MOSFET - SiC Power, Single N-Channel, TO247-4L 650 V, 44 mΩ, 47 A # **NVH4L060N065SC1** ### **Features** - Typ. $R_{DS(on)} = 44 \text{ m}\Omega$ @ $V_{GS} = 18 \text{ V}$ Typ. $R_{DS(on)} = 60 \text{ m}\Omega$ @ $V_{GS} = 15 \text{ V}$ - Ultra Low Gate Charge $(Q_{G(tot)} = 74 \text{ nC})$ - Low Capacitance (C_{oss} = 133 pF) - 100% Avalanche Tested - AEC-Q101 Qualified and PPAP Capable - This Device is Pb-Free and is RoHS Compliant ### **Typical Applications** - Automotive On Board Charger - Automotive DC/DC Converter for EV/HEV ### **MAXIMUM RATINGS** (T_J = 25°C unless otherwise noted) | Parameter | | | Symbol | Value | Unit | |--|--|------------------------|-----------------------------------|----------------|------| | Drain-to-Source Voltage | | | V_{DSS} | 650 | V | | Gate-to-Source Voltage | Gate-to-Source Voltage | | | -8/+22 | V | | | Recommended Operation Values of Gate-to-Source Voltage | | V_{GSop} | -5/+18 | V | | Continuous Drain
Current (Note 1) | Steady
State | T _C = 25°C | I _D | 47 | Α | | Power Dissipation (Note 1) | | | P _D | 176 | W | | Continuous Drain
Current (Note 1) | Steady
State | T _C = 100°C | I _D | 33 | Α | | Power Dissipation (Note 1) | | | P _D | 88 | W | | Pulsed Drain Current
(Note 2) | T _C = 25°C | | I _{DM} | 152 | Α | | Operating Junction and Storage Temperature Range | | | T _J , T _{stg} | -55 to
+175 | °C | | Source Current (Body Diode) | | | IS | 35 | Α | | Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 10.1 A, L = 1 mH) (Note 3) | | | E _{AS} | 51 | mJ | | Maximum Lead Temperature for Soldering (1/8" from case for 5 s) | | TL | 260 | °C | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. - 2. Repetitive rating, limited by max junction temperature. - 3. EAS of 51 mJ is based on starting $T_J = 25^{\circ}C$; L = 1 mH, $I_{AS} = 10.1$ A, $V_{DD} = 50$ V, $V_{GS} = 18$ V. | V _{(BR)DSS} | R _{DS(ON)} MAX | I _D MAX | |----------------------|-------------------------|--------------------| | 650 V | 70 mΩ @ 18 V | 47 A | **N-CHANNEL MOSFET** CASE 340CJ ### **MARKING DIAGRAM** H4L060065SC1 = Specific Device Code A = Assembly Location Y = Year WW = Work Week ZZ = Lot Traceability # ORDERING INFORMATION | Device | Package | Shipping | |-----------------|----------|--------------------| | NVH4L060N065SC1 | TO247-4L | 30 Units /
Tube | # THERMAL RESISTANCE MAXIMUM RATINGS | Parameter | Symbol | Max | Unit | |---|----------------|------|------| | Junction-to-Case - Steady State (Note 1) | $R_{ heta JC}$ | 0.85 | °C/W | | Junction-to-Ambient - Steady State (Note 1) | R_{\thetaJA} | 40 | | # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise specified) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |--|--------------------------------------|---|---------------------------|-----|----------|----------|------| | OFF CHARACTERISTICS | | | | | | | | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | V _{GS} = 0 V, I _D = 1 mA | | 650 | _ | - | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /T _J | I _D = 20 mA, referenced to 25°C | | - | 0.15 | - | V/°C | | Zero Gate Voltage Drain Current | I _{DSS} | V _{GS} = 0 V, | T _J = 25°C | - | _ | 10 | μΑ | | | | V _{DS} = 650 V | T _J = 175°C | - | _ | 1 | mA | | Gate-to-Source Leakage Current | I _{GSS} | $V_{GS} = +18/-5 \text{ V}, \text{ V}$ | V _{DS} = 0 V | - | _ | 250 | nA | | ON CHARACTERISTICS (Note 2) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_D =$ | 6.5 mA | 1.8 | 2.8 | 4.3 | V | | Recommended Gate Voltage | V_{GOP} | | | -5 | _ | +18 | V | | Drain-to-Source On Resistance | R _{DS(on)} | V _{GS} = 15 V, I _D = 20 A | A, T _J = 25°C | - | 60 | - | mΩ | | | | V _{GS} = 18 V, I _D = 20 A | A, T _J = 25°C | - | 44 | 70 | | | | | V _{GS} = 18 V, I _D = 20 A | A, T _J = 175°C | - | 50 | - | | | Forward Transconductance | 9FS | V _{DS} = 10 V, I _D | = 20 A | - | 12 | _ | S | | CHARGES, CAPACITANCES & GATE RES | SISTANCE | | | | • | | | | Input Capacitance | C _{ISS} | V _{GS} = 0 V, f = 1 MHz, V _{DS} = 325 V | | - | 1473 | _ | pF | | Output Capacitance | C _{OSS} | | | - | 133 | _ | | | Reverse Transfer Capacitance | C _{RSS} | | | - | 13 | _ | | | Total Gate Charge | Q _{G(TOT)} | $V_{GS} = -5/18 \text{ V}, V_{DS} = 520 \text{ V},$ $I_{D} = 20 \text{ A}$ | | 1 | 74 | _ | nC | | Gate-to-Source Charge | Q _{GS} | | | 1 | 20 | _ | | | Gate-to-Drain Charge | Q_{GD} | | | 1 | 23 | _ | | | Gate-Resistance | R _G | f = 1 MHz | | - | 3.9 | _ | Ω | | SWITCHING CHARACTERISTICS | • | | | | | • | | | Turn-On Delay Time | t _{d(ON)} | $V_{GS} = -5/18 \text{ V},$
$V_{DS} = 400 \text{ V},$
$I_{D} = 20 \text{ A},$ | | - | 11 | _ | ns | | Rise Time | t _r | | | - | 14 | _ | | | Turn-Off Delay Time | t _{d(OFF)} | R _G = 2.2 s
inductive lo | | - | 24 | _ | | | Fall Time | t _f | madon o lo | , au | 1 | 11 | _ | | | Turn-On Switching Loss | E _{ON} | | | _ | 45 | _ | μJ | | Turn-Off Switching Loss | E _{OFF} | | | _ | 18 | _ | | | Total Switching Loss | E _{tot} | | | _ | 63 | _ | | | DRAIN-SOURCE DIODE CHARACTERIST | ics | | | | <u>-</u> | <u> </u> | | | Continuous Drain-Source Diode Forward Current | I _{SD} | $V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$ | | - | - | 35 | Α | | Pulsed Drain-Source Diode Forward
Current (Note 2) | I _{SDM} | | | - | - | 152 | | | Forward Diode Voltage | V_{SD} | V _{GS} = -5 V, I _{SD} = 20 A, T _J = 25°C | | - | 4.3 | _ | V | # **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise specified) (continued) | , | o . | 1 / 1 | | | | | | |------------------------------------|------------------|--|-----|------|-----|------|--| | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | | | DRAIN-SOURCE DIODE CHARACTERISTICS | | | | | | | | | Reverse Recovery Time | t _{RR} | $V_{GS} = -5/18 \text{ V}, I_{SD} = 20 \text{ A},$
$dI_S/dt = 1000 \text{ A}/\mu\text{s}$ | - | 17.7 | - | ns | | | Reverse Recovery Charge | Q_{RR} | dI _S /dt = 1000 A/μs | - | 90.6 | - | nC | | | Reverse Recovery Energy | E _{REC} | | - | 8.7 | - | μJ | | | Peak Reverse Recovery Current | I _{RRM} | | - | 10.2 | - | Α | | | Charge time | Ta | 1 | - | 9.8 | - | ns | | | Discharge time | Tb | | - | 7.8 | - | ns | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ### TYPICAL CHARACTERISTICS Figure 1. On-Region Characteristics Figure 3. On–Resistance Variation with Temperature Figure 5. Transfer Characteristics Figure 4. On-Resistance vs. Gate-to-Source Voltage Figure 6. Diode Forward Voltage vs. Current ### TYPICAL CHARACTERISTICS Figure 7. Gate-to-Source Voltage vs. Total Charge Figure 8. Capacitance vs. Drain-to-Source Voltage Figure 9. Unclamped Inductive Switching Capability Figure 10. Maximum Continuous Drain Current vs. Case Temperature Figure 11. Safe Operating Area Figure 12. Single Pulse Maximum Power Dissipation # **TYPICAL CHARACTERISTICS** Figure 13. Junction-to-Case Thermal Response # **PACKAGE DIMENSIONS** ### TO-247-4LD CASE 340CJ ISSUE A # NOTES: - A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE. B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. C. ALL DIMENSIONS ARE IN MILLIMETERS. D. DRAWING CONFORMS TO ASME Y14.5-2009. | DIM | MILLIMETERS | | | | | | |-----|-------------|-------|-------|--|--|--| | DIM | MIN | NOM | MAX | | | | | Α | 4.80 | 5.00 | 5.20 | | | | | A1 | 2.10 | 2.40 | 2.70 | | | | | A2 | 1.80 | 2.00 | 2.20 | | | | | b | 1.07 | 1.20 | 1.33 | | | | | b1 | 1.20 | 1.40 | 1.60 | | | | | b2 | 2.02 | 2.22 | 2.42 | | | | | С | 0.50 | 0.60 | 0.70 | | | | | D | 22.34 | 22.54 | 22.74 | | | | | D1 | 16.00 | 16.25 | 16.50 | | | | | D2 | 0.97 | 1.17 | 1.37 | | | | | е | 2.54 BSC | | | | | | | e1 | 5.08 BSC | | | | | | | E | 15.40 | 15.60 | 15.80 | | | | | E1 | 12.80 | 13.00 | 13.20 | | | | | E/2 | 4.80 | 5.00 | 5.20 | | | | | L | 18.22 | 18.42 | 18.62 | | | | | L1 | 2.42 | 2.62 | 2.82 | | | | | р | 3.40 | 3.60 | 3.80 | | | | | p1 | 6.60 | 6.80 | 7.00 | | | | | Q | 5.97 | 6.17 | 6.37 | | | | | S | 5.97 | 6.17 | 6.37 | | | | Ø**p1** D1 D2 onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative