

NTD110N02R, STD110N02R

MOSFET – Power, N-Channel, DPAK

24 V, 110 A

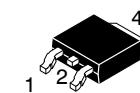
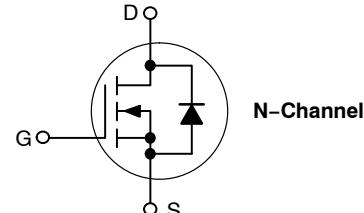
Features

- Planar HD3e Process for Fast Switching Performance
- Low $R_{DS(on)}$ to Minimize Conduction Loss
- Low C_{iss} to Minimize Driver Loss
- Low Gate Charge
- Optimized for High Side Switching Requirements in High-Efficiency DC-DC Converters
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

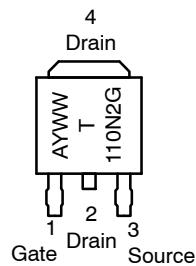
MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	24	V
Gate-to-Source Voltage – Continuous	V_{GS}	± 20	V
Thermal Resistance – Junction-to-Case	$R_{\theta JC}$	1.35	$^\circ\text{C}/\text{W}$
Total Power Dissipation @ $T_C = 25^\circ\text{C}$	P_D	110	W
Drain Current	I_D	110	A
– Continuous @ $T_C = 25^\circ\text{C}$, Chip	I_D	110	A
– Continuous @ $T_C = 25^\circ\text{C}$	I_D	110	A
Limited by Package	I_D	32	A
– Continuous @ $T_A = 25^\circ\text{C}$	I_D	110	A
Limited by Wires	I_D	110	A
– Single Pulse ($t_p = 10 \mu\text{s}$)			
Thermal Resistance	$R_{\theta JA}$	52	$^\circ\text{C}/\text{W}$
– Junction-to-Ambient (Note 1)	P_D	2.88	W
– Total Power Dissipation @ $T_A = 25^\circ\text{C}$	I_D	17.5	A
– Drain Current – Continuous @ $T_A = 25^\circ\text{C}$			
Thermal Resistance	$R_{\theta JA}$	100	$^\circ\text{C}/\text{W}$
– Junction-to-Ambient (Note 2)	P_D	1.5	W
– Total Power Dissipation @ $T_A = 25^\circ\text{C}$	I_D	12.5	A
– Drain Current – Continuous @ $T_A = 25^\circ\text{C}$			
Operating and Storage Temperature Range	T_J, T_{stg}	-55 to 175	$^\circ\text{C}$
Single Pulse Drain-to-Source Avalanche Energy – Starting $T_J = 25^\circ\text{C}$ ($V_{DD} = 50 \text{ Vdc}$, $V_{GS} = 10 \text{ Vdc}$, $I_L = 15.5 \text{ Apk}$, $L = 1.0 \text{ mH}$, $R_G = 25 \Omega$)	E_{AS}	120	mJ
Maximum Lead Temperature for Soldering Purposes, (1/8" from case for 10 s)	T_L	260	$^\circ\text{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



1. When surface mounted to an FR4 board using 0.5 sq in drain pad size.
2. When surface mounted to an FR4 board using the minimum recommended pad size.

ON Semiconductor®


<http://onsemi.com>

$V_{(BR)DSS}$	$R_{DS(on)} \text{ TYP}$	$I_D \text{ MAX}$
24 V	4.1 m Ω @ 10 V	110 A

DPAK
CASE 369AA
(Surface Mount)
STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENT

A = Assembly Location*
Y = Year
WW = Work Week
T110N2 = Device Code
G = Pb-Free Package

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

NTD110N02R, STD110N02R

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-to-Source Breakdown Voltage (Note 3) ($V_{GS} = 0 \text{ V}$, $I_D = 250 \mu\text{A}$)	$V_{(BR)DSS}$	24	28		V
Positive Temperature Coefficient		15			$\text{mV}/^\circ\text{C}$
Zero Gate Voltage Drain Current ($V_{DS} = 20 \text{ V}$, $V_{GS} = 0 \text{ V}$) ($V_{DS} = 20 \text{ V}$, $V_{GS} = 0 \text{ V}$, $T_J = 125^\circ\text{C}$)	I_{DSS}			1.5 10	μA
Gate-Body Leakage Current ($V_{GS} = \pm 20 \text{ V}$, $V_{DS} = 0 \text{ V}$)	I_{GSS}			± 100	nA
ON CHARACTERISTICS (Note 3)					
Gate Threshold Voltage (Note 3) ($V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$)	$V_{GS(\text{th})}$	1.0	1.5 5.0	2.0	V $\text{mV}/^\circ\text{C}$
Negative Threshold Temperature Coefficient					
Static Drain-to-Source On-Resistance (Note 3) ($V_{GS} = 10 \text{ V}$, $I_D = 110 \text{ A}$) ($V_{GS} = 4.5 \text{ V}$, $I_D = 55 \text{ A}$) ($V_{GS} = 10 \text{ V}$, $I_D = 20 \text{ A}$) ($V_{GS} = 4.5 \text{ V}$, $I_D = 20 \text{ A}$)	$R_{DS(\text{on})}$		4.1 5.5 3.9 5.5	4.6 6.2	$\text{m}\Omega$
Forward Transconductance ($V_{DS} = 10 \text{ V}$, $I_D = 15 \text{ A}$) (Note 3)	g_{FS}		44		Mhos
DYNAMIC CHARACTERISTICS					
Input Capacitance	C_{iss}		2710	3440	pF
Output Capacitance	C_{oss}		1105	1670	
Transfer Capacitance	C_{rss}		450	640	
SWITCHING CHARACTERISTICS (Note 4)					
Turn-On Delay Time	$t_{d(\text{on})}$		11	22	ns
Rise Time	t_r		39	80	
Turn-Off Delay Time	$t_{d(\text{off})}$		27	40	
Fall Time	t_f		21	40	
Gate Charge	Q_T		23.6	28	nC
	Q_{GS}		5.1		
	Q_{GD}		11		
SOURCE-DRAIN DIODE CHARACTERISTICS					
Forward On-Voltage	V_{SD}		0.82 0.99 0.65	1.2	V
($I_S = 20 \text{ A}$, $V_{GS} = 0 \text{ V}$) (Note 3) ($I_S = 55 \text{ A}$, $V_{GS} = 0 \text{ V}$) ($I_S = 20 \text{ A}$, $V_{GS} = 0 \text{ V}$, $T_J = 125^\circ\text{C}$)					
Reverse Recovery Time	t_{rr}		36.5		ns
($I_S = 30 \text{ A}$, $V_{GS} = 0 \text{ V}$, $dI_S/dt = 100 \text{ A}/\mu\text{s}$) (Note 3)	t_a		30		
	t_b		25		
Reverse Recovery Stored Charge	Q_{rr}		0.048		μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width $\leq 300 \mu\text{s}$, Duty Cycle $\leq 2\%$.

4. Switching characteristics are independent of operating junction temperatures.

NTD110N02R, STD110N02R

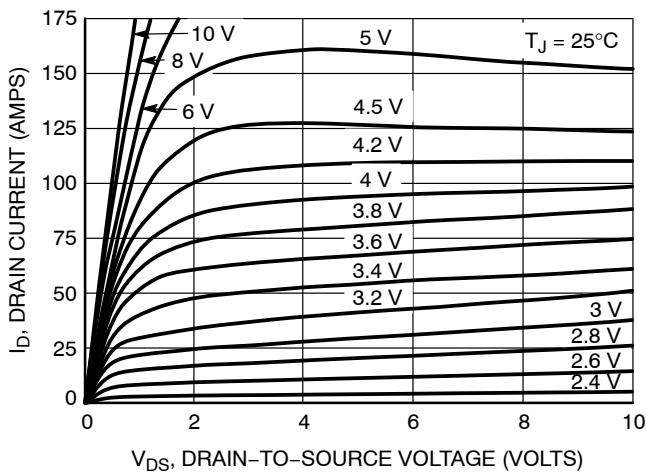


Figure 1. On-Region Characteristics

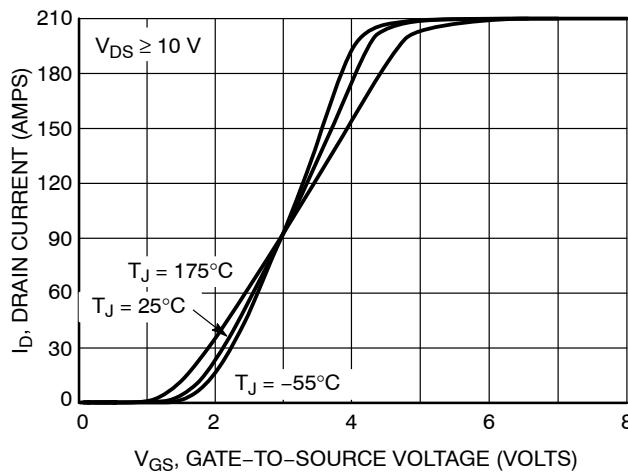


Figure 2. Transfer Characteristics

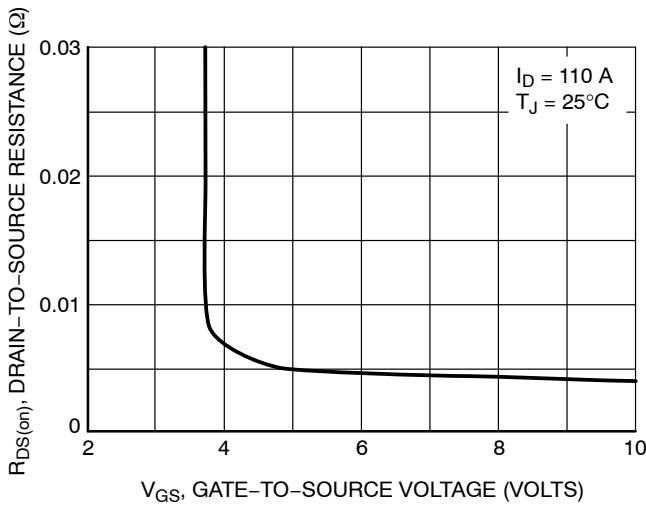


Figure 3. On-Resistance versus Gate-to-Source Voltage

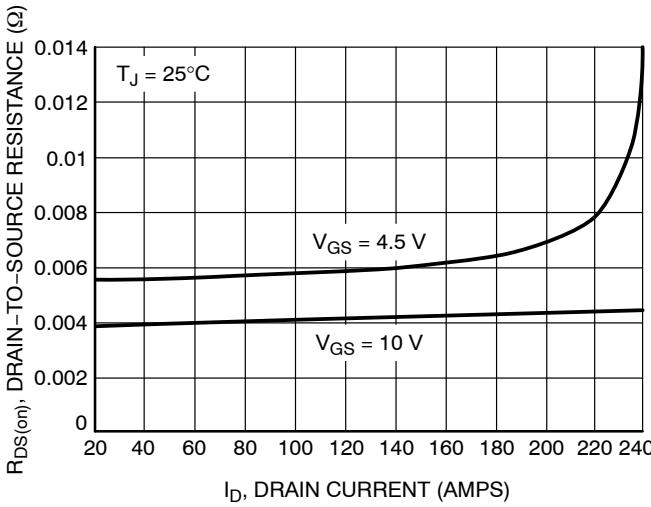


Figure 4. On-Resistance versus Drain Current and Gate Voltage

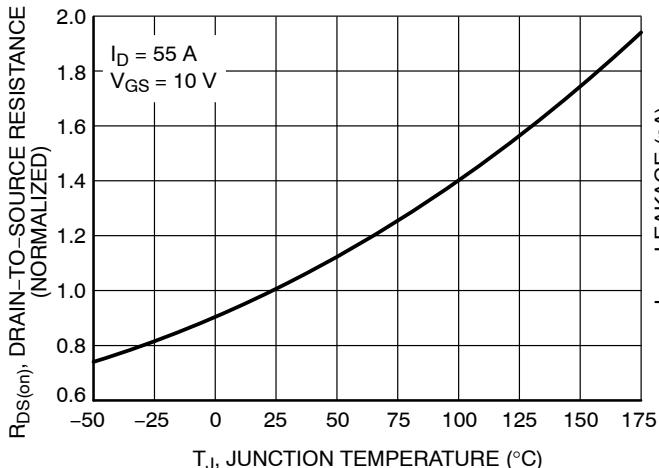


Figure 5. On-Resistance Variation with Temperature

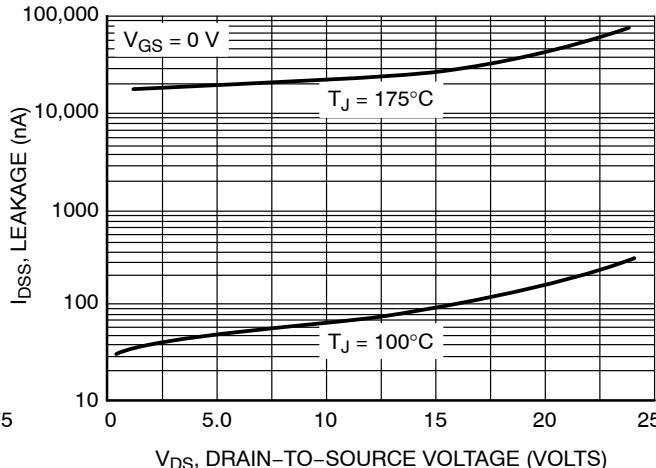


Figure 6. Drain-to-Source Leakage Current versus Voltage

NTD110N02R, STD110N02R

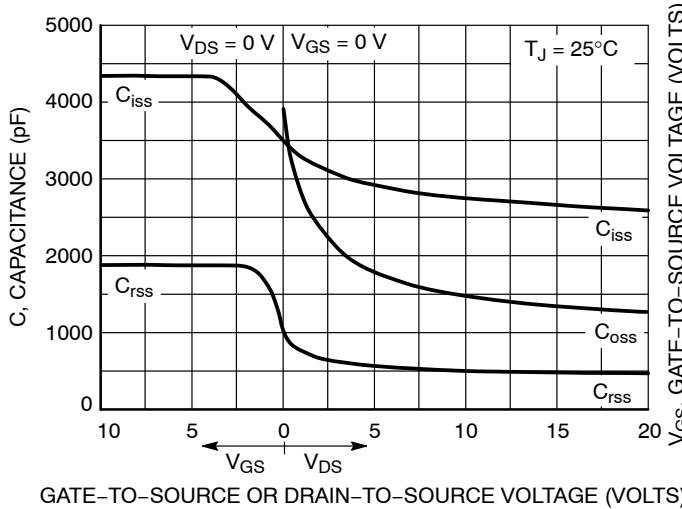


Figure 7. Capacitance Variation

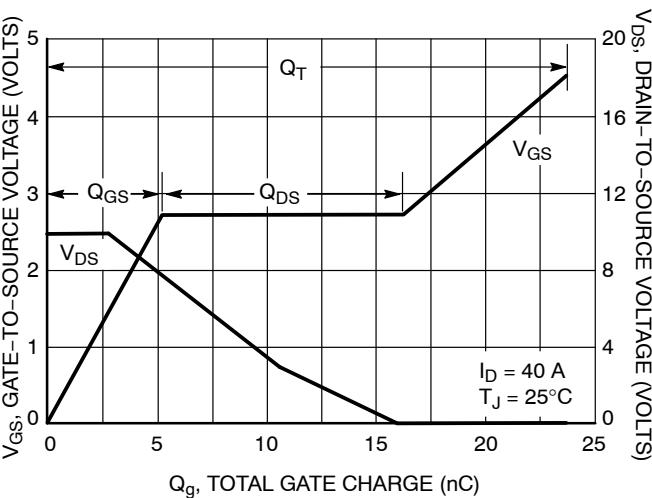


Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

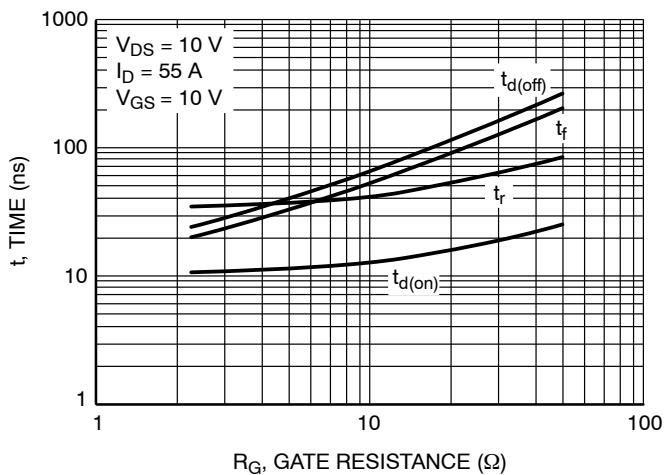


Figure 9. Resistive Switching Time Variation versus Gate Resistance

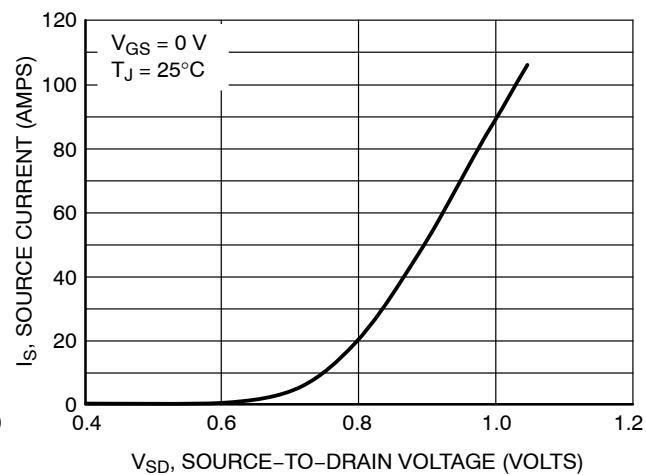


Figure 10. Diode Forward Voltage versus Current

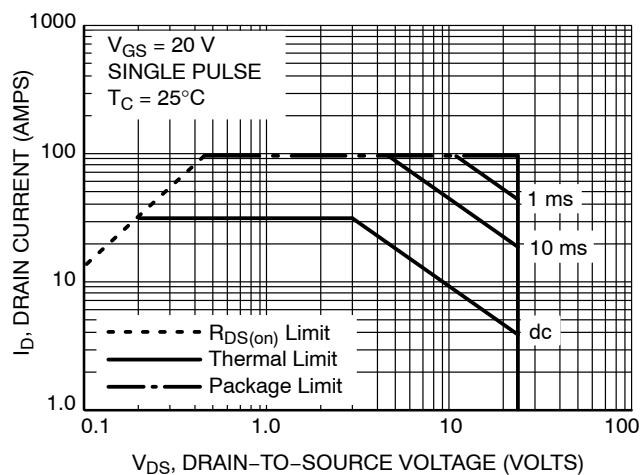
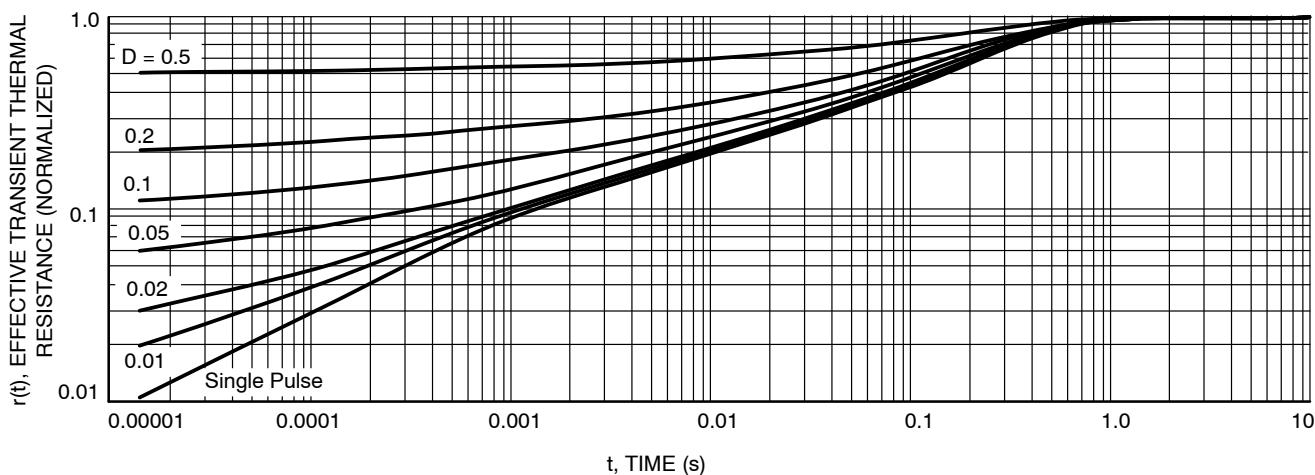
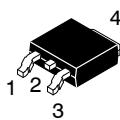
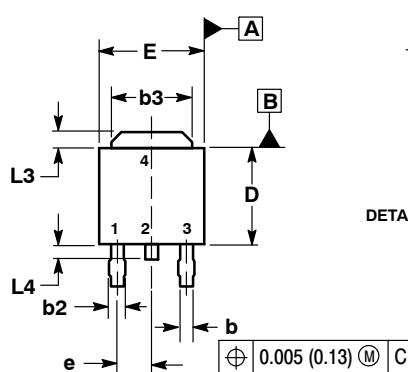


Figure 11. Maximum Rated Forward Biased Safe Operating Area




Figure 12. Thermal Response

ORDERING INFORMATION


Device	Package	Shipping [†]
NTD110N02RT4G	DPAK (Pb-Free)	2500 / Tape & Reel
STD110N02RT4G*	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

SCALE 1:1

**DPAK (SINGLE GUAGE)
CASE 369AA
ISSUE B**

DATE 03 JUN 2010

NOTES:

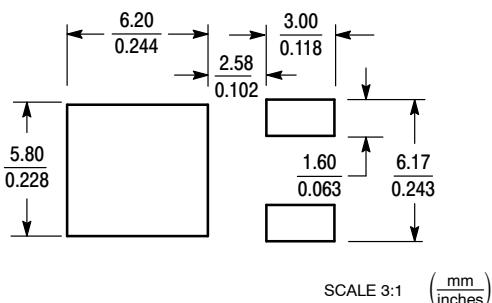
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
c	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
e	0.090	BSC	2.29	BSC
H	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4	---	0.040	---	1.01
Z	0.155	---	3.93	---

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. Emitter
4. COLLECTOR

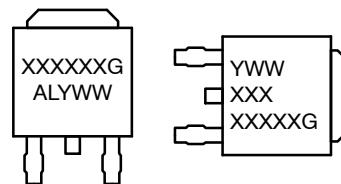
STYLE 2:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN

STYLE 3:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. CATHODE


STYLE 4:
PIN 1. CATHODE
2. ANODE
3. GATE
4. ANODE

STYLE 5:
PIN 1. GATE
2. ANODE
3. CATHODE
4. ANODE

STYLE 6:
PIN 1. MT1
2. MT2
3. GATE
4. MT2


STYLE 7:
PIN 1. GATE
2. COLLECTOR
3. Emitter
4. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the [onsemi](#) Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

IC	Discrete
XXXXXX	= Device Code
A	= Assembly Location
L	= Wafer Lot
Y	= Year
WW	= Work Week
G	= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	DPAK (SINGLE GAUGE)	PAGE 1 OF 1

onsemi and **ONSEMI** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

