

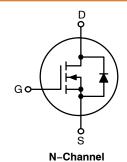
# MOSFET - N-Channel, Logic Level, POWERTRENCH®

60 V, 80 A, 6 m $\Omega$ 

# **FDP5800**

#### Description

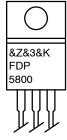
This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.


#### **Features**

- $R_{DS(on)} = 4.6 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 80 \text{ A}$
- High Performance Trench Technology for Extremely Low R<sub>DS(on)</sub>
- Low Gate Charge
- High Power and Current Handling Capability
- RoHS Compliant

#### **Applications**

- Power Tools
- Motor Drives and Uninterruptible Power Supplies
- Synchronous Rectification
- Battery Protection Circuit


| V <sub>DS</sub> | R <sub>DS(on)</sub> MAX I <sub>D</sub> MAX |      |
|-----------------|--------------------------------------------|------|
| 60 V            | 6 mΩ @ 10 V                                | 80 A |





TO-220-3LD CASE 340AT

#### **MARKING DIAGRAM**



&Z = Assembly Plant Code &3 = 3-Digit Date Code &K = 2-Digits Lot Run Code FDP5800 = Specific Device Code

#### **ORDERING INFORMATION**

| Device  | Package Shipping |                  |
|---------|------------------|------------------|
| FDP5800 | TO-220-3LD       | 800 Units / Tube |

# MOSFET MAXIMUM RATINGS (T<sub>C</sub> = 25°C unless otherwise noted)

| Symbol                            | Paramete                                | FDP5800                               | Unit        |      |
|-----------------------------------|-----------------------------------------|---------------------------------------|-------------|------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                    |                                       | 60          | V    |
| V <sub>GSS</sub>                  | Gate-Source Voltage                     |                                       | ±20         | V    |
| I <sub>D</sub>                    | Drain Current                           | – Continuous (T <sub>C</sub> = 25°C)  | 80          | Α    |
|                                   |                                         | – Continuous (T <sub>C</sub> = 100°C) | 80*         | 1    |
|                                   |                                         | – Continuous (T <sub>A</sub> = 25°C)  | 14          | 1    |
| I <sub>DM</sub>                   | Drain Current                           | - Pulsed                              | 320         | Α    |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy (Note 1) |                                       | 652         | mJ   |
| $P_{D}$                           | Power Dissipation                       | (T <sub>C</sub> = 25°C)               | 242         | W    |
|                                   |                                         | -Derate above 25°C                    | 1.61        | W/°C |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range | •                                     | -55 to +175 | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\*Drain current limited by package.

1. L = 1 mH, I<sub>AS</sub> = 36 A, V<sub>DD</sub> = 54 V, V<sub>GS</sub> = 10 V, R<sub>G</sub> = 25 Ω, starting T<sub>J</sub> = 25°C

# THERMAL CHARACTERISTICS

| Symbol         | Parameter                                     | FDP5800 | Unit |
|----------------|-----------------------------------------------|---------|------|
| $R_{	heta JC}$ | Thermal Resistance, Junction to Case, Max.    | 0.62    | °C/W |
| $R_{	heta JA}$ | Thermal Resistance, Junction to Ambient, Max. | 62.5    |      |

# **ELECTRICAL CHARACTERISTICS** ( $T_C = 25^{\circ}C$ unless otherwise noted)

| Symbol              | Parameter                                  | Test Conditions                                                                                           | Min | Тур  | Max  | Unit |
|---------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----|------|------|------|
| OFF CHAR            | ACTERISTICS                                |                                                                                                           |     |      | •    |      |
| BV <sub>DSS</sub>   | Drain-Source Breakdown Voltage             | $I_D = 250 \mu A$ , $V_{GS} = 0 V$ , $T_J = 25^{\circ}C$                                                  | 60  | _    | _    | V    |
| I <sub>DSS</sub>    | Zero Gate Voltage Drain Current            | V <sub>DS</sub> = 48 V, V <sub>GS</sub> = 0 V                                                             | -   | -    | 1    | μΑ   |
|                     |                                            | V <sub>DS</sub> = 48 V, V <sub>GS</sub> = 0 V, T <sub>J</sub> = 150°C                                     | -   | -    | 500  |      |
| I <sub>GSS</sub>    | Gate-Body Leakage Current, Forward         | V <sub>GS</sub> = ±20 V, V <sub>DS</sub> = 0 V                                                            | -   | -    | ±100 | nA   |
| ON CHARA            | CTERISTICS                                 |                                                                                                           |     |      | •    |      |
| V <sub>GS(th)</sub> | Gate Threshold Voltage                     | $V_{GS} = V_{DS}, I_D = 250 \mu A$                                                                        | 1.0 | _    | 2.5  | V    |
| R <sub>DS(on)</sub> | Static Drain-Source On Resistance          | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 80 A                                                             | -   | 4.6  | 6.0  | mΩ   |
|                     |                                            | V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 80 A                                                            | -   | 5.9  | 7.2  |      |
|                     |                                            | V <sub>GS</sub> = 5 V, I <sub>D</sub> = 80 A                                                              | -   | 5.6  | 7.0  |      |
|                     |                                            | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 80 A, T <sub>J</sub> = 175°C                                     | -   | 10.4 | 12.6 |      |
| DYNAMIC (           | CHARACTERISTICS                            | •                                                                                                         |     | •    |      |      |
| C <sub>iss</sub>    | Input Capacitance                          | V <sub>DS</sub> = 15 V, V <sub>GS</sub> = 0 V, f = 1 MHz                                                  | -   | 6890 | 9160 | pF   |
| C <sub>oss</sub>    | Output Capacitance                         |                                                                                                           | -   | 750  | 1000 | pF   |
| C <sub>rss</sub>    | Reverse Transfer Capacitance               | 1                                                                                                         | -   | 295  | 445  | pF   |
| R <sub>G</sub>      | Gate Resistance                            | V <sub>GS</sub> = 0.5 V, f = 1 MHz                                                                        | -   | 1.2  | -    | Ω    |
| Q <sub>g(TOT)</sub> | Total Gate Charge at 10 V                  | $V_{GS} = 0 \text{ V to } 10 \text{ V}, V_{DS} = 30 \text{ V}, \\ I_D = 80 \text{ A}, I_g = 1 \text{ mA}$ | -   | 112  | 145  | nC   |
| $Q_{g(TH)}$         | Total Gate Charge at 5 V                   | $V_{GS}$ = 0 V to 5 V, $V_{DS}$ = 30 V, $I_D$ = 80 A, $I_g$ = 1 mA                                        | -   | 58   | -    | nC   |
| $Q_{g(TH)}$         | Threshold Gate Charge                      | $V_{GS}$ = 0 V to 1 V, $V_{DS}$ = 30 V, $I_D$ = 80 A, $I_g$ = 1 mA                                        | -   | 7.0  | -    | nC   |
| Q <sub>gs</sub>     | Gate to Source Gate Charge                 | V <sub>DS</sub> = 30 V, I <sub>D</sub> = 80 A, I <sub>g</sub> = 1 mA                                      | -   | 23   | _    | nC   |
| Q <sub>gs2</sub>    | Gate Charge Threshold to Plateau           | 1                                                                                                         | -   | 13   | -    | nC   |
| Q <sub>gd</sub>     | Gate to Drain "Miller" Charge              | 1                                                                                                         | -   | 18   | -    | nC   |
| SWITCHING           | G CHARACTERISTICS (V <sub>GS</sub> = 10 V) | •                                                                                                         |     |      |      |      |
| t <sub>ON</sub>     | Turn-On Time                               | $V_{DD} = 30 \text{ V}, I_D = 80 \text{ A}, V_{GS} = 10 \text{ V},$                                       | -   | 37   | 85   | ns   |
| t <sub>d(on)</sub>  | Turn-On Delay Time                         | $R_G = 1.5 \Omega$                                                                                        | -   | 18   | 46   | ns   |
| t <sub>r</sub>      | Turn-On Rise Time                          | 1                                                                                                         | -   | 19   | 47   | ns   |
| t <sub>d(off)</sub> | Turn-Off Delay Time                        | 1                                                                                                         | -   | 55   | 120  | ns   |
| t <sub>f</sub>      | Turn-Off Fall Time                         | 1                                                                                                         | -   | 9    | 28   | ns   |
| t <sub>OFF</sub>    | Turn-Off Time                              | 1                                                                                                         | -   | 64   | 138  | ns   |
| DRAIN-SO            | URCE DIODE CHARACTERISTICS                 | •                                                                                                         |     | -    | -    |      |
| V <sub>SD</sub>     | Drain-Source Diode Forward Voltage         | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 80 A                                                             | -   | -    | 1.25 | V    |
|                     |                                            | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 40 A                                                             | -   | -    | 1.0  | V    |
| t <sub>rr</sub>     | Reverse Recovery Time                      | $V_{GS} = 0 \text{ V}, I_{SD} = 60 \text{ A}, dI_F/dt = 100 \text{ A}/\mu\text{s}$                        | -   | 58   | -    | ns   |
| Q <sub>rr</sub>     | Reverse Recovery Charge                    | 1                                                                                                         | _   | 106  | _    | nC   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### TYPICAL PERFORMANCE CHARACTERISTICS

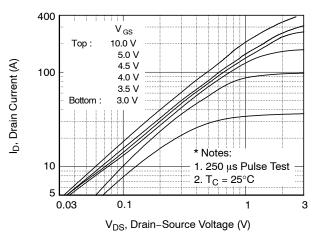



Figure 1. On-Region Characteristics

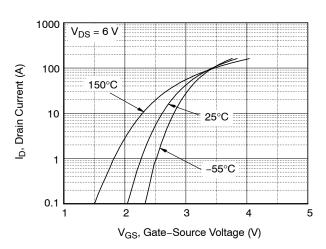



Figure 2. Transfer Characteristics

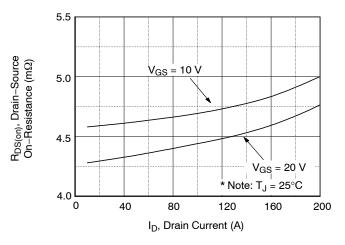



Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

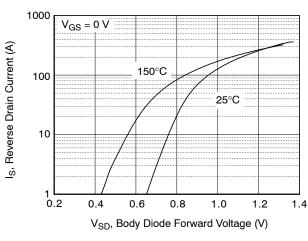



Figure 4. Body Diode Forward Voltage Variation vs. Source Current And Temperature

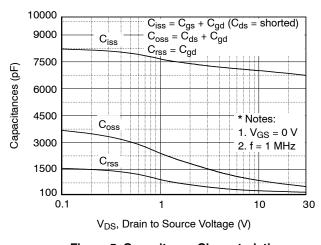



Figure 5. Capacitance Characteristics

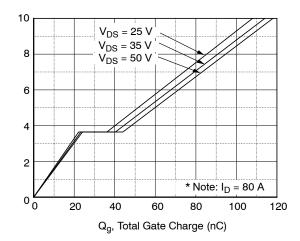
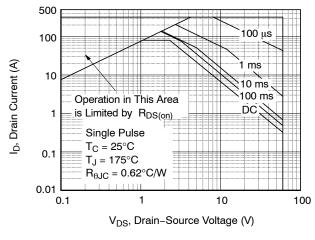



Figure 6. Gate Charge Characteristics


V<sub>GS</sub>, Gate-Source Voltage (V)

#### TYPICAL PERFORMANCE CHARACTERISTICS (continued)



Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On–Resistance Variation vs. Temperature



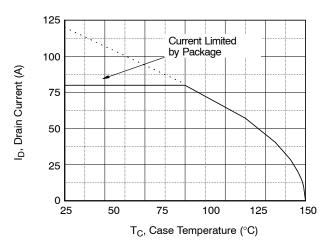



Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs.

Case Temperature

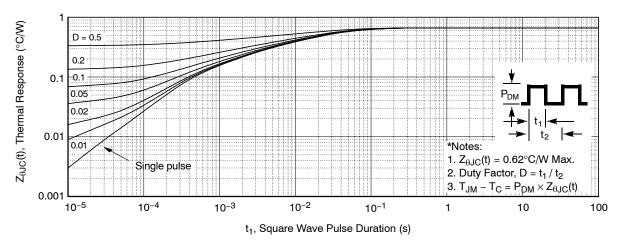



Figure 11. Transient Thermal Response Curve

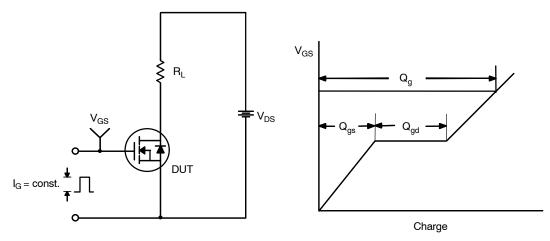



Figure 12. Gate Charge Test Circuit & Waveform

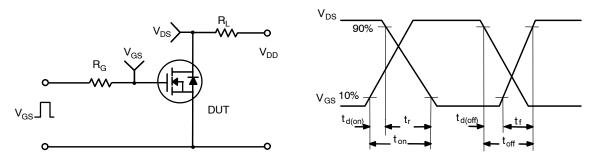



Figure 13. Resistive Switching Test Circuit & Waveforms

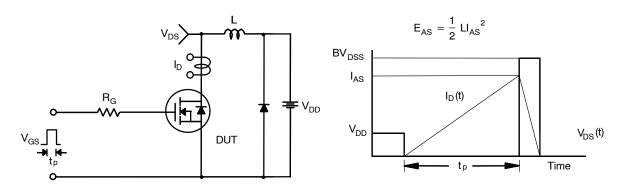



Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

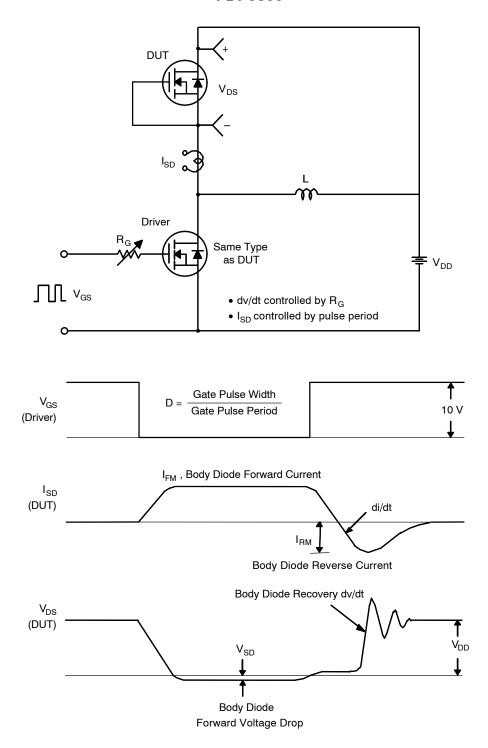
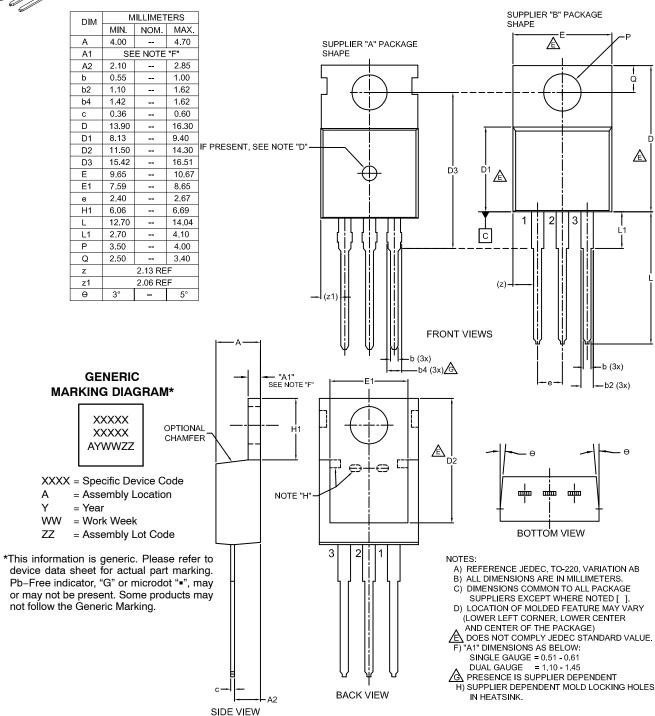



Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms


POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



# DIM MIN. A 4.00 A1 SE A2 2.10 b 0.55

#### TO-220-3LD CASE 340AT ISSUE B

#### **DATE 08 AUG 2022**



| DOCUMENT NUMBER: | 98AON13818G | Electronic versions are uncontrolled except when accessed directly from the Document Repository<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | TO-220-3LD  |                                                                                                                                                                                    | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.or

# ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales