

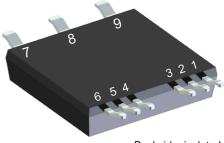
DHG40B1200LB

preliminary

 $V_{RRM} = 1200 V$

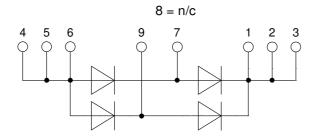
 $I_{DAV} = 34 A$

 $t_{rr} = 150 \, \text{ns}$


Sonic Fast Recovery Diode

High Performance Fast Recovery Diode Low Loss and Soft Recovery 1~ Rectifier Bridge

Part number


DHG40B1200LB

Marking on Product: DHG40B1200LB

Backside: isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage current
 Vary about reasons times
- Very short recovery time
- Improved thermal behaviourVery low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: SMPD

- Isolation Voltage: 3000 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

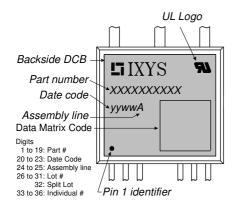
Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified

20190212a

preliminary


Fast Diode				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blockir	ng voltage	$T_{VJ} = 25^{\circ}C$			1200	V
V_{RRM}	max. repetitive reverse blocking vo	ltage	$T_{VJ} = 25^{\circ}C$			1200	٧
IR	reverse current, drain current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$			40	μΑ
		$V_{R} = 1200 \text{ V}$	$T_{VJ} = 125^{\circ}C$			0.4	mΑ
V _F	forward voltage drop	I _F = 20 A	$T_{VJ} = 25^{\circ}C$			2.24	٧
		$I_F = 40 \text{ A}$				2.89	٧
		I _F = 20 A	T _{VJ} = 125°C			2.24	V
		$I_F = 40 \text{ A}$				3.15	٧
IDAV	bridge output current	$T_{C} = 80^{\circ}C$	T _{VJ} = 150°C			34	Α
		rectangular d = 0.5					i
V _{F0}	threshold voltage	T _{VJ} = 150°C			1.35	٧	
r _F	slope resistance				43	mΩ	
R _{thJC}	thermal resistance junction to case					1.5	K/W
R _{thCH}	thermal resistance case to heatsink				0.50		K/W
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			80	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			150	Α
C¹	junction capacitance	$V_R = 600 \text{V}$ f = 1 MHz	$T_{VJ} = 25^{\circ}C$		8		pF
I _{RM}	max. reverse recovery current		$T_{VJ} = 25 ^{\circ}\text{C}$		15		Α
		$I_F = 15 \text{ A}; V_R = 600 \text{ V}$	$T_{VJ} = 125 ^{\circ}\text{C}$		20		Α
t _{rr}	reverse recovery time	$I_F = 15 \text{ A}; V_R = 600 \text{ V}$ -di _F /dt = 600 A/ μ s	$T_{VJ} = 25 ^{\circ}C$		150		ns
	J		$T_{VJ} = 125^{\circ}C$		250		ns

DHG40B1200LB

preliminary

Package SMPD				ı	Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal				100	Α	
T _{VJ}	virtual junction temperature			-55		150	°C	
T _{op}	operation temperature			-55		125	°C	
T _{stg}	storage temperature			-55		150	°C	
Weight					8.5		g	
F _c	mounting force with clip			40		130	N	
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	1.6			mm	
$d_{\text{Spb/Apb}}$			terminal to backside	4.0			mm	
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz. BMS: lisor ≤ 1 mA	3000			٧	
		t = 1 minute		2500			٧	

Part description

D = Diode

H = Sonic Fast Recovery Diode

G = extreme fast

40 = Current Rating [A]

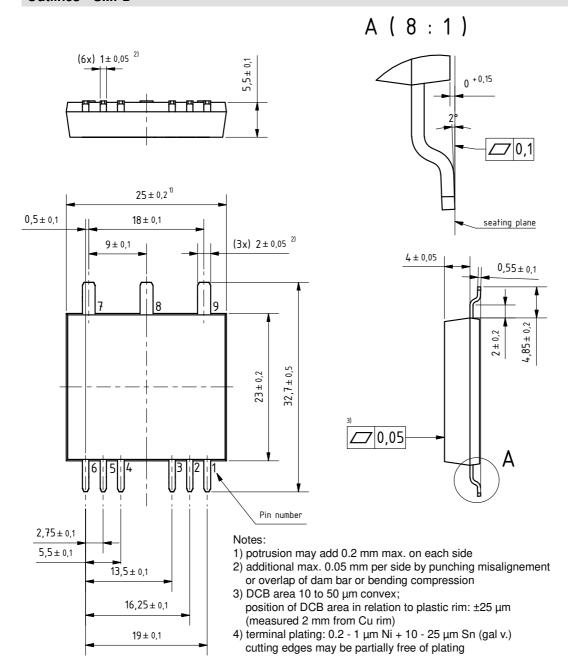
B = 1~ Rectifier Bridge

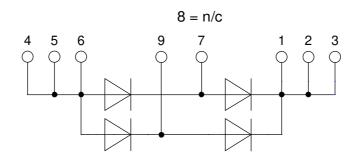
1200 = Reverse Voltage [V]

LB = SMPD-B

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DHG40B1200LB-TUB	DHG40B1200LB	Tube	20	525198
Alternative	DHG40B1200LB-TRR	DHG40B1200LB	Tape & Reel	200	524922

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150 ^{\circ}\text{C}$
$I \rightarrow V_0$)—[R_o	Fast Diode		
V _{0 max}	threshold voltage	1.35		V
$R_{0 max}$	slope resistance *	41		$m\Omega$


IXYS reserves the right to change limits, conditions and dimensions.


Data according to IEC 60747and per semiconductor unless otherwise specified

20190212a

preliminary

Outlines SMPD

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified

20190212a