MOSFET - Single N-Channel, Small Signal, XLLGA3, 0.62 x 0.62 x 0.4 20 V, 224 mA

Features

- Single N-Channel MOSFET
- Ultra Small and Thin Package (0.62 x 0.62 x 0.4 mm)
- Low R_{DS(on)} Solution in 0.62 x 0.62 mm Package
- 1.5 V Gate Voltage Rating
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Small Signal Load Switch
- Analog Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Products

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

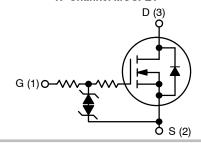
Parameter			Symbol	Value	Units
Drain-to-Source Voltage			V_{DSS}	20	V
Gate-to-Source Voltage			V _{GS}	±8.0	V
Continuous Drain	Steady	T _A = 25°C	Ι _D	224	mA
Current (Note 1)	State	T _A = 85°C		162	
	t ≤ 5 s	T _A = 25°C		241	
Power Dissipa- tion (Note 1)	Steady State	T _A = 25°C	P _D	120	mW
	t ≤ 5 s	T _A = 25°C		139	
Pulsed Drain Current $t_p = 10 \mu s$			I _{DM}	673	mA
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode)			I _S	120	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	1040	°C/W
Junction-to-Ambient – t ≤ 5 s (Note 1)	$R_{\theta JA}$	900	

- 1. Surface Mounted on FR4 Board using the minimum recommended pad size, (or 2 $\mbox{mm}^2),$ 1 oz Cu.
- 2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.



ON Semiconductor®

http://onsemi.com

MOSFET				
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX		
20 V	1.4 Ω @ 4.5 V			
	1.9 Ω @ 2.5 V	224 mA		
	2.2 Ω @ 1.8 V] 2241111		
	4.3 Ω @ 1.5 V			

N-Channel MOSFET

MARKING DIAGRAM

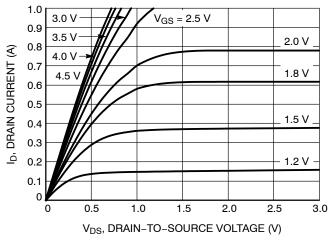
XLLGA3 CASE 713AB

A = Specific Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTNS3193NZT5G	XLLGA3 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

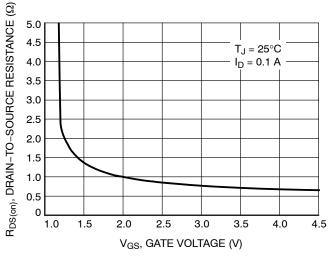

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS		•		<u>.</u>	•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I_D = -250 μA, ref to 25°C			19		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 20 V	T _J = 25°C			1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±8.0 V				±2.0	μΑ
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I _D = 250 μA	0.4		1.0	V
Negative Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				1.9		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D = 100 mA			0.65	1.4	Ω
		V _{GS} = 2.5 V, I _D = 50 mA			0.9	1.9	1
		V _{GS} = 1.8 \	/, I _D = 20 mA		1.1	2.2	1
		V _{GS} = 1.5 \	/, I _D = 10 mA		1.4	4.3	1
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 100 mA			0.56		S
Source-Drain Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 10 \text{ mA}$			0.55	1.0	V
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}				15.8		pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,} $ $V_{DS} = 15 \text{ V}$			3.5		1
Reverse Transfer Capacitance	C _{RSS}				2.4		1
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 200 mA			0.70		nC
Threshold Gate Charge	Q _{G(TH)}				0.05		1
Gate-to-Source Charge	Q _{GS}				0.14		
Gate-to-Drain Charge	Q_{GD}				0.10		1
SWITCHING CHARACTERISTICS, VG	S = 4.5 V (Note 3)						
Turn-On Delay Time	t _{d(ON)}				18		ns
Rise Time	t _r	V_{GS} = 4.5 V, V_{DD} = 15 V, I_D = 200 mA, R_G = 2 Ω			35		1
Turn-Off Delay Time	t _{d(OFF)}				201		1
Fall Time	t _f				110		1

^{3.} Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

1.0



 $V_{DS} = 5 V$ 0.9 $T_J = 25^{\circ}C$ 0.8 DRAIN CURRENT (A) = 125°C 0.7 0.6 0.5 0.4 0.3 ؽ 0.2 0.1 0 0.5 1.0 1.5 2.0 2.5 3.0 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

 $T_J = -55^{\circ}C$

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

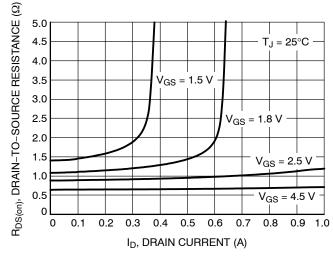
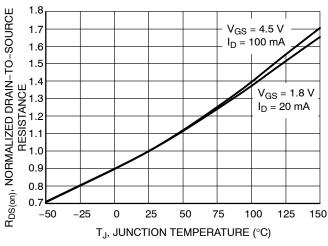



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

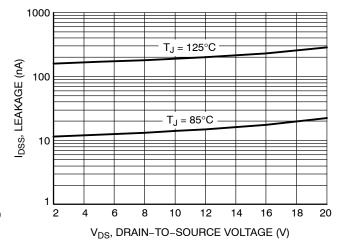
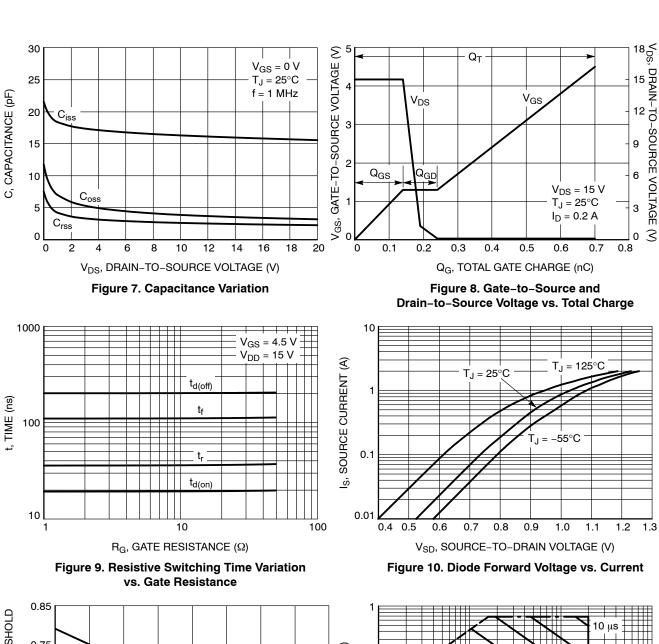



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

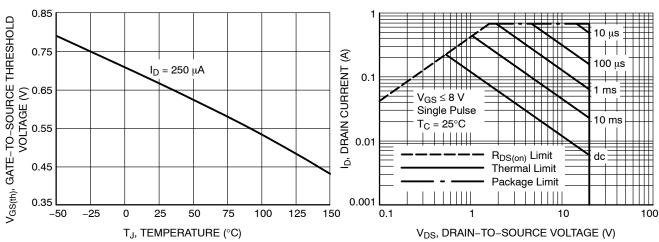


Figure 11. Threshold Voltage

Figure 12. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

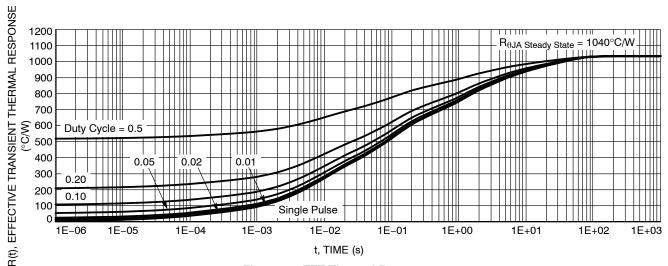
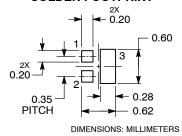
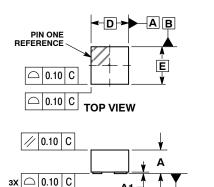
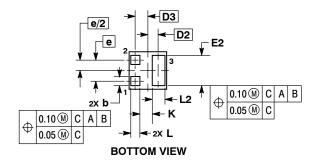



Figure 13. FET Thermal Response

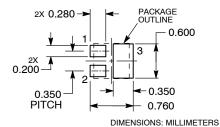
MINIMUM RECOMMENDED SOLDER FOOTPRINT*


^{*}Dependent upon end user capabilities, this footprint could be used as a minimum.



XLLGA3, 0.62x0.62, 0.35P CASE 713AB ISSUE O

DATE 25 SEP 2012



SIDE VIEW

C SEATING PLANE

RECOMMENDED SOLDER FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.340	0.440		
A1	0.000	0.030		
b	0.100 0.200			
D	0.620	BSC		
D2	0.175 BSC			
D3	0.205 BSC			
E	0.620 BSC			
E2	0.400 0.600			
е	0.350 BSC			
K	0.200 REF			
L	0.090	0.210		
L2	0.110	0.310		

GENERIC MARKING DIAGRAM*

Х = Specific Device Code

Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

DOCUMENT NUMBER:	98AON84074E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	XLLGA3, 0.62X0.62, 0.35P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales