








SN54AHC573, SN74AHC573 SCLS242M – OCTOBER 1995 – REVISED AUGUST 2024

# SNx4AHC573 Octal Transparent D-Type Latches With 3-State Outputs

## **1** Features

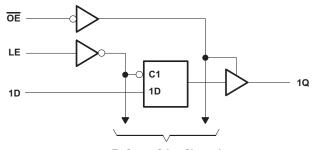
Texas

**INSTRUMENTS** 

- Operating range 2V to 5.5V V<sub>CC</sub>
- 3-state outputs directly drive bus lines
- Latch-up performance exceeds 250mA per JESD 17
- On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

## 2 Applications

- Servers
- PCs and Notebooks
- Network Switches
- · Wearable Health and Fitness Devices
- Telecom Infrastructures
- Electronic Points of Sale


## **3 Description**

The SNx4AHC573 devices are octal transparent D-type latches designed for 2V to 5.5V  $V_{CC}$  operation.

### **Device Information**

| PART NUMBER | PACKAGE <sup>(1)</sup> | PACKAGE SIZE <sup>(2)</sup> | BODY SIZE <sup>(3)</sup> |
|-------------|------------------------|-----------------------------|--------------------------|
|             | DB (SSOP, 20)          | 7.50mm × 7.8mm              | 7.50mm x 5.30mm          |
|             | DGV (TVSOP, 20)        | 5.00mm x 6.4mm              | 5.00mm x 4.40mm          |
| SNx4AHC573  | DW (SOIC, 20)          | 12.80mm ×<br>10.3mm         | 12.8mm x 7.5mm           |
|             | N (PDIP, 20)           | 25.40mm x 9.4mm             | 25.40mm x 6.35mm         |
|             | NS (SOP, 20)           | 12.6mm × 7.8mm              | 12.6mm × 5.3mm           |
|             | PW (TSSOP, 20)         | 6.50mm × 6.4mm              | 6.50mm × 4.40mm          |

- (1) For more information, see Section 11.
- (2) The package size (length × width) is a nominal value and includes pins, where applicable.
- (3) The body size (length × width) is a nominal value and does not include pins.



To Seven Other Channels Simplified Schematic

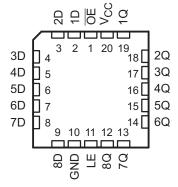
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.



# **Table of Contents**

| 1 Features                                                     | 1   |
|----------------------------------------------------------------|-----|
| 4 Pin Configuration and Functions                              |     |
| 5 Specifications                                               | 4   |
| 5.1 Absolute Maximum Ratings                                   | 4   |
| 5.2 ESD Ratings                                                |     |
| 5.3 Recommended Operating Conditions                           | 5   |
| 5.4 Thermal Information                                        |     |
| 5.5 Electrical Characteristics                                 | 6   |
| 5.6 Timing Requirements, V <sub>CC</sub> = 3.3 V ± 0.3 V       | 6   |
| 5.7 Timing Requirements, V <sub>CC</sub> = 5 V ± 0.5 V         | 6   |
| 5.8 Switching Characteristics, V <sub>CC</sub> = 3.3 V ± 0.3 V | 7   |
| 5.9 Switching Characteristics, V <sub>CC</sub> = 5 V ± 0.5 V   | 7   |
| 5.10 Noise Characteristics                                     | 8   |
| 5.11 Operating Characteristics                                 | 8   |
| 5.12 Typical Characteristics                                   | . 8 |
| 6 Parameter Measurement Information                            | . 9 |

| 7 Detailed Description                  | 10 |
|-----------------------------------------|----|
| 7.1 Overview                            |    |
| 7.2 Functional Block Diagram            | 10 |
| 7.3 Feature Description.                |    |
| 7.4 Device Functional Modes             |    |
| 8 Application and Implementation        | 11 |
| 8.1 Application Information             |    |
| 8.2 Typical Application                 |    |
| 8.3 Power Supply Recommendations        |    |
| 8.4 Layout                              |    |
| 9 Device and Documentation Support      | 13 |
| 9.1 Related Links                       |    |
| 9.2 Trademarks                          |    |
| 9.3 Electrostatic Discharge Caution     |    |
| 9.4 Glossary                            |    |
| 10 Revision History                     |    |
| 11 Mechanical, Packaging, and Orderable |    |
| Information                             | 14 |




## **4** Pin Configuration and Functions

SN54AHC573 . . . J OR W PACKAGE SN74AHC573 . . . DB, DGV, DW, N, NS, OR PW PACKAGE (TOP VIEW)

|       | •  |   |    |                   |
|-------|----|---|----|-------------------|
| OE [  | 1  | Ο | 20 | ] v <sub>cc</sub> |
| 1D [  | 2  |   | 19 | ] 1Q              |
| 2D [  | 3  |   | 18 | ] 2Q              |
| 3D [  | 4  |   | 17 | ] 3Q              |
| 4D [  | 5  |   | 16 | ] 4Q              |
| 5D [  | 6  |   | 15 | ] 5Q              |
| 6D [  | 7  |   | 14 | ] 6Q              |
| 7D [  | 8  |   | 13 | ]7Q               |
| 8D [  | 9  |   | 12 | ] 8Q              |
| GND [ | 10 |   | 11 | LE                |
|       |    |   |    |                   |

### SN54AHC573 . . . FK PACKAGE (TOP VIEW)



| PIN |                 | I/O         | DESCRIPTION   |
|-----|-----------------|-------------|---------------|
| NO. | NAME            | <b>1</b> /0 | DESCRIPTION   |
| 1   | ŌĒ              | I           | Output Enable |
| 2   | 1D              | I           | 1D Input      |
| 3   | 2D              | I           | 2D Input      |
| 4   | 3D              | I           | 3D Input      |
| 5   | 4D              | I           | 4D Input      |
| 6   | 5D              | I           | 5D Input      |
| 7   | 6D              | I           | 6D Input      |
| 8   | 7D              | I           | 7D Input      |
| 9   | 8D              | I           | 8D Input      |
| 10  | GND             |             | Ground        |
| 11  | LE              | I           | Latch Enable  |
| 12  | 8Q              | 0           | 8Q Output     |
| 13  | 7Q              | 0           | 7Q Output     |
| 14  | 6Q              | 0           | 6Q Output     |
| 15  | 5Q              | 0           | 5Q Output     |
| 16  | 4Q              | 0           | 4Q Output     |
| 17  | 3Q              | 0           | 3Q Output     |
| 18  | 2Q              | 0           | 2Q Output     |
| 19  | 1Q              | 0           | 1Q Output     |
| 20  | V <sub>CC</sub> | —           | Power Pin     |



## **5** Specifications

### 5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

|                  |                                            |                                 | MIN  | MAX                   | UNIT |
|------------------|--------------------------------------------|---------------------------------|------|-----------------------|------|
| V <sub>CC</sub>  | Supply voltage range                       |                                 | -0.5 | 7                     | V    |
| VI               | Input voltage range <sup>(2)</sup>         |                                 | -0.5 | 7                     | V    |
| Vo               | Output voltage range <sup>(2)</sup>        |                                 | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>  | Input clamp current                        | V <sub>1</sub> < 0              |      | -20                   | mA   |
| I <sub>OK</sub>  | Output clamp current                       | $V_{O} < 0$ or $V_{O} > V_{CC}$ |      | ±20                   | mA   |
| I <sub>O</sub>   | Continuous output current                  | $V_{O} = 0$ to $V_{CC}$         |      | ±25                   | mA   |
|                  | Continuous current through $V_{CC}$ or GND |                                 |      | ±75                   | mA   |
| T <sub>stg</sub> | Storage temperature range                  |                                 | -65  | 150                   | °C   |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

## 5.2 ESD Ratings

|                    |                         |                                                                                          | Value | UNIT |
|--------------------|-------------------------|------------------------------------------------------------------------------------------|-------|------|
|                    |                         | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins <sup>(1)</sup>              | ±2000 |      |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins <sup>(2)</sup> | ±1000 | V    |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



## **5.3 Recommended Operating Conditions**

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                 |                                    |                                 | SN54AH | C573            | SN74AHC573 |                 | UNIT         |  |
|-----------------|------------------------------------|---------------------------------|--------|-----------------|------------|-----------------|--------------|--|
|                 |                                    |                                 | MIN    | MAX             | MIN        | MAX             | UNIT         |  |
| V <sub>CC</sub> | Supply voltage                     |                                 | 2      | 5.5             | 2          | 5.5             | V            |  |
|                 |                                    | V <sub>CC</sub> = 2 V           | 1.5    |                 | 1.5        |                 |              |  |
| VIH             | High-level input voltage           | V <sub>CC</sub> = 3 V           | 2.1    |                 | 2.1        |                 | V            |  |
|                 |                                    | V <sub>CC</sub> = 5.5 V         | 3.85   |                 | 3.85       |                 |              |  |
|                 |                                    | V <sub>CC</sub> = 2 V           |        | 0.5             |            | 0.5             |              |  |
| V <sub>IL</sub> | Low-level input voltage            | V <sub>CC</sub> = 3 V           |        | 0.9             |            | 0.9             | V            |  |
|                 |                                    | V <sub>CC</sub> = 5.5 V         |        | 1.65            |            | 1.65            |              |  |
| VI              | Input voltage                      |                                 | 0      | 5.5             | 0          | 5.5             | V            |  |
| Vo              | Output voltage                     |                                 | 0      | V <sub>CC</sub> | 0          | V <sub>CC</sub> | V            |  |
|                 |                                    | V <sub>CC</sub> = 2 V           |        | -50             |            | -50             | μA           |  |
| I <sub>OH</sub> | High-level output current          | V <sub>CC</sub> = 3.3 V ± 0.3 V |        | -4              |            | -4              | mA           |  |
|                 |                                    | V <sub>CC</sub> = 5 V ± 0.5 V   |        | -8              |            | -8              |              |  |
|                 |                                    | V <sub>CC</sub> = 2 V           |        | 50              |            | 50              | μA           |  |
| l <sub>OL</sub> | Low-level output current           | V <sub>CC</sub> = 3.3 V ± 0.3 V |        | 4               |            | 4               |              |  |
|                 |                                    | V <sub>CC</sub> = 5 V ± 0.5 V   |        | 8               |            | 8               | mA           |  |
| ∆t/∆v           | Input transition rise or fall rate | $V_{CC} = 3.3 V \pm 0.3 V$      |        | 100             |            | 100             | <b>no</b> // |  |
| ΔVΔV            | Input transition rise or fall rate | V <sub>CC</sub> = 5 V ± 0.5 V   |        | 20              |            | 20              | ns/V         |  |
| T <sub>A</sub>  | Operating free-air temperature     |                                 | -55    | 125             | -40        | 125             | °C           |  |

 All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

### **5.4 Thermal Information**

|                       |                                              | SN74AHC573 |      |       |      |      |       |      |  |
|-----------------------|----------------------------------------------|------------|------|-------|------|------|-------|------|--|
|                       | THERMAL METRIC <sup>(1)</sup>                | DW         | DB   | DGV   | N    | NS   | PW    | UNIT |  |
|                       |                                              | 20 PINS    |      |       |      |      |       |      |  |
| R <sub>0JA</sub>      | Junction-to-ambient thermal resistance       | 81.1       | 97.9 | 117.2 | 53.3 | 77.6 | 116.8 |      |  |
| R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance    | 48.9       | 59.6 | 32.7  | 40.0 | 42.7 | 58.5  |      |  |
| R <sub>θJB</sub>      | Junction-to-board thermal resistance         | 53.8       | 53.1 | 58.7  | 34.2 | 45.7 | 78.7  | °C/W |  |
| ΨJT                   | Junction-to-top characterization parameter   | 19.5       | 21.3 | 1.15  | 26.4 | 10.2 | 12.6  | 0/00 |  |
| Ψ <sub>JB</sub>       | Junction-to-board characterization parameter | 53.1       | 52.7 | 58.0  | 34.1 | 45.2 | 77.9  |      |  |
| $R_{\theta JC(bot)}$  | Junction-to-case (bottom) thermal resistance | N/A        | N/A  | N/A   | N/A  | N/A  | N/A   |      |  |

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

## **5.5 Electrical Characteristics**

| PARAMETER       | TEST CONDITIONS                                                          | V <sub>cc</sub> | T <sub>A</sub> = 25°C |     | SN54AHC573 |      | SN74AHC573        |      | -40°C to 125°C<br>SN74AHC573 |      | UNIT |    |
|-----------------|--------------------------------------------------------------------------|-----------------|-----------------------|-----|------------|------|-------------------|------|------------------------------|------|------|----|
|                 |                                                                          |                 | MIN                   | TYP | MAX        | MIN  | MAX               | MIN  | MAX                          | MIN  | MAX  |    |
|                 |                                                                          | 2 V             | 1.9                   | 2   |            | 1.9  |                   | 1.9  |                              | 1.9  |      |    |
|                 | I <sub>OH</sub> = -50 μA                                                 | 3 V             | 2.9                   | 3   |            | 2.9  |                   | 2.9  |                              | 2.9  |      | V  |
| V <sub>OH</sub> |                                                                          | 4.5 V           | 4.4                   | 4.5 |            | 4.4  |                   | 4.4  |                              | 4.4  |      | v  |
|                 | I <sub>OH</sub> = -4 mA                                                  | 3 V             | 2.58                  |     |            | 2.48 |                   | 2.48 |                              | 2.48 |      |    |
|                 | I <sub>OH</sub> = -8 mA                                                  | 4.5 V           | 3.94                  |     |            | 3.8  |                   | 3.8  |                              | 3.8  |      |    |
|                 |                                                                          |                 |                       |     | 0.1        |      | 0.1               |      | 0.1                          |      | 0.1  |    |
|                 | I <sub>OL</sub> = 50 μA                                                  | 3 V             |                       |     | 0.1        |      | 0.1               |      | 0.1                          |      | 0.1  | v  |
| V <sub>OL</sub> |                                                                          | 4.5 V           |                       |     | 0.1        |      | 0.1               |      | 0.1                          |      | 0.1  | v  |
|                 | I <sub>OL</sub> = 4 mA                                                   | 3 V             |                       |     | 0.36       |      | 0.5               |      | 0.44                         |      | 0.44 |    |
|                 | I <sub>OL</sub> = 8 mA                                                   | 4.5 V           |                       |     | 0.36       |      | 0.5               |      | 0.44                         |      | 0.44 |    |
| I <sub>I</sub>  | V <sub>I</sub> = 5.5 V or GND                                            | 0 V to<br>5.5 V |                       |     | ±0.1       |      | ±1 <sup>(1)</sup> |      | ±1                           |      | ±1   | μA |
| I <sub>OZ</sub> | $V_{I} = V_{IL} \text{ or } V_{IH},$<br>$V_{O} = V_{CC} \text{ or } GND$ | 5.5 V           |                       |     | ±0.25      |      | ±2.5              |      | ±2.5                         |      | ±2.5 | μA |
| I <sub>CC</sub> | $V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$                       | 5.5 V           |                       |     | 4          |      | 40                |      | 40                           |      | 40   | μA |
| Ci              | V <sub>I</sub> = V <sub>CC</sub> or GND                                  | 5 V             |                       | 2.5 | 10         |      |                   |      | 10                           |      | 10   | pF |
| Co              | V <sub>O</sub> = V <sub>CC</sub> or GND                                  | 5 V             |                       | 3.5 |            |      |                   |      |                              |      |      | pF |

over recommended operating free-air temperature range (unless otherwise noted)

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested at  $V_{CC}$  = 0 V.

## 5.6 Timing Requirements, $V_{CC}$ = 3.3 V ± 0.3 V

over recommended operating free-air temperature range (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

| PARAMETER       |                                         | T <sub>A</sub> = 2 | T <sub>A</sub> = 25°C |     | SN54AHC573 |     | C573 | T <sub>A</sub> = -40°C to 125°C<br>SN74AHC573 |     | UNIT |
|-----------------|-----------------------------------------|--------------------|-----------------------|-----|------------|-----|------|-----------------------------------------------|-----|------|
|                 |                                         |                    | MAX                   | MIN | MAX        | MIN | MAX  | MIN                                           | MAX |      |
| tw              | Pulse duration, LE high                 | 5                  |                       | 5   |            | 5   |      | 5                                             |     | ns   |
| t <sub>su</sub> | Setup time, data before LE $\downarrow$ | 3.5                |                       | 3.5 |            | 3.5 |      | 3.5                                           |     | ns   |
| t <sub>h</sub>  | Hold time, data after LE $\downarrow$   | 1.5                |                       | 1.5 |            | 1.5 |      | 1.5                                           |     | ns   |

## 5.7 Timing Requirements, $V_{CC}$ = 5 V ± 0.5 V

over recommended operating free-air temperature range (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

| PARAMETER       |                                         | T <sub>A</sub> = 25°C |     | SN54AHC573 |     | SN74AHC573 |     | T <sub>A</sub> = –40°C to 125°C<br>SN74AHC573 |     | UNIT |
|-----------------|-----------------------------------------|-----------------------|-----|------------|-----|------------|-----|-----------------------------------------------|-----|------|
|                 | -                                       |                       | MAX | MIN        | MAX | MIN        | MAX | MIN                                           | MAX |      |
| tw              | Pulse duration, LE high                 | 5                     |     | 5          |     | 5          |     | 5                                             |     | ns   |
| t <sub>su</sub> | Setup time, data before LE $\downarrow$ | 3.5                   |     | 3.5        |     | 3.5        |     | 3.5                                           |     | ns   |
| t <sub>h</sub>  | Hold time, data after LE $\downarrow$   | 1.5                   |     | 1.5        |     | 1.5        |     | 1.5                                           |     | ns   |



## 5.8 Switching Characteristics, $V_{CC}$ = 3.3 V ± 0.3 V

over recommended operating free-air temperature range (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

| PARAMETER          | FROM<br>(INPUT) | TO<br>(OUTPUT)         | LOAD<br>CAPACITANCE    | T <sub>A</sub> = 25° | с                     | SN54AH           | C573                  | SN74A | HC573 | T <sub>A</sub> = –40°C to<br>SN74AHC |      | UNIT |
|--------------------|-----------------|------------------------|------------------------|----------------------|-----------------------|------------------|-----------------------|-------|-------|--------------------------------------|------|------|
|                    | (INPUT)         | (001901)               | CAPACITANCE            | MIN TYP              | MAX                   | MIN              | MAX                   | MIN   | MAX   | MIN                                  | MAX  |      |
| t <sub>PLH</sub>   | D               | Q                      | C <sub>1</sub> = 15 pF | 7 <sup>(1)</sup>     | 11 <sup>(1)</sup>     | 1 <sup>(1)</sup> | 13 <mark>(1)</mark>   | 1     | 13    | 1                                    | 14   | ns   |
| t <sub>PHL</sub>   |                 | Q                      | 0 <sub>L</sub> = 15 pr | 7(1)                 | 11 <sup>(1)</sup>     | 1 <sup>(1)</sup> | 13 <mark>(1)</mark>   | 1     | 13    | 1                                    | 14   | 115  |
| t <sub>PLH</sub>   | LE              | Q                      | 0 - 15 - 5             | 7.6 <sup>(1)</sup>   | 11.9 <mark>(1)</mark> | 1(1)             | 14 <mark>(1)</mark>   | 1     | 14    | 1                                    | 15   |      |
| t <sub>PHL</sub>   |                 | Q                      | C <sub>L</sub> = 15 pF | 7.6 <sup>(1)</sup>   | 11.9 <mark>(1)</mark> | 1(1)             | 14 <mark>(1)</mark>   | 1     | 14    | 1                                    | 15   | ns   |
| t <sub>PZH</sub>   | ŌĒ              | Q                      | 0 - 15 - 5             | 7.3 <sup>(1)</sup>   | 11.5 <mark>(1)</mark> | 1(1)             | 13.5 <mark>(1)</mark> | 1     | 13.5  | 1                                    | 14.5 |      |
| t <sub>PZL</sub>   | UE              | Q                      | C <sub>L</sub> = 15 pF | 7.3 <sup>(1)</sup>   | 11.5 <mark>(1)</mark> | 1 <sup>(1)</sup> | 13.5 <mark>(1)</mark> | 1     | 13.5  | 1                                    | 14.5 | ns   |
| t <sub>PHZ</sub>   | ŌĒ              | 0                      | 0 - 15 - 5             | 8.3 <sup>(1)</sup>   | 11 <sup>(1)</sup>     | 1(1)             | 13 <mark>(1)</mark>   | 1     | 13    | 1                                    | 14   | ns   |
| t <sub>PLZ</sub>   | UE              | Q                      | C <sub>L</sub> = 15 pF | 8.3 <sup>(1)</sup>   | 11 <sup>(1)</sup>     | 1(1)             | 13 <mark>(1)</mark>   | 1     | 13    | 1                                    | 14   | 113  |
| t <sub>PLH</sub>   | D               | Q                      | 0 - 50 - 5             | 9.5                  | 14.5                  | 1                | 16.5                  | 1     | 16.5  | 1                                    | 18   | ns   |
| t <sub>PHL</sub>   |                 | Q                      | C <sub>L</sub> = 50 pF | 9.5                  | 14.5                  | 1                | 16.5                  | 1     | 16.5  | 1                                    | 18   |      |
| t <sub>PLH</sub>   | LE              | Q                      | 0 - 50 - 5             | 10.1                 | 15.4                  | 1                | 17.5                  | 1     | 17.5  | 1                                    | 19   |      |
| t <sub>PHL</sub>   |                 | Q                      | C <sub>L</sub> = 50 pF | 10.1                 | 15.4                  | 1                | 17.5                  | 1     | 17.5  | 1                                    | 19   | ns   |
| t <sub>PZH</sub>   | ŌĒ              | Q                      | C <sub>1</sub> = 50 pF | 9.8                  | 15                    | 1                | 17                    | 1     | 17    | 1                                    | 18   |      |
| t <sub>PZL</sub>   | UE              | Q                      | C <sub>L</sub> = 50 pF | 9.8                  | 15                    | 1                | 17                    | 1     | 17    | 1                                    | 18   | ns   |
| t <sub>PHZ</sub>   |                 | 0                      |                        | 10.7                 | 14.5                  | 1                | 16.5                  | 1     | 16.5  | 1                                    | 17.5 |      |
| t <sub>PLZ</sub>   | OE Q            | C <sub>L</sub> = 50 pF | 10.7                   | 14.5                 | 1                     | 16.5             | 1                     | 16.5  | 1     | 17.5                                 | ns   |      |
| t <sub>sk(o)</sub> |                 |                        | C <sub>L</sub> = 50 pF |                      | 1.5 <mark>(2)</mark>  |                  |                       |       | 1.5   |                                      |      | ns   |

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

(2) On products compliant to MIL-PRF-38535, this parameter does not apply.

#### 5.9 Switching Characteristics, $V_{CC} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

| PARAMETER          | FROM<br>(INPUT) | TO<br>(OUTPUT) | LOAD<br>CAPACITANCE    | T <sub>A</sub> = | 25°C                              | SN54           | AHC573             | SN74A | IC573 | T <sub>A</sub> = -40°C 1<br>SN74AH |     | UNIT |
|--------------------|-----------------|----------------|------------------------|------------------|-----------------------------------|----------------|--------------------|-------|-------|------------------------------------|-----|------|
|                    |                 | (001101)       | CALACITAROL            | MIN T            | YP MA                             | K MIN          | MAX                | MIN   | MAX   | MIN                                | MAX |      |
| t <sub>PLH</sub>   | D               | Q              | C <sub>1</sub> = 15 pF | 4.               | 5 <sup>(1)</sup> 6.8 <sup>(</sup> | ) <u>1</u> (1) | 8 <sup>(1)</sup>   | 1     | 8     | 1                                  | 8.5 | ns   |
| t <sub>PHL</sub>   | D               | Q              | C <sub>L</sub> = 15 pF | 4.               | 5 <sup>(1)</sup> 6.8 <sup>(</sup> | ) 1(1)         | 8 <sup>(1)</sup>   | 1     | 8     | 1                                  | 8.5 | 115  |
| t <sub>PLH</sub>   | LE              | Q              | C <sub>1</sub> = 15 pF |                  | 5 <sup>(1)</sup> 7.7 <sup>(</sup> | ) 1(1)         | 9 <mark>(1)</mark> | 1     | 9     | 1                                  | 10  | ns   |
| t <sub>PHL</sub>   | LE              | Q              | CL = 15 pF             |                  | 5 <sup>(1)</sup> 7.7 <sup>(</sup> | ) 1(1)         | 9 <mark>(1)</mark> | 1     | 9     | 1                                  | 10  | 115  |
| t <sub>PZH</sub>   | ŌĒ              | Q              | C <sub>1</sub> = 15 pF | 5.               | 2 <sup>(1)</sup> 7.7 <sup>(</sup> | ) 1(1)         | 9(1)               | 1     | 9     | 1                                  | 10  |      |
| t <sub>PZL</sub>   | UE              | Q              | C <sub>L</sub> = 15 pF | 5.               | 2 <sup>(1)</sup> 7.7 <sup>(</sup> | ) 1(1)         | 9 <sup>(1)</sup>   | 1     | 9     | 1                                  | 10  | ns   |
| t <sub>PHZ</sub>   | ŌE              | 0              | C <sub>1</sub> = 15 pF | 5.               | 2 <sup>(1)</sup> 7.7 <sup>(</sup> | ) 1(1)         | 9 <sup>(1)</sup>   | 1     | 9     | 1                                  | 10  | ns   |
| t <sub>PLZ</sub>   | UE              | Q              | C <sub>L</sub> = 15 pF | 5.               | 2 <sup>(1)</sup> 7.7 <sup>(</sup> | ) 1(1)         | 9 <sup>(1)</sup>   | 1     | 9     | 1                                  | 10  | 115  |
| t <sub>PLH</sub>   | D               | Q              |                        |                  | 6 8.                              | 8 1            | 10                 | 1     | 10    | 1                                  | 11  |      |
| t <sub>PHL</sub>   | D               | Q              | C <sub>L</sub> = 50 pF |                  | 6 8.                              | 8 1            | 10                 | 1     | 10    | 1                                  | 11  | ns   |
| t <sub>PLH</sub>   | LE              | Q              |                        |                  | 6.5 9.                            | 7 1            | 11                 | 1     | 11    | 1                                  | 12  |      |
| t <sub>PHL</sub>   | LE              | Q              | C <sub>L</sub> = 50 pF |                  | 6.5 9.                            | 7 1            | 11                 | 1     | 11    | 1                                  | 12  | ns   |
| t <sub>PZH</sub>   |                 | 0              |                        |                  | 6.7 9.                            | 7 1            | 11                 | 1     | 11    | 1                                  | 12  |      |
| t <sub>PZL</sub>   | UE              | DE Q           | C <sub>L</sub> = 50 pF |                  | 6.7 9.                            | 7 1            | 11                 | 1     | 11    | 1                                  | 12  | ns   |
| t <sub>PHZ</sub>   | ŌĒ              | 0              | C = 50 = 5             |                  | 6.7 9.                            | 7 1            | 11                 | 1     | 11    | 1                                  | 12  |      |
| t <sub>PLZ</sub>   | UE              | E Q            | C <sub>L</sub> = 50 pF |                  | 6.7 9.                            | 7 1            | 11                 | 1     | 11    | 1                                  | 12  | ns   |
| t <sub>sk(o)</sub> |                 |                | C <sub>L</sub> = 50 pF |                  | 1(                                | ?)             |                    |       | 1     |                                    |     | ns   |

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

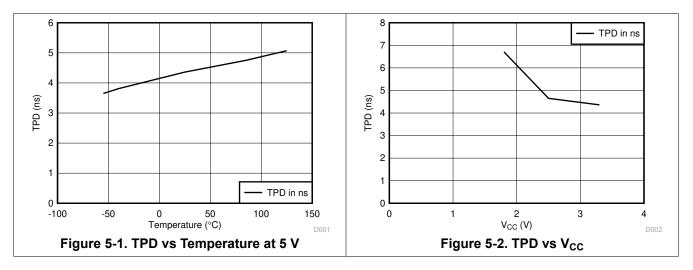
(2) On products compliant to MIL-PRF-38535, this parameter does not apply.



### **5.10 Noise Characteristics**

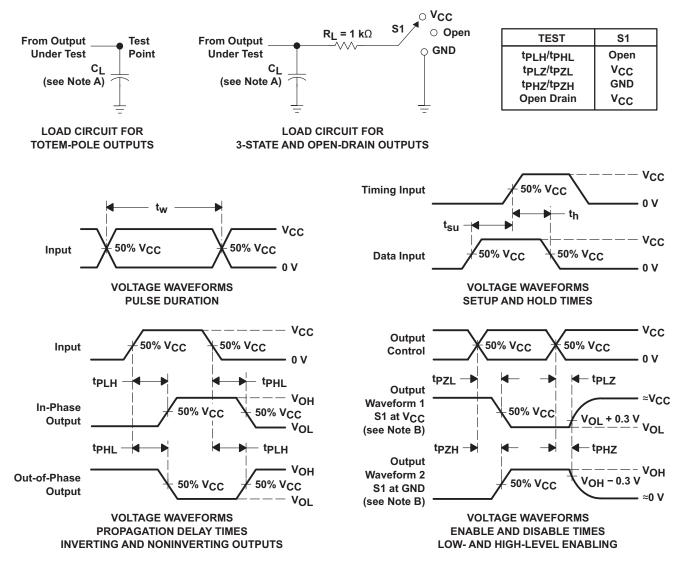
 $V_{CC}$  = 5 V,  $C_L$  = 50 pF,  $T_A$  = 25°C <sup>(1)</sup>

|                    | PARAMETER                                     | SN74AI | UNIT |      |
|--------------------|-----------------------------------------------|--------|------|------|
|                    | FARAMETER                                     | MIN    | MAX  | UNIT |
| V <sub>OL(P)</sub> | Quiet output, maximum dynamic V <sub>OL</sub> |        | 1    | V    |
| V <sub>OL(V)</sub> | Quiet output, minimum dynamic V <sub>OL</sub> |        | -0.8 | V    |
| V <sub>OH(V)</sub> | Quiet output, minimum dynamic V <sub>OH</sub> | 4      |      | V    |
| V <sub>IH(D)</sub> | High-level dynamic input voltage              | 3.5    |      | V    |
| V <sub>IL(D)</sub> | Low-level dynamic input voltage               |        | 1.5  | V    |


(1) Characteristics are for surface-mount packages only.

### **5.11 Operating Characteristics**

 $V_{CC}$  = 5 V,  $T_A$  = 25°C


|                 | PARAMETER                     | TEST CO  | TYP       | UNIT |    |
|-----------------|-------------------------------|----------|-----------|------|----|
| C <sub>pd</sub> | Power dissipation capacitance | No load, | f = 1 MHz | 16   | pF |

## 5.12 Typical Characteristics





### **6** Parameter Measurement Information



NOTES: A. C<sub>I</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  3 ns, t<sub>f</sub>  $\leq$  3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

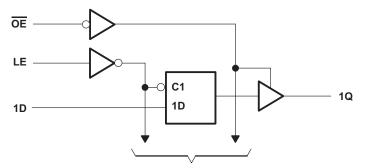
#### Figure 6-1. Load Circuit and Voltage Waveforms



## 7 Detailed Description

### 7.1 Overview

The SNx4AHC573 devices are octal transparent D-type latches designed for 2-V to 5.5-V V<sub>CC</sub> operation.


When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is low, the Q outputs are latched at the logic levels of the D inputs.

A buffered output-enable ( $\overline{OE}$ ) input can be used to place the eight outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pull-up components.

OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to V<sub>CC</sub> through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

### 7.2 Functional Block Diagram



To Seven Other Channels

### 7.3 Feature Description

- Wide operating voltage range
   Operates from 2 V to 5.5 V
  - Allows down voltage translation
- Inputs accept voltages to 5.5 V
- Slow edges reduce output ringing

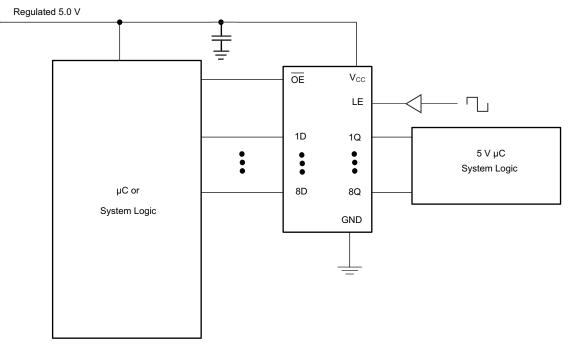
### 7.4 Device Functional Modes

### Table 7-1. Function Table

|    | (Eac   | h Lat  | ch)            |
|----|--------|--------|----------------|
|    | INPUTS | OUTPUT |                |
| ŌĒ | LE     | Q      |                |
| L  | Н      | Н      | Н              |
| L  | Н      | L      | L              |
| L  | L      | Х      | Q <sub>0</sub> |
| н  | Х      | Х      | Z              |



## 8 Application and Implementation


#### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

### 8.1 Application Information

The SN74AHC573 is a low-drive CMOS device that can be used for a multitude of bus-interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The inputs accept voltages up to 5.5 V allowing down translation to the V<sub>CC</sub> level. Figure 8-2 shows how the slower edges can reduce ringing on the output compared to higher drive parts like AC.

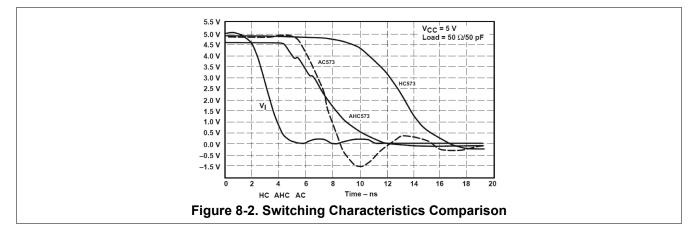
### 8.2 Typical Application





#### 8.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads; therefore, routing and load conditions should be considered to prevent ringing.


#### 8.2.2 Detailed Design Procedure

- 1. Recommended input conditions
  - Rise time and fall time specs: See ( $\Delta t/\Delta V$ ) in the Section 5.3 table.
  - Specified High and low levels: See (V<sub>IH</sub> and V<sub>IL</sub>) in the Section 5.3 table.
  - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V<sub>CC</sub>.
- 2. Recommend output conditions
  - Load currents should not exceed 25 mA per output and 75 mA total for the part.
  - Outputs should not be pulled above V<sub>CC</sub>.

Copyright © 2024 Texas Instruments Incorporated



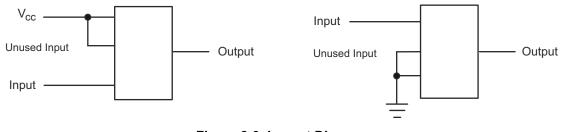
#### 8.2.3 Application Curves



### 8.3 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Section 5.3 table.

Each V<sub>CC</sub> pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1  $\mu$ F bypass capacitor is recommended. If there are multiple V<sub>CC</sub> pins, 0.01  $\mu$ F or 0.022  $\mu$ F is recommended for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1  $\mu$ F and 1  $\mu$ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.


### 8.4 Layout

#### 8.4.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified in Figure 8-3 are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or  $V_{CC}$ ; whichever makes more sense or is more convenient. It is generally acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the IO's so they cannot float when disabled.

#### 8.4.2 Layout Example







## 9 Device and Documentation Support

### 9.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

| PARTS      | PARTS PRODUCT FOLDER |            | TECHNICAL<br>DOCUMENTS | TOOLS &<br>SOFTWARE | SUPPORT &<br>COMMUNITY |
|------------|----------------------|------------|------------------------|---------------------|------------------------|
| SN54AHC573 | Click here           | Click here | Click here             | Click here          | Click here             |
| SN74AHC573 | Click here           | Click here | Click here             | Click here          | Click here             |

#### Table 9-1. Related Links

### 9.2 Trademarks

All trademarks are the property of their respective owners.

#### 9.3 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

### 9.4 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

## **10 Revision History**

| С | hanges from Revision L (September 2014) to Revision M (August 2024)                                 | Page           |
|---|-----------------------------------------------------------------------------------------------------|----------------|
| • | Added package size to Device information table                                                      | 1              |
| • | Updated Handling Ratings to ESD Ratings table                                                       | 4              |
| • | Updated R0JA values: PW = 103.3 to 116.8, DW = 79.4 to 81.1, NS = 79.2 to 77.6; Updated PW, DW, and | d              |
|   | NS packages for RθJC(top), RθJB, ΨJT, ΨJB, and RθJC(bot), all values in °C/W                        | <mark>5</mark> |

| С | hanges from Revision K (January 2004) to Revision L (September 2014)                                     | Page |
|---|----------------------------------------------------------------------------------------------------------|------|
| • | Updated document to new TI data sheet format                                                             | 1    |
| • | Deleted Ordering Information table                                                                       | 1    |
| • | Added Military Disclaimer to Features list                                                               |      |
| • | Added Applications                                                                                       |      |
| • | Added Handling Ratings table                                                                             |      |
| • | Changed MAX operating temperature to 125°C in Recommended Operating Conditions table.                    |      |
| • | Added Thermal Information table                                                                          | 5    |
| • | Added –40°C to 125°C temperature range for SN74AHC573 in Electrical Characteristics table                | 6    |
| • | Added $T_A = -40^{\circ}$ C to 125°C temperature range for SN74AHC573 in Timing Requirements table       |      |
| • | Added $T_A = -40^{\circ}$ C to 125°C temperature range for SN74AHC573 in Timing Requirements table.      |      |
| • | Added $T_A = -40^{\circ}$ C to 125°C temperature range for SN74AHC573 in Switching Characteristics table | 7    |
| • | Added $T_A = -40^{\circ}$ C to 125°C temperature range for SN74AHC573 in Switching Characteristics table |      |
| • | Added Typical Characteristics                                                                            |      |
| • | Added Application and Implementation section                                                             |      |
| • | Added Power Supply Recommendations and Layout sections                                                   |      |
|   |                                                                                                          |      |



## 11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



## **PACKAGING INFORMATION**

| Orderable part number | Status<br>(1) | Material type (2) | Package   Pins   | Package qty   Carrier | <b>RoHS</b><br>(3) | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking<br>(6)                      |
|-----------------------|---------------|-------------------|------------------|-----------------------|--------------------|-------------------------------|----------------------------|--------------|------------------------------------------|
| 5962-9685601Q2A       | Active        | Production        | LCCC (FK)   20   | 55   TUBE             | No                 | SNPB                          | N/A for Pkg Type           | -55 to 125   | 5962-<br>9685601Q2A<br>SNJ54AHC<br>573FK |
| 5962-9685601QRA       | Active        | Production        | CDIP (J)   20    | 20   TUBE             | No                 | SNPB                          | N/A for Pkg Type           | -55 to 125   | 5962-9685601QR<br>A<br>SNJ54AHC573J      |
| 5962-9685601QSA       | Active        | Production        | CFP (W)   20     | 25   TUBE             | No                 | SNPB                          | N/A for Pkg Type           | -55 to 125   | 5962-9685601QS<br>A<br>SNJ54AHC573W      |
| SN74AHC573DBR         | Active        | Production        | SSOP (DB)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | HA573                                    |
| SN74AHC573DBR.A       | Active        | Production        | SSOP (DB)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | HA573                                    |
| SN74AHC573DGVR        | Active        | Production        | TVSOP (DGV)   20 | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | HA573                                    |
| SN74AHC573DGVR.A      | Active        | Production        | TVSOP (DGV)   20 | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | HA573                                    |
| SN74AHC573DW          | Obsolete      | Production        | SOIC (DW)   20   | -                     | -                  | Call TI                       | Call TI                    | -40 to 125   | AHC573                                   |
| SN74AHC573DWR         | Active        | Production        | SOIC (DW)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | AHC573                                   |
| SN74AHC573DWR.A       | Active        | Production        | SOIC (DW)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | AHC573                                   |
| SN74AHC573DWRE4       | Active        | Production        | SOIC (DW)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | AHC573                                   |
| SN74AHC573DWRG4       | Active        | Production        | SOIC (DW)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | AHC573                                   |
| SN74AHC573N           | Active        | Production        | PDIP (N)   20    | 20   TUBE             | Yes                | NIPDAU                        | N/A for Pkg Type           | -40 to 125   | SN74AHC573N                              |
| SN74AHC573N.A         | Active        | Production        | PDIP (N)   20    | 20   TUBE             | Yes                | NIPDAU                        | N/A for Pkg Type           | -40 to 125   | SN74AHC573N                              |
| SN74AHC573NSR         | Active        | Production        | SOP (NS)   20    | 2000   LARGE T&R      | Yes                | NIPDAU   NIPDAU               | Level-1-260C-UNLIM         | -40 to 125   | AHC573                                   |
| SN74AHC573NSR.A       | Active        | Production        | SOP (NS)   20    | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | AHC573                                   |
| SN74AHC573PW          | Obsolete      | Production        | TSSOP (PW)   20  | -                     | -                  | Call TI                       | Call TI                    | -40 to 125   | HA573                                    |
| SN74AHC573PWR         | Active        | Production        | TSSOP (PW)   20  | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | HA573                                    |
| SN74AHC573PWR.A       | Active        | Production        | TSSOP (PW)   20  | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | HA573                                    |
| SN74AHC573PWRG4       | Active        | Production        | TSSOP (PW)   20  | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | HA573                                    |
| SN74AHC573PWRG4.A     | Active        | Production        | TSSOP (PW)   20  | 2000   LARGE T&R      | Yes                | NIPDAU                        | Level-1-260C-UNLIM         | -40 to 125   | HA573                                    |
| SNJ54AHC573FK         | Active        | Production        | LCCC (FK)   20   | 55   TUBE             | No                 | SNPB                          | N/A for Pkg Type           | -55 to 125   | 5962-<br>9685601Q2A<br>SNJ54AHC<br>573FK |

Addendum-Page 1



5-Jun-2025

| Orderable part number | Status<br>(1) | Material type (2) | Package   Pins | Package qty   Carrier | <b>RoHS</b> (3) | Lead finish/<br>Ball material<br>(4) | MSL rating/<br>Peak reflow<br>(5) | Op temp (°C) | Part marking<br>(6)                      |
|-----------------------|---------------|-------------------|----------------|-----------------------|-----------------|--------------------------------------|-----------------------------------|--------------|------------------------------------------|
| SNJ54AHC573FK.A       | Active        | Production        | LCCC (FK)   20 | 55   TUBE             | No              | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-<br>9685601Q2A<br>SNJ54AHC<br>573FK |
| SNJ54AHC573J          | Active        | Production        | CDIP (J)   20  | 20   TUBE             | No              | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-9685601QR<br>A<br>SNJ54AHC573J      |
| SNJ54AHC573J.A        | Active        | Production        | CDIP (J)   20  | 20   TUBE             | No              | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-9685601QR<br>A<br>SNJ54AHC573J      |
| SNJ54AHC573W          | Active        | Production        | CFP (W)   20   | 25   TUBE             | No              | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-9685601QS<br>A<br>SNJ54AHC573W      |
| SNJ54AHC573W.A        | Active        | Production        | CFP (W)   20   | 25   TUBE             | No              | SNPB                                 | N/A for Pkg Type                  | -55 to 125   | 5962-9685601QS<br>A<br>SNJ54AHC573W      |

<sup>(1)</sup> **Status:** For more details on status, see our product life cycle.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.



www.ti.com

# PACKAGE OPTION ADDENDUM

5-Jun-2025

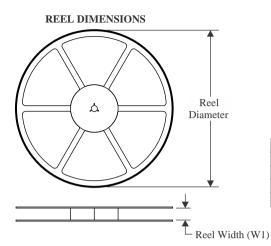
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

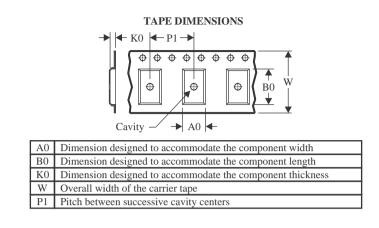
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN54AHC573, SN74AHC573 :

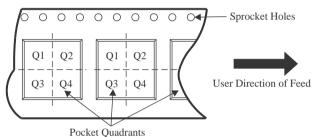
- Catalog : SN74AHC573
- Automotive : SN74AHC573-Q1, SN74AHC573-Q1
- Military : SN54AHC573

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military QML certified for Military and Defense Applications


www.ti.com

TEXAS


NSTRUMENTS

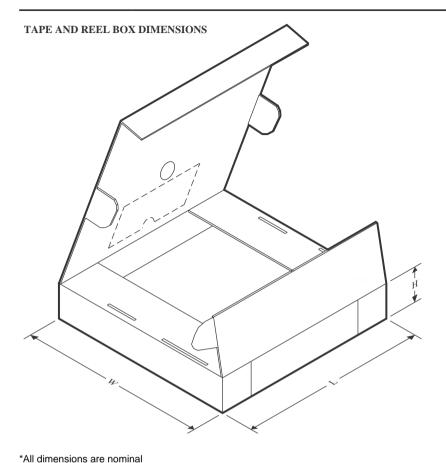
### TAPE AND REEL INFORMATION





#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nominal |                 |                    |    |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74AHC573DBR               | SSOP            | DB                 | 20 | 2000 | 330.0                    | 16.4                     | 8.2        | 7.5        | 2.5        | 12.0       | 16.0      | Q1               |
| SN74AHC573DGVR              | TVSOP           | DGV                | 20 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| SN74AHC573DWR               | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.9       | 13.3       | 2.7        | 12.0       | 24.0      | Q1               |
| SN74AHC573DWR               | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.9       | 13.3       | 2.7        | 12.0       | 24.0      | Q1               |
| SN74AHC573NSR               | SOP             | NS                 | 20 | 2000 | 330.0                    | 24.4                     | 8.4        | 13.0       | 2.5        | 12.0       | 24.0      | Q1               |
| SN74AHC573NSR               | SOP             | NS                 | 20 | 2000 | 330.0                    | 24.4                     | 8.4        | 13.0       | 2.5        | 12.0       | 24.0      | Q1               |
| SN74AHC573PWR               | TSSOP           | PW                 | 20 | 2000 | 330.0                    | 16.4                     | 6.95       | 7.0        | 1.4        | 8.0        | 16.0      | Q1               |
| SN74AHC573PWR               | TSSOP           | PW                 | 20 | 2000 | 330.0                    | 16.4                     | 6.95       | 7.0        | 1.4        | 8.0        | 16.0      | Q1               |
| SN74AHC573PWRG4             | TSSOP           | PW                 | 20 | 2000 | 330.0                    | 16.4                     | 6.95       | 7.1        | 1.6        | 8.0        | 16.0      | Q1               |

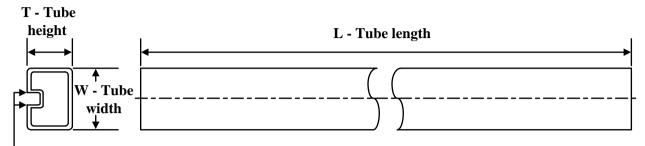


www.ti.com

# PACKAGE MATERIALS INFORMATION

23-May-2025




| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74AHC573DBR   | SSOP         | DB              | 20   | 2000 | 356.0       | 356.0      | 35.0        |
| SN74AHC573DGVR  | TVSOP        | DGV             | 20   | 2000 | 356.0       | 356.0      | 35.0        |
| SN74AHC573DWR   | SOIC         | DW              | 20   | 2000 | 367.0       | 367.0      | 45.0        |
| SN74AHC573DWR   | SOIC         | DW              | 20   | 2000 | 356.0       | 356.0      | 45.0        |
| SN74AHC573NSR   | SOP          | NS              | 20   | 2000 | 367.0       | 367.0      | 45.0        |
| SN74AHC573NSR   | SOP          | NS              | 20   | 2000 | 356.0       | 356.0      | 45.0        |
| SN74AHC573PWR   | TSSOP        | PW              | 20   | 2000 | 356.0       | 356.0      | 35.0        |
| SN74AHC573PWR   | TSSOP        | PW              | 20   | 2000 | 353.0       | 353.0      | 32.0        |
| SN74AHC573PWRG4 | TSSOP        | PW              | 20   | 2000 | 356.0       | 356.0      | 35.0        |

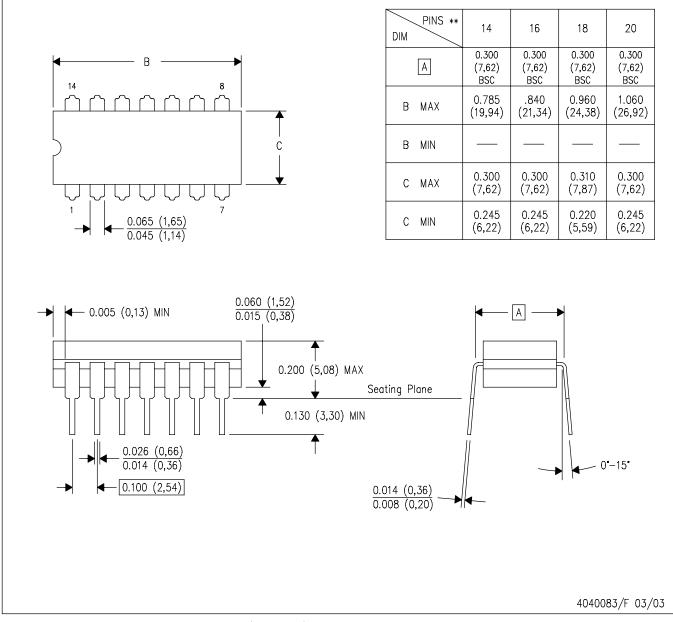
## TEXAS INSTRUMENTS

www.ti.com

23-May-2025

## TUBE




## - B - Alignment groove width

#### \*All dimensions are nominal

| Device          | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | Τ (μm) | B (mm) |
|-----------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| 5962-9685601Q2A | FK           | LCCC         | 20   | 55  | 506.98 | 12.06  | 2030   | NA     |
| 5962-9685601QSA | W            | CFP          | 20   | 25  | 506.98 | 26.16  | 6220   | NA     |
| SN74AHC573N     | N            | PDIP         | 20   | 20  | 506    | 13.97  | 11230  | 4.32   |
| SN74AHC573N.A   | N            | PDIP         | 20   | 20  | 506    | 13.97  | 11230  | 4.32   |
| SNJ54AHC573FK   | FK           | LCCC         | 20   | 55  | 506.98 | 12.06  | 2030   | NA     |
| SNJ54AHC573FK.A | FK           | LCCC         | 20   | 55  | 506.98 | 12.06  | 2030   | NA     |
| SNJ54AHC573W    | W            | CFP          | 20   | 25  | 506.98 | 26.16  | 6220   | NA     |
| SNJ54AHC573W.A  | W            | CFP          | 20   | 25  | 506.98 | 26.16  | 6220   | NA     |

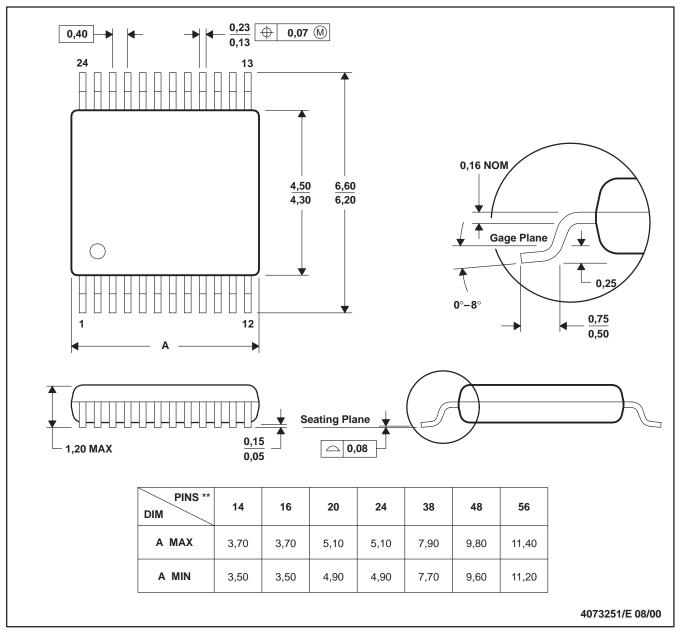
J (R-GDIP-T\*\*) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.


# **MECHANICAL DATA**

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

### DGV (R-PDSO-G\*\*)

24 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

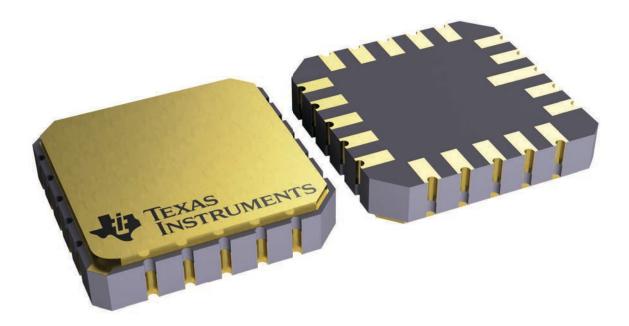
B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194



# FK 20


## 8.89 x 8.89, 1.27 mm pitch

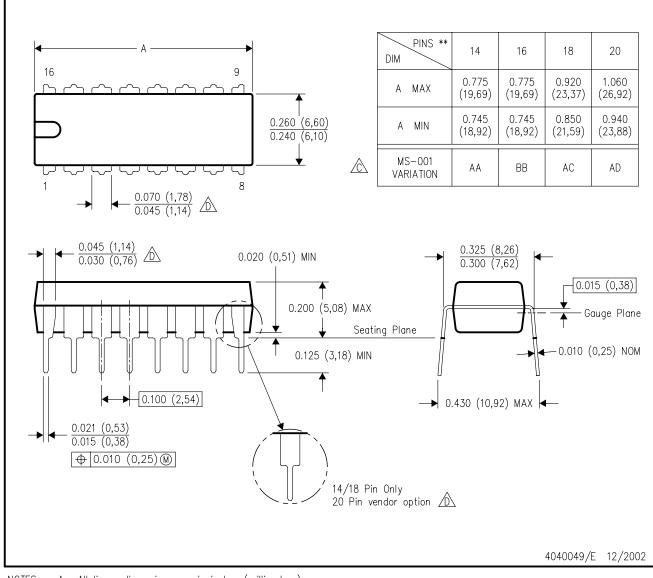
# **GENERIC PACKAGE VIEW**

## LCCC - 2.03 mm max height

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.






4229370\/A\

# N (R-PDIP-T\*\*)

PLASTIC DUAL-IN-LINE PACKAGE

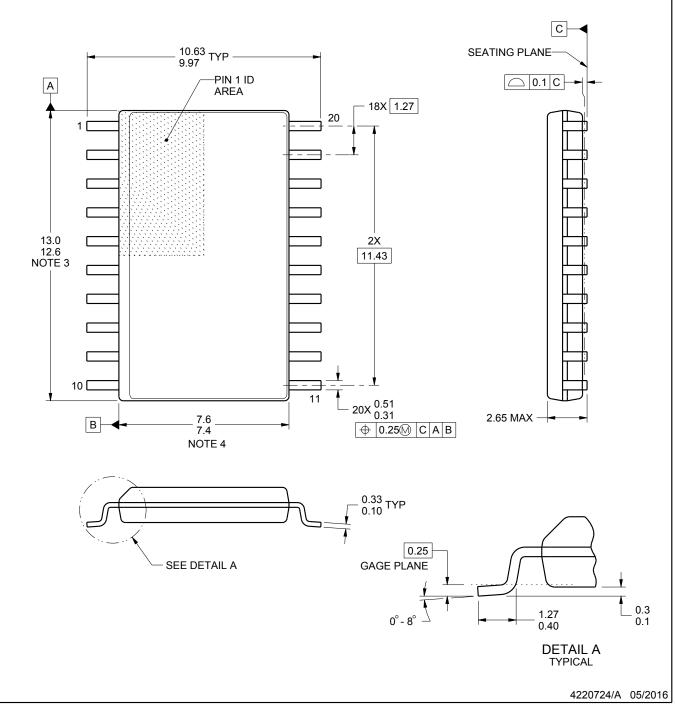
16 PINS SHOWN



NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- $\triangle$  The 20 pin end lead shoulder width is a vendor option, either half or full width.




# **DW0020A**



# **PACKAGE OUTLINE**

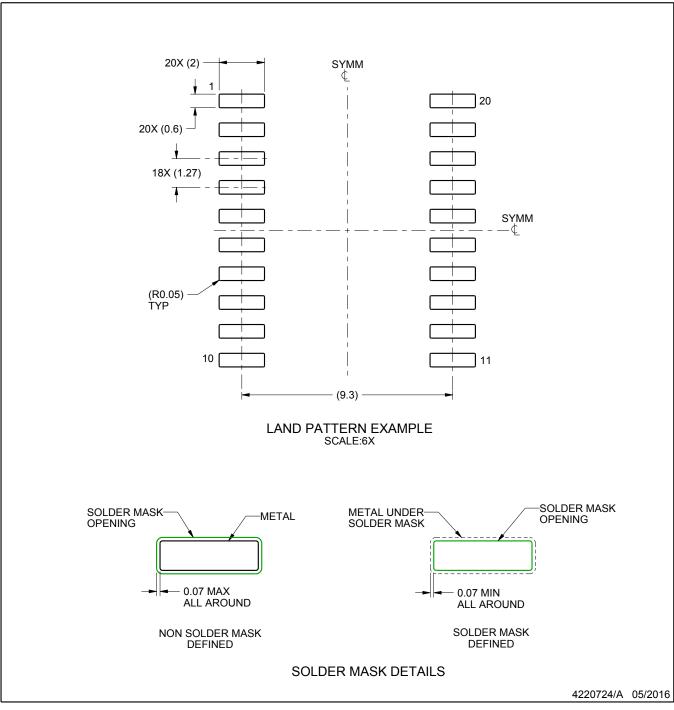
## SOIC - 2.65 mm max height

SOIC



NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.




# DW0020A

# **EXAMPLE BOARD LAYOUT**

## SOIC - 2.65 mm max height

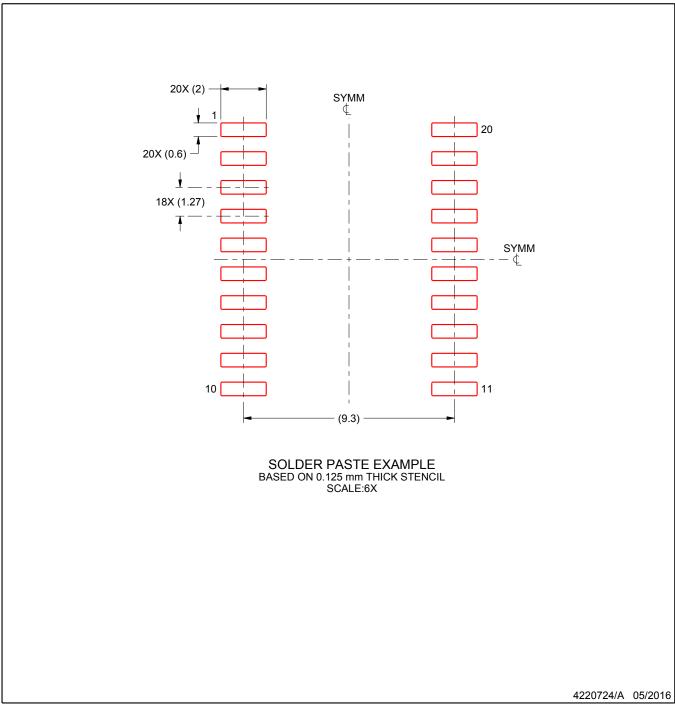
SOIC



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



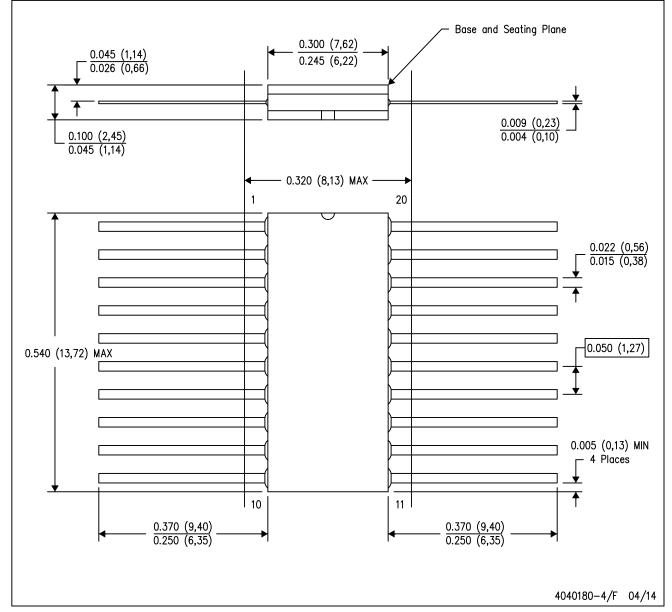

# DW0020A

# **EXAMPLE STENCIL DESIGN**

## SOIC - 2.65 mm max height

SOIC




NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



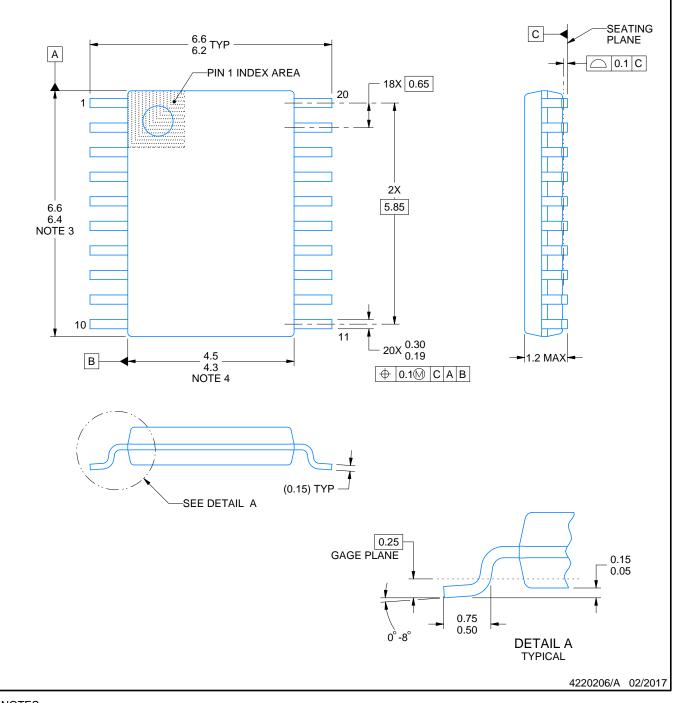
W (R-GDFP-F20)

CERAMIC DUAL FLATPACK



- NOTES: A. All linear dimensions are in inches (millimeters).
  - This drawing is subject to change without notice. В.
  - This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only. Falls within Mil-Std 1835 GDFP2-F20 C.
  - D.
  - Ε.




# **PW0020A**



# **PACKAGE OUTLINE**

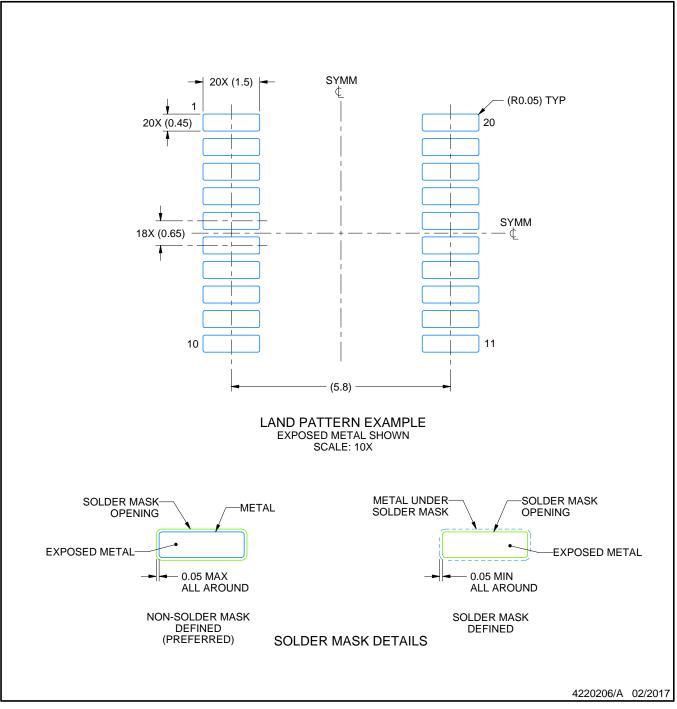
# TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.




# PW0020A

# **EXAMPLE BOARD LAYOUT**

## TSSOP - 1.2 mm max height

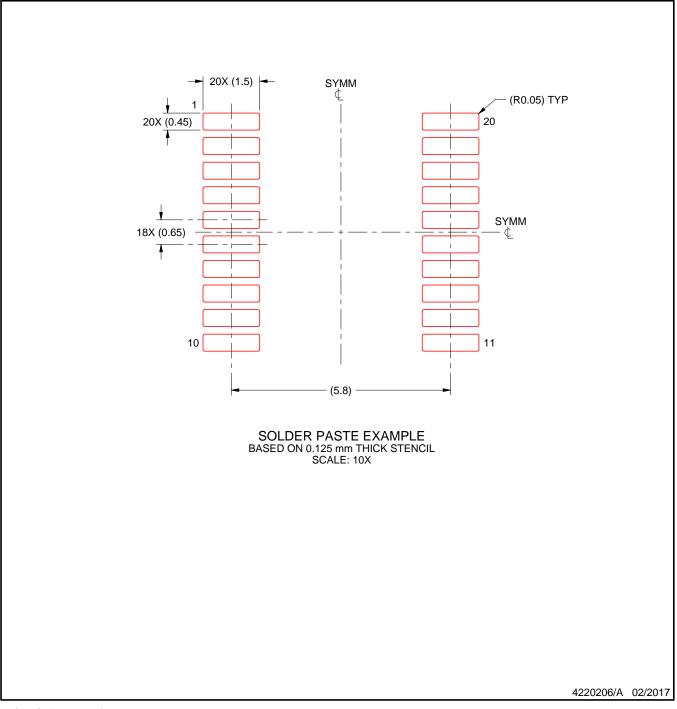
SMALL OUTLINE PACKAGE



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# PW0020A

# **EXAMPLE STENCIL DESIGN**

# TSSOP - 1.2 mm max height

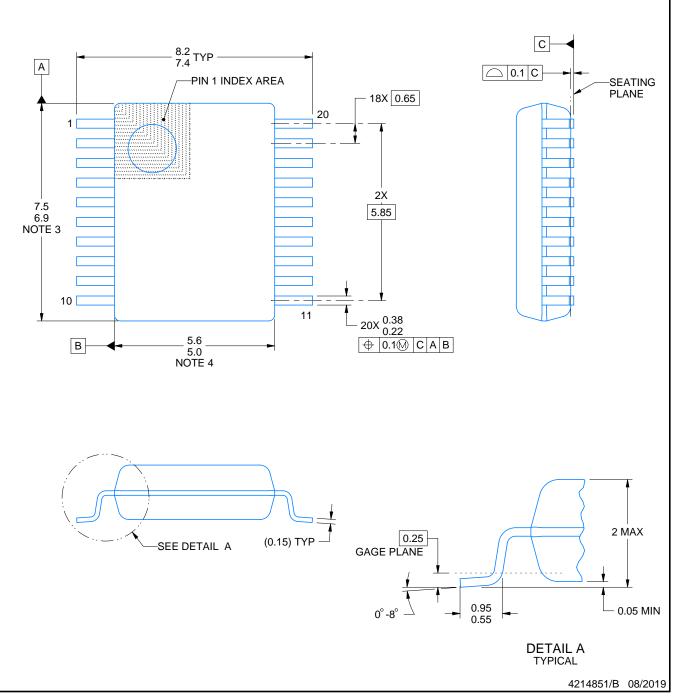
SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.




# **DB0020A**



# **PACKAGE OUTLINE**

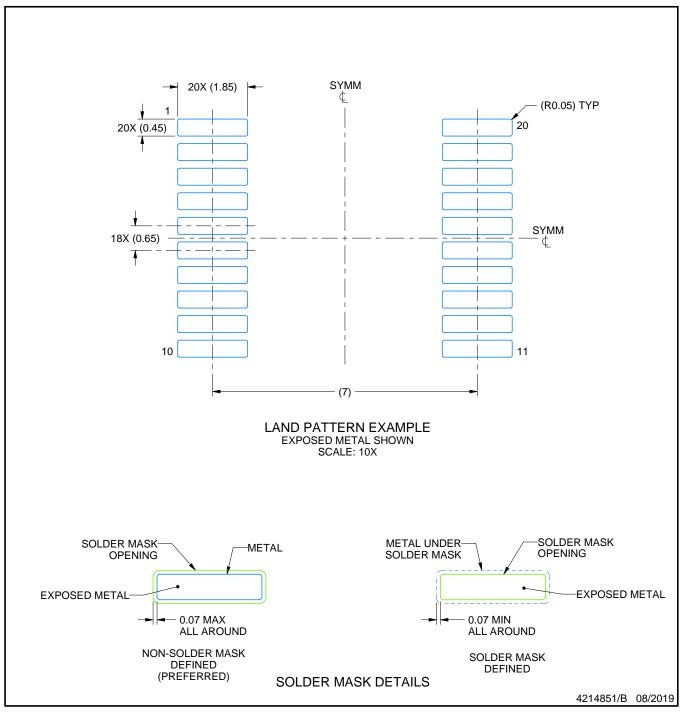
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.




# DB0020A

# **EXAMPLE BOARD LAYOUT**

# SSOP - 2 mm max height

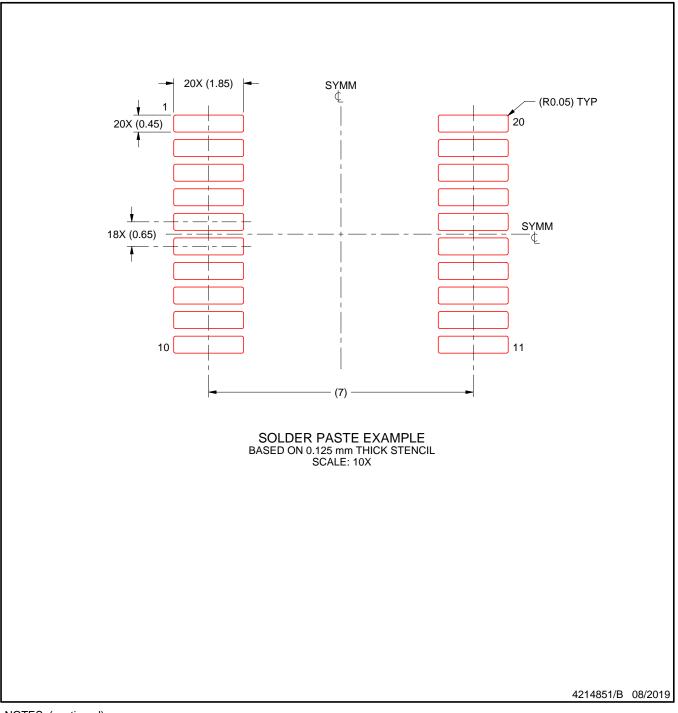
SMALL OUTLINE PACKAGE



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# DB0020A

# **EXAMPLE STENCIL DESIGN**

# SSOP - 2 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



## MECHANICAL DATA

### PLASTIC SMALL-OUTLINE PACKAGE

#### 0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 $\bigcirc$ Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane - 2,00 MAX 0,10PINS \*\* 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G\*\*)

**14-PINS SHOWN** 

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated