
M	12.50	13.10	0.492	0.516
N	25.15	25.42	0.990	1.001
O	1.95	2.13	0.077	0.084
P	4.95	6.20	0.195	0.244
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.167
S	4.55	4.85	0.179	0.191
T	24.59	25.25	0.968	0.994
U	-0.05	0.10	-0.002	0.004
V	3.20	5.50	0.126	0.217
W	19.81	21.08	0.780	0.830
Z	2.50	2.70	0.098	0.106

IGBT

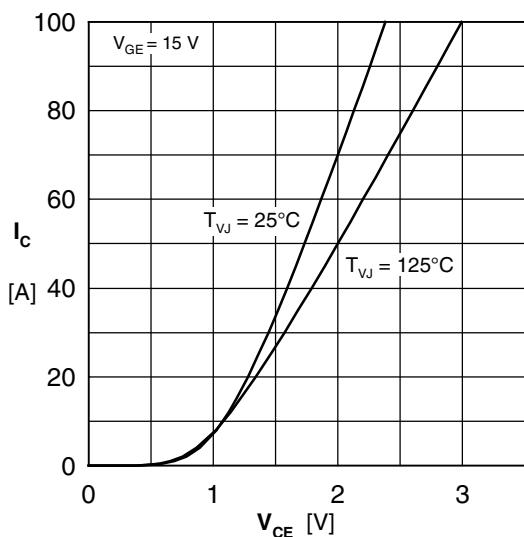


Fig. 1 Typ. output characteristics

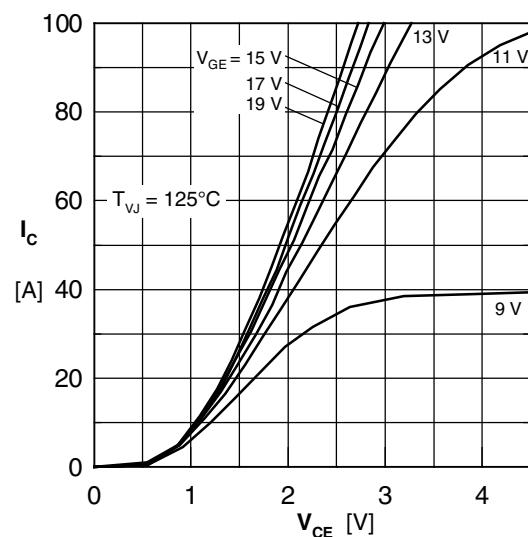


Fig. 2 Typ. output characteristics

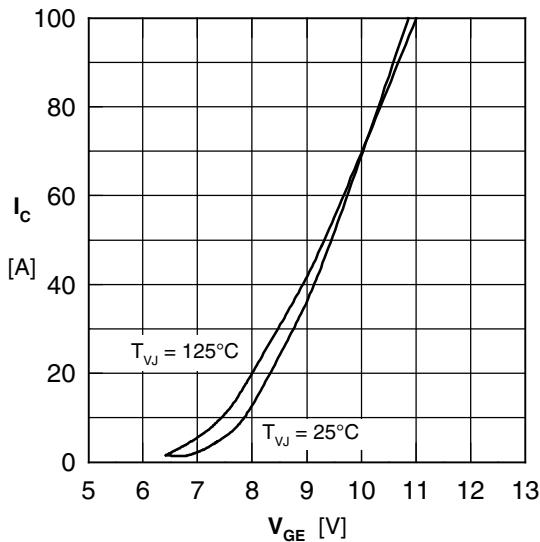


Fig. 3 Typ. transfer characteristics

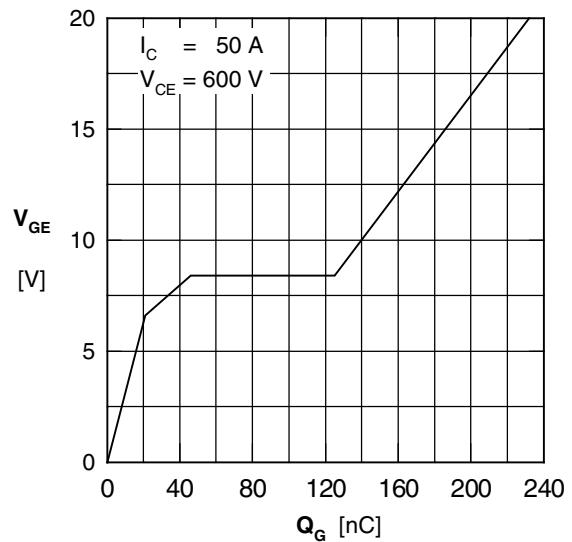


Fig. 4 Typ. turn-on gate charge

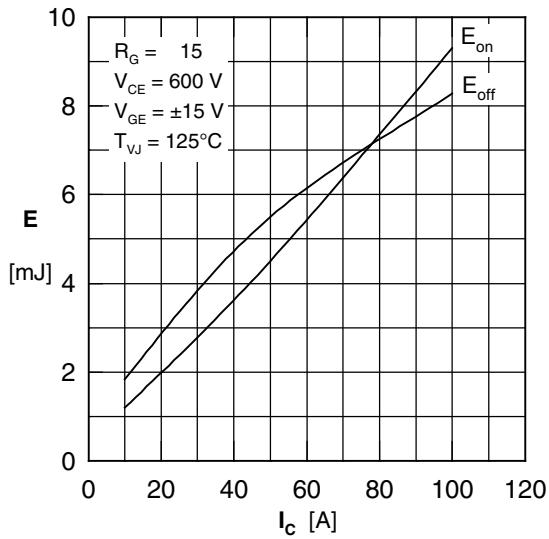


Fig. 5 Typ. switching energy vs. collector current

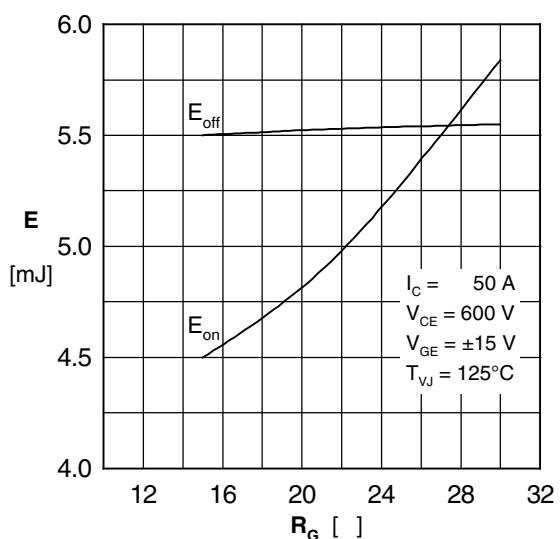


Fig. 6 Typ. switching energy vs. gate resistance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.