ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Switch-mode Power Rectifier 100 V, 60 A

Features and Benefits

- Low Forward Voltage: 0.72 V @ 125°C
- Low Power Loss/High Efficiency
- High Surge Capacity
- 175°C Operating Junction Temperature
- 60 A Total (30 A Per Diode Leg)
- NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Supply Output Rectification
- Power Management
- Instrumentation

Mechanical Characteristics:

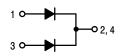
- Case: Epoxy, Molded
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight (Approximately): 1.9 Grams (TO-220)

1.7 Grams (D²PAK-3)

- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes:

260°C Max. for 10 Seconds

• ESD Rating: Human Body Model = 3B


Machine Model = C

ON Semiconductor®

www.onsemi.com

SCHOTTKY BARRIER RECTIFIER 60 AMPERES, 100 VOLTS

TO-220

CASE 221A

STYLE 6

MARKING **DIAGRAM**

AKA

D²PAK-3 **CASE 418B** STYLE 3

= Assembly Location

= Year WW = Work Week B60H100 = Device Code = Pb-Free Package G

ORDERING INFORMATION

= Polarity Designator

Device	Package	Shipping [†]
MBR60H100CTG	TO-220 (Pb-Free)	50 Units/Rail
MBRB60H100CTT4G	D ² PAK-3 (Pb-Free)	800/ Tape & Reel
NRVBB60H100CTT4G	D ² PAK-3 (Pb-Free)	800/ Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS (Per Diode Leg)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	V
Average Rectified Forward Current (T _C = 155°C) Per Diode Per Device	I _{F(AV)}	30 60	А
Peak Repetitive Forward Current (Square Wave, 20 kHz, T _C = 151°C)	I _{FRM}	60	А
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	350	А
Operating Junction Temperature Range (Note 1)	TJ	- 55 to +175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dV/dt	10,000	V/μs
Controlled Avalanche Energy (see test conditions in Figures 9 and 10)	W _{AVAL}	400	mJ
ESD Ratings: Machine Model = C Human Body Model = 3B		> 400 > 8000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance			°C/W
Junction-to-Case (Min. Pad)	$R_{\theta JC}$	1.0	
Junction-to-Ambient (Min. Pad)	$R_{ heta JA}$	70	

ELECTRICAL CHARACTERISTICS (Per Diode Leg)

Characteristic	Symbol	Min	Тур	Max	Unit
Maximum Instantaneous Forward Voltage (Note 2) $ \begin{aligned} &(i_F=30 \text{ A, } T_J=25^{\circ}\text{C}) \\ &(i_F=30 \text{ A, } T_J=125^{\circ}\text{C}) \\ &(i_F=60 \text{ A, } T_J=25^{\circ}\text{C}) \\ &(i_F=60 \text{ A, } T_J=125^{\circ}\text{C}) \end{aligned} $	VF	- - - -	0.80 0.68 0.93 0.81	0.84 0.72 0.98 0.84	V
Maximum Instantaneous Reverse Current (Note 2) (Rated DC Voltage, $T_J = 125^{\circ}C$) (Rated DC Voltage, $T_J = 25^{\circ}C$)	i _R		2.0 0.0013	10 0.01	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{1.} The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

^{2.} Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.

TYPICAL CHARACTERISTICS

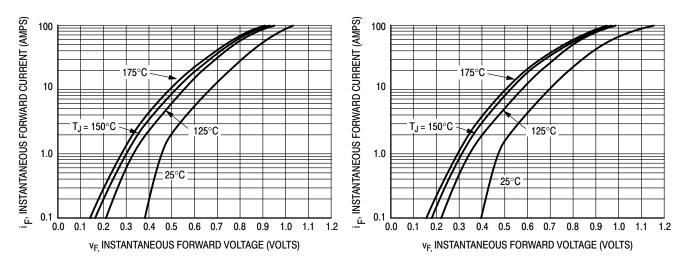
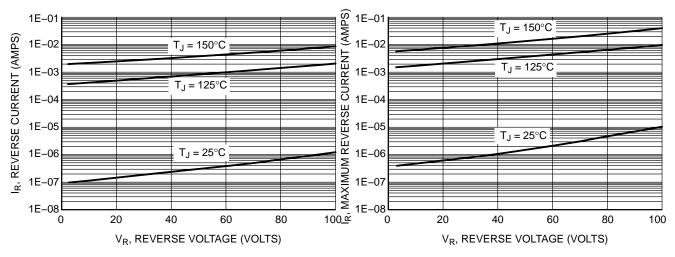



Figure 1. Typical Forward Voltage

Figure 2. Maximum Forward Voltage

Figure 3. Typical Reverse Current

RATED VOLTAGE APPLIED $R_{\theta JA} = 16^{\circ} \text{ C/W}$ $R_{\theta JA}$ = 70° C/W

Figure 4. Maximum Reverse Current

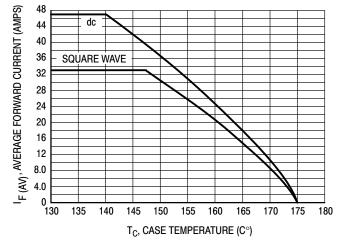


Figure 5. Current Derating, Case Per Leg

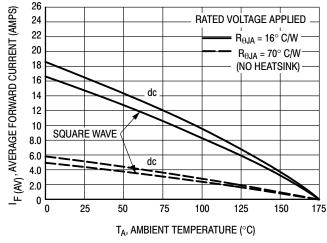
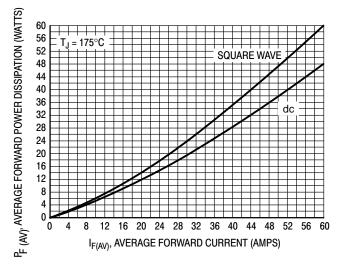
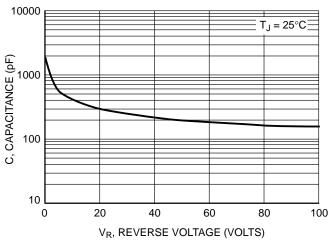




Figure 6. Current Derating, Ambient Per Leg

TYPICAL CHARACTERISTICS

Figure 7. Forward Power Dissipation

Figure 8. Capacitance

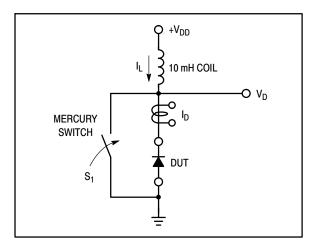


Figure 9. Test Circuit

The unclamped inductive switching circuit shown in Figure 9 was used to demonstrate the controlled avalanche capability of this device. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When S_1 is closed at t_0 the current in the inductor I_L ramps up linearly; and energy is stored in the coil. At t_1 the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BV_{DUT} and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t_2 .

By solving the loop equation at the point in time when S_1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in breakdown (from t_1 to t_2) minus any losses due to finite component resistances. Assuming the component resistive

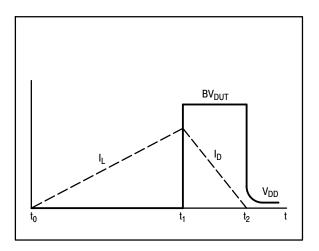
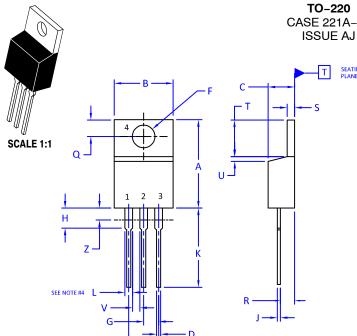


Figure 10. Current-Voltage Waveforms


elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S_1 was closed, Equation (2).

EQUATION (1):

$$W_{AVAL} \approx \frac{1}{2} LI_{LPK}^2 \left(\frac{BV_{DUT}}{BV_{DUT} / BU_{DUT}} \right)$$

EQUATION (2):

$$W_{AVAL} \approx \frac{1}{2}LI_{LPK}^2$$

CASE 221A-09

DATE 05 NOV 2019

NOTES:

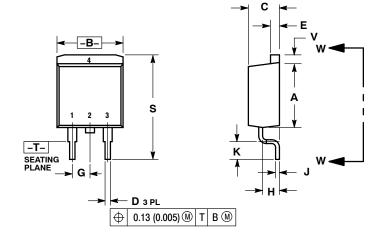
- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:	
PIN 1.	BASE	PIN 1.	BASE	PIN 1.	CATHODE	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	EMITTER	2.	ANODE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	COLLECTOR	3.	GATE	3.	GATE
4.	COLLECTOR	4.	EMITTER	4.	ANODE	4.	MAIN TERMINAL 2
STYLE 5:		STYLE 6:		STYLE 7:		STYLE 8:	
PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	CATHODE
2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE
3.	SOURCE	3.	ANODE	3.	CATHODE	3.	EXTERNAL TRIP/DELA
4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE
STYLE 9:		STYLE 10:		STYLE 11:		STYLE 12	:
PIN 1.	GATE	PIN 1.	GATE	PIN 1.	DRAIN	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	SOURCE	2.	SOURCE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	DRAIN	3.	GATE	3.	GATE
4.	COLLECTOR	4.	SOURCE	4.	SOURCE	4.	NOT CONNECTED

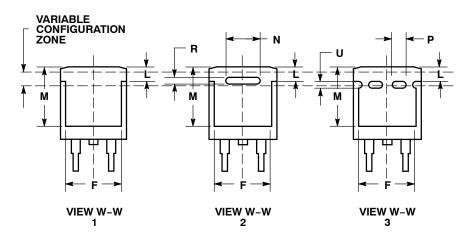
DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220		PAGE 1 OF 1	


ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

D²PAK 3 CASE 418B-04 ISSUE L

DATE 17 FEB 2015

SCALE 1:1



NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- CONTROLLING DIMENSION: INCH.
 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INC	HES	MILLIMETER		
DIM	MIN MAX		MIN	MAX	
Α	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
C	0.160	0.190	4.06	4.83	
D	0.020	0.035	0.51	0.89	
Е	0.045	0.055	1.14	1.40	
F	0.310	0.350	7.87	8.89	
6	0.100	Dec	2 5 4	Dec	

D	0.020	0.035	0.51	0.89
E	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100	BSC	2.54	BSC
Н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
M	0.280	0.320	7.11	8.13
N	0.197 REF		5.00	REF
Р	0.079 REF		2.00	REF
R	0.039	REF	0.99	REF
S	0.575	0.625	14.60	15.88
V	0.045	0.055	1.14	1.40

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER

4. COLLECTOR

STYLE 2: PIN 1. GATE 2. DRAIN

3. SOURCE 4. DRAIN STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE

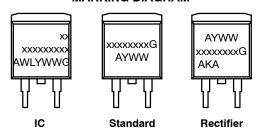
STYLE 4: NODE PIN 1. GATE

PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 5: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. ANODE

STYLE 6:
PIN 1. NO CONNECT
2. CATHODE
3. ANODE

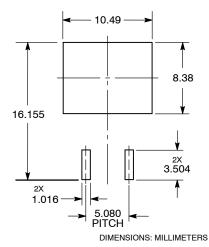
4. CATHODE


MARKING INFORMATION AND FOOTPRINT ON PAGE 2

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	D ² PAK 3	•	PAGE 1 OF 2

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 17 FEB 2015


GENERIC MARKING DIAGRAM*

xx = Specific Device Code A = Assembly Location

WL = Wafer Lot
 Y = Year
 WW = Work Week
 G = Pb-Free Package
 AKA = Polarity Indicator

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER: 98ASB42761B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

PAGE 2 OF 2

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Voice Mail: 1800–282–9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910

Phone of the Control of the Control

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative