

High-Performance 8-Bit Microcontrollers

**Z8 Encore! XP® F08xA
Series with Extended
Peripherals**

Product Specification

PS024707-0606

PRELIMINARY

ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.zilog.com

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters

532 Race Street
San Jose, CA 95126
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

Document Disclaimer

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

©2006 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Revision History

Each instance in the following table reflects a change to this document from its previous revision. For more details, refer to the corresponding pages and appropriate links in the table given below.

Revision				
Date	Level	Section	Description	Page No
June 2006	07		Updated for 8-pin QFN/MLF-S in Table 2, Figure 2, Packaging section, and Ordering Information chapter. Incorporated changes in UART. Updated On-Chip Debugger chapter. Updated Timer control register definition.	7, 8, 214, 220
June 2005	06		Incorporated changes to update for 8-pin packages.	1, 2, 3, 5, 7, 8, 11, 12, 19, 26, 27, 31, 33, 36, 39, 42, 43, 47, 54, 55, 57, 61, 81, 166, 191, 206, 212, 213
April 2005	05		Incorporated minor changes and clarification to the Reset, GPIO, Interrupt Controller, Electrical Characteristics, Temperature Sensor, and Analog to Digital Converter Chapters.	1, 2, 40, 50, 51, 56, 58, 59, 61, 135, 199, 204
March 2005	04		Added clarifying information for using the UART Baud Rate Generator as a simplified timer. Removed 2.2V _{REF} . Removed 8-pin package information throughout document.	99, 2, 7, 8, 210, 211
January 2005	03		Added registered trademark designation and changed product designation to F08xA Series	All
December 2004	02		Minor corrections to Low-Power Modes, General Purpose I/O, Analog to Digital Converter, Comparator, Flash Option Bits, Internal Precision Oscillator, and Electrical Characteristics Chapters.	31, 39, 118, 119, 120, 143, 146, 173, 202, 203

Table of Contents

List of Figures	xi
List of Tables	xiii
Overview	1
Features	1
Part Selection Guide	2
Block Diagram	2
CPU and Peripheral Overview	4
eZ8 CPU Features	4
General Purpose Input/Output	4
Flash Controller	4
Internal Precision Oscillator	5
Crystal Oscillator	5
10-Bit Analog-to-Digital Converter and Transimpedance Amplifier	5
Analog Comparator	5
Temperature Sensor	5
Low-Battery Detector	5
Universal Asynchronous Receiver/Transmitter	5
Timers	6
Interrupt Controller	6
Reset Controller	6
On-Chip Debugger	6
Pin Description	7
Available Packages	7
Pin Configurations	7
Signal Descriptions	9
Pin Characteristics	11
Address Space	14
Register File	14
Program Memory	14
Data Memory	15
Flash Information Area	15
Register Map	17
Reset, Stop Mode Recovery and Low-Voltage Detection	21

Reset Types	21
Reset Sources	23
Power-On Reset	23
Voltage Brownout Reset	24
Watchdog Timer Reset	25
External Reset Input	25
External Reset Indicator	26
On-Chip Debugger Initiated Reset	26
Stop Mode Recovery	26
Stop Mode Recovery Using WDT Time-Out	27
Stop Mode Recovery Using a GPIO Port Pin Transition	27
Stop Mode Recovery Using the External RESET Pin	27
Low-Voltage Detection	28
Reset Register Definitions	28
Low-Power Modes	31
STOP Mode	31
HALT Mode	32
Peripheral-Level Power Control	32
Power Control Register Definitions	32
General-Purpose Input/Output	34
GPIO Port Availability by Device	34
Architecture	34
GPIO Alternate Functions	35
Direct LED Drive	36
Shared Reset Pin	36
Shared Debug Pin	36
Crystal Oscillator Override	36
5 V Tolerance	37
External Clock Setup	37
GPIO Interrupts	42
GPIO Control Register Definitions	42
Port A-D Address Registers	43
Port A-D Control Registers	44
Port A-D Data Direction Sub-Registers	44
Port A-D Alternate Function Sub-Registers	45
Port A-C Input Data Registers	49
Port A-D Output Data Register	49

LED Drive Enable Register	50
LED Drive Level High Register	50
LED Drive Level Low Register	51
Interrupt Controller	52
Interrupt Vector Listing	52
Architecture	54
Operation	54
Master Interrupt Enable	55
Interrupt Vectors and Priority	55
Interrupt Assertion	56
Software Interrupt Assertion	56
Interrupt Control Register Definitions	57
Interrupt Request 0 Register	57
Interrupt Request 1 Register	58
Interrupt Request 2 Register	58
IRQ0 Enable High and Low Bit Registers	59
IRQ1 Enable High and Low Bit Registers	60
IRQ2 Enable High and Low Bit Registers	61
Interrupt Edge Select Register	62
Shared Interrupt Select Register	63
Interrupt Control Register	63
Timers	65
Architecture	65
Operation	66
Timer Operating Modes	66
Reading the Timer Count Values	78
Timer Pin Signal Operation	78
Timer Control Register Definitions	79
Timer 0-1 High and Low Byte Registers	79
Timer Reload High and Low Byte Registers	79
Timer 0-1 PWM High and Low Byte Registers	80
Timer 0-1 Control Registers	81
Watchdog Timer	86
Operation	86
Watchdog Timer Refresh	87
Watchdog Timer Time-Out Response	87
Watchdog Timer Reload Unlock Sequence	88
Watchdog Timer Control Register Definitions	89
Watchdog Timer Control Register	89

Watchdog Timer Reload Upper, High and Low Byte Registers	89
Universal Asynchronous Receiver/Transmitter	92
Architecture	92
Operation	93
Data Format	93
Transmitting Data using the Polled Method	94
Transmitting Data using the Interrupt-Driven Method	95
Receiving Data using the Polled Method	96
Receiving Data using the Interrupt-Driven Method	97
Clear To Send (CTS) Operation	98
MULTIPROCESSOR (9-bit) Mode	98
External Driver Enable	99
UART Interrupts	100
UART Baud Rate Generator	102
UART Control Register Definitions	103
UART Transmit Data Register	103
UART Receive Data Register	104
UART Status 0 Register	104
UART Status 1 Register	105
UART Control 0 and Control 1 Registers	106
UART Address Compare Register	109
UART Baud Rate High and Low Byte Registers	109
Infrared Encoder/Decoder	113
Architecture	113
Operation	113
Transmitting IrDA Data	114
Receiving IrDA Data	115
Infrared Encoder/Decoder Control Register Definitions	116
Analog-to-Digital Converter	117
Architecture	117
Operation	118
Data Format	119
Automatic Powerdown	119
Single-Shot Conversion	119
Continuous Conversion	120
Programmable Trigger Point Alarm	122
Interrupts	122
Calibration and Compensation	123
Input Buffer Stage	124

Transimpedance Amplifier	125
ADC Control Register Definitions	125
ADC Control Register 0	126
ADC Control/Status Register 1	128
ADC Data High Byte Register	129
ADC Data Low Bits Register	129
ADC High Threshold Register	130
ADC Low Threshold Register	130
Comparator	132
Operation	132
Comparator Control Register Definitions	132
Temperature Sensor	134
Operation	134
Flash Memory	136
Flash Information Area	137
Operation	138
Flash Operation Timing Using the Flash Frequency Registers	140
Flash Code Protection Against External Access	140
Flash Code Protection Against Accidental Program and Erasure	140
Byte Programming	142
Page Erase	142
Mass Erase	142
Flash Controller Bypass	143
Flash Controller Behavior in Debug Mode	143
Flash Control Register Definitions	144
Flash Control Register	144
Flash Status Register	144
Flash Page Select Register	145
Flash Sector Protect Register	146
Flash Frequency High and Low Byte Registers	146
Flash Option Bits	148
Operation	148
Option Bit Configuration By Reset	148
Option Bit Types	149
Flash Option Bit Control Register Definitions	150
Trim Bit Address Register	150
Trim Bit Data Register	150
Flash Option Bit Address Space	150

Flash Program Memory Address 0000H	151
Flash Program Memory Address 0001H	152
Trim Bit Address Space	152
Trim Bit Address 0000H	152
Trim Bit Address 0001H	153
Trim Bit Address 0002H	153
Trim Bit Address 0003H	154
Trim Bit Address 0004H	155
ZiLOG Calibration Bits	155
ADC Calibration Bits	155
Watchdog Timer Calibration Bits	157
On-Chip Debugger	158
Architecture	158
Operation	159
OCD Interface	159
DEBUG Mode	160
OCD Data Format	161
OCD Auto-Baud Detector/Generator	161
OCD Serial Errors	162
OCD Unlock Sequence (8-Pin Devices Only)	162
Breakpoints	163
Runtime Counter	163
On-Chip Debugger Commands	163
On-Chip Debugger Control Register Definitions	168
OCD Control Register	168
OCD Status Register	169
Oscillator Control	172
Operation	172
System Clock Selection	172
Clock Failure Detection and Recovery	174
Oscillator Control Register Definitions	175
Crystal Oscillator	177
Operating Modes	177
Crystal Oscillator Operation	177
Oscillator Operation with an External RC Network	179
Internal Precision Oscillator	182
Operation	182

eZ8 CPU Instruction Set	183
Assembly Language Programming Introduction	183
Assembly Language Syntax	184
eZ8 CPU Instruction Notation	184
eZ8 CPU Instruction Classes	186
eZ8 CPU Instruction Summary	191
Opcode Maps	200
Electrical Characteristics	204
Absolute Maximum Ratings	204
DC Characteristics	205
AC Characteristics	207
On-Chip Peripheral AC and DC Electrical Characteristics	208
General Purpose I/O Port Input Data Sample Timing	213
General Purpose I/O Port Output Timing	215
On-Chip Debugger Timing	216
UART Timing	217
Packaging	219
Ordering Information	228
Customer Support	233
Index	234

List of Figures

Figure 1. Z8 Encore! XP® F08xA Series Block Diagram	3
Figure 2. Z8 Encore! XP® F08xA Series 8-Pin SOIC, QFN/MLF-S, or PDIP Package	8
Figure 3. Z8 Encore! XP® F08xA Series in 20-Pin SOIC, SSOP or PDIP Package	8
Figure 4. Z8 Encore! XP® F08xA Series in 28-Pin SOIC, SSOP or PDIP Package	8
Figure 5. Power-On Reset Operation	24
Figure 6. Voltage Brownout Reset Operation	25
Figure 7. GPIO Port Pin Block Diagram	35
Figure 8. Interrupt Controller Block Diagram	54
Figure 9. Timer Block Diagram	66
Figure 10. UART Block Diagram	93
Figure 11. UART Asynchronous Data Format without Parity	94
Figure 12. UART Asynchronous Data Format with Parity	94
Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format ..	98
Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)	100
Figure 15. UART Receiver Interrupt Service Routine Flow	102
Figure 16. Infrared Data Communication System Block Diagram	113
Figure 17. Infrared Data Transmission	114
Figure 18. IrDA Data Reception	115
Figure 19. Analog-to-Digital Converter Block Diagram	118
Figure 20. Flash Memory Arrangement	137
Figure 21. Flash Controller Operation Flow Chart	139
Figure 22. On-Chip Debugger Block Diagram	158
Figure 23. Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface (1)	159
Figure 24. Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface (2)	160

Figure 25. OCD Data Format	161
Figure 26. Recommended 20 MHz Crystal Oscillator Configuration	178
Figure 27. Connecting the On-Chip Oscillator to an External RC Network ..	179
Figure 28. Typical RC Oscillator Frequency as a Function of the External Capacitance with a 45 KOhm Resistor	180
Figure 29. Opcode Map Cell Description	200
Figure 30. First Opcode Map	202
Figure 31. Second Opcode Map after 1FH	203
Figure 32. ICC Versus System Clock Frequency	207
Figure 33. Port Input Sample Timing	214
Figure 34. GPIO Port Output Timing	215
Figure 35. On-Chip Debugger Timing	216
Figure 36. UART Timing With CTS	217
Figure 37. UART Timing Without CTS	218
Figure 38. 8-Pin Plastic Dual Inline Package (PDIP)	219
Figure 39. 8-Pin Small Outline Integrated Circuit Package (SOIC)	220
Figure 40. 8-Pin Quad Flat No-Lead Package (QFN)/ MLF-S	221
Figure 41. 20-Pin Plastic Dual Inline Package (PDIP)	222
Figure 42. 20-Pin Small Outline Integrated Circuit Package (SOIC)	223
Figure 43. 20-Pin Small Shrink Outline Package (SSOP)	224
Figure 44. 28-Pin Plastic Dual Inline Package (PDIP)	225
Figure 45. 28-Pin Small Outline Integrated Circuit Package (SOIC)	226
Figure 46. 28-Pin Small Shrink Outline Package (SSOP)	227

List of Tables

Table 1. Z8 Encore! XP® F08xA Series Family Part Selection Guide.....	2
Table 2. Z8 Encore! XP® F08xA Series Package Options.....	7
Table 3. Signal Descriptions.....	9
Table 4. Pin Characteristics (20- and 28-pin Devices).....	11
Table 5. Pin Characteristics (8-Pin Devices)	12
Table 6. Z8 Encore! XP®F08xA Series Program Memory Maps	15
Table 7. Z8 Encore! XP® F08xA Series Flash Memory Information Area Map.	16
Table 8. Register File Address Map.....	17
Table 9. Reset and Stop Mode Recovery Characteristics and Latency.....	22
Table 10. Reset Sources and Resulting Reset Type	23
Table 11. Stop Mode Recovery Sources and Resulting Action	27
Table 12. Reset Status Register (RSTSTAT).....	28
Table 13. Power Control Register 0 (PWRCTL0).....	33
Table 14. Port Availability by Device and Package Type.....	34
Table 15. Port Alternate Function Mapping (20/28-Pin Parts)	38
Table 16. Port Alternate Function Mapping (8-Pin Parts).....	41
Table 17. GPIO Port Registers and Sub-Registers	42
Table 18. Port A-D GPIO Address Registers (PxADDR).....	43
Table 19. Port A-D Control Registers (PxCTL)	44
Table 20. Port A-D Data Direction Sub-Registers (PxDD)	44
Table 21. Port A-D Alternate Function Sub-Registers (PxAF).....	45
Table 22. Port A-D Output Control Sub-Registers (PxOC)	46
Table 23. Port A-D High Drive Enable Sub-Registers (PxHDE)	46
Table 24. Port A-D Stop Mode Recovery Source Enable Sub-Registers (PxSMRE)	47
Table 25. Port A-D Pull-Up Enable Sub-Registers (PxPUE).....	47
Table 26. Port A-D Alternate Function Set 1 Sub-Registers (PxAFS1).....	48
Table 27. Port A-D Alternate Function Set 2 Sub-Registers (PxAFS2).....	48

Table 28. Port A–C Input Data Registers (PxIN)	49
Table 29. Port A–D Output Data Register (PxOUT)	49
Table 30. LED Drive Enable (LEDEN)	50
Table 31. LED Drive Level High Register (LEDLVLH)	50
Table 32. LED Drive Level Low Register (LEDLVLL)	51
Table 33. Trap and Interrupt Vectors in Order of Priority	53
Table 34. Interrupt Request 0 Register (IRQ0)	57
Table 35. Interrupt Request 1 Register (IRQ1)	58
Table 36. Interrupt Request 2 Register (IRQ2)	58
Table 37. IRQ0 Enable and Priority Encoding	59
Table 38. IRQ0 Enable High Bit Register (IRQ0ENH)	59
Table 39. IRQ0 Enable Low Bit Register (IRQ0ENL)	60
Table 40. IRQ1 Enable and Priority Encoding	60
Table 41. IRQ1 Enable High Bit Register (IRQ1ENH)	60
Table 42. IRQ1 Enable Low Bit Register (IRQ1ENL)	61
Table 43. IRQ2 Enable and Priority Encoding	61
Table 44. IRQ2 Enable Low Bit Register (IRQ2ENL)	62
Table 45. Interrupt Edge Select Register (IRQES)	62
Table 46. IRQ2 Enable High Bit Register (IRQ2ENH)	62
Table 47. Shared Interrupt Select Register (IRQSS)	63
Table 48. Interrupt Control Register (IRQCTL)	64
Table 49. Timer 0–1 High Byte Register (TxH)	79
Table 50. Timer 0–1 Low Byte Register (TxL)	79
Table 51. Timer 0–1 Reload High Byte Register (TxRH)	80
Table 52. Timer 0–1 Reload Low Byte Register (TxRL)	80
Table 53. Timer 0–1 PWM High Byte Register (TxPWMH)	80
Table 54. Timer 0–1 Control Register 0 (TxCTL0)	81
Table 55. Timer 0–1 PWM Low Byte Register (TxPWML)	81
Table 56. Timer 0–1 Control Register 1 (TxCTL1)	82
Table 57. Watchdog Timer Approximate Time-Out Delays	87

Table 58. Watchdog Timer Control Register (WDTCTL)	89
Table 59. Watchdog Timer Reload Upper Byte Register (WDTU)	90
Table 60. Watchdog Timer Reload High Byte Register (WDTH)	90
Table 61. Watchdog Timer Reload Low Byte Register (WDTL)	90
Table 62. UART Transmit Data Register (U0TXD)	103
Table 63. UART Receive Data Register (U0RXD)	104
Table 64. UART Status 0 Register (U0STAT0)	104
Table 65. UART Status 1 Register (U0STAT1)	105
Table 66. UART Control 0 Register (U0CTL0)	106
Table 67. UART Control 1 Register (U0CTL1)	107
Table 68. UART Address Compare Register (U0ADDR)	109
Table 69. UART Baud Rate High Byte Register (U0BRH)	109
Table 70. UART Baud Rate Low Byte Register (U0BRL)	109
Table 71. UART Baud Rates	110
Table 72. ADC Control Register 0 (ADCCTL0)	126
Table 73. ADC Control/Status Register 1 (ADCCTL1)	128
Table 74. ADC Data High Byte Register (ADCD_H)	129
Table 75. ADC Data Low Bits Register (ADCD_L)	129
Table 76. ADC High Threshold High Byte (ADCTH)	130
Table 77. ADC Low Threshold High Byte (ADCTL)	130
Table 78. Comparator Control Register (CMP0)	133
Table 79. Z8 Encore! XP® F08xA Series Flash Memory Configurations	136
Table 80. Flash Code Protection Using the Flash Option Bits	141
Table 81. Flash Control Register (FCTL)	144
Table 82. Flash Status Register (FSTAT)	145
Table 83. Flash Page Select Register (FPS)	145
Table 84. Flash Sector Protect Register (FPROT)	146
Table 85. Flash Frequency High Byte Register (FFREQH)	147
Table 86. Flash Frequency Low Byte Register (FFREQL)	147
Table 87. Trim Bit Address Register (TRMADR)	150

Table 88. Trim Bit Data Register (TRMDR)	150
Table 89. Flash Option Bits at Program Memory Address 0000H	151
Table 90. Flash Options Bits at Program Memory Address 0001H	152
Table 91. Trim Options Bits at Address 0000H (TTEMP0)	152
Table 92. Trim Option Bits at 0001H (TTEMP1)	153
Table 93. Trim Option Bits at 0002H (TIPO)	153
Table 94. Trim Option Bits at Address 0003H (TLVD)	154
Table 95. Trim Option Bits at 0004H (TBG)	155
Table 96. ADC Calibration Bits at 0060H-007DH.	155
Table 97. ADC Calibration Data Location	156
Table 98. Watchdog Calibration High Byte at 007EH (WDTCALH)	157
Table 99. Watchdog Calibration Low Byte at 007FH (WDTCALL)	157
Table 100. OCD Baud-Rate Limits.	162
Table 101. OCD Control Register (OCDCTL)	169
Table 102. OCD Status Register (OCDSTAT)	170
Table 103. Oscillator Configuration and Selection	173
Table 104. Oscillator Control Register (OSCCTL)	175
Table 105. Recommended Crystal Oscillator Specifications.	178
Table 106. Transconductance Values for Low, Medium, and High Gain Operating Modes	179
Table 107. Assembly Language Syntax Example 1	184
Table 108. Assembly Language Syntax Example 2	184
Table 109. Notational Shorthand	185
Table 110. Additional Symbols	186
Table 111. Arithmetic Instructions	187
Table 112. Bit Manipulation Instructions	188
Table 113. Block Transfer Instructions	188
Table 114. CPU Control Instructions	188
Table 115. Logical Instructions	189
Table 116. Load Instructions	189
Table 117. Program Control Instructions	190

Table 118. Rotate and Shift Instructions	190
Table 119. eZ8 CPU Instruction Summary	191
Table 120. Opcode Map Abbreviations	201
Table 121. Absolute Maximum Ratings	204
Table 122. DC Characteristics	205
Table 123. AC Characteristics	207
Table 124. Power-On Reset and Voltage Brownout Electrical Characteristics and Timing	209
Table 125. Flash Memory Electrical Characteristics and Timing	210
Table 126. Watchdog Timer Electrical Characteristics and Timing	210
Table 127. Analog-to-Digital Converter Electrical Characteristics and Timing	211
Table 128. Comparator Electrical Characteristics	213
Table 129. Temperature Sensor Electrical Characteristics	213
Table 130. GPIO Port Input Timing	214
Table 131. GPIO Port Output Timing	215
Table 132. On-Chip Debugger Timing	216
Table 133. UART Timing With CTS	217
Table 134. UART Timing Without CTS	218

Overview

The Z8 Encore!® MCU family of products are the first ZiLOG's microcontroller products based on the 8-bit eZ8 CPU. The Z8 Encore! XP® F08xA Series products expand on ZiLOG's extensive line of 8-bit microcontrollers. The Flash in-circuit programming capability allows for faster development time and program changes in the field. The new eZ8 CPU is upward compatible with existing Z8® instructions. The rich peripheral set of the Z8 Encore! XP® F08xA Series makes it suitable for a variety of applications including motor control, security systems, home appliances, personal electronic devices, and sensors.

Features

Z8 Encore! XP® F08xA Series MCU include the following key features:

- 20 MHz eZ8 CPU.
- 8 KB Flash Memory with in-circuit programming capability.
- 1 KB register RAM.
- 6 to 25 I/O pins depending on package.
- Internal precision oscillator.
- External crystal oscillator.
- Full-duplex Universal Asynchronous Receiver/Transmitter (UART).
- The UART baud rate generator (BRG) can be configured and used as a basic 16-bit timer.
- Infrared data association (IrDA)-compliant infrared encoder/decoders, integrated with UART.
- Two enhanced 16-bit timers with Capture, Compare, and PWM capability.
- Watchdog Timer (WDT) with dedicated internal RC oscillator.
- On-Chip Debugger (OCD).
- Optional 8-channel, 10-bit analog-to-digital converter (ADC).
- On-chip temperature sensor.
- On-chip analog comparator.
- On-chip current sense amplifier.
- Up to 20 vectored interrupts.

- Voltage Brownout (VBO) protection.
- Programmable low-voltage detection (LCD) (8-pin only).
- Power-on reset (POR).
- 2.7 V to 3.6 V operating voltage.
- Up to thirteen 5 V-tolerant input pins.
- 20-pin and 28-pin packages.
- 0 °C to +70 °C and -40 °C to +105 °C for operating temperature ranges.

Part Selection Guide

[Table 1](#) lists the basic features and package styles available for each device within the Z8 Encore! XP® F08xA Series product line.

Table 1. Z8 Encore! XP® F08xA Series Family Part Selection Guide

Part Number	Flash (KB)	RAM (B)	I/O	ADC Inputs	Packages
Z8F082A	8	1024	6–23	4–8	8-, 20- and 28-pins
Z8F081A	8	1024	17–25	0	8-, 20- and 28-pins

Block Diagram

[Figure 1](#) illustrates the block diagram of the architecture of the Z8 Encore! XP® F08xA Series devices.

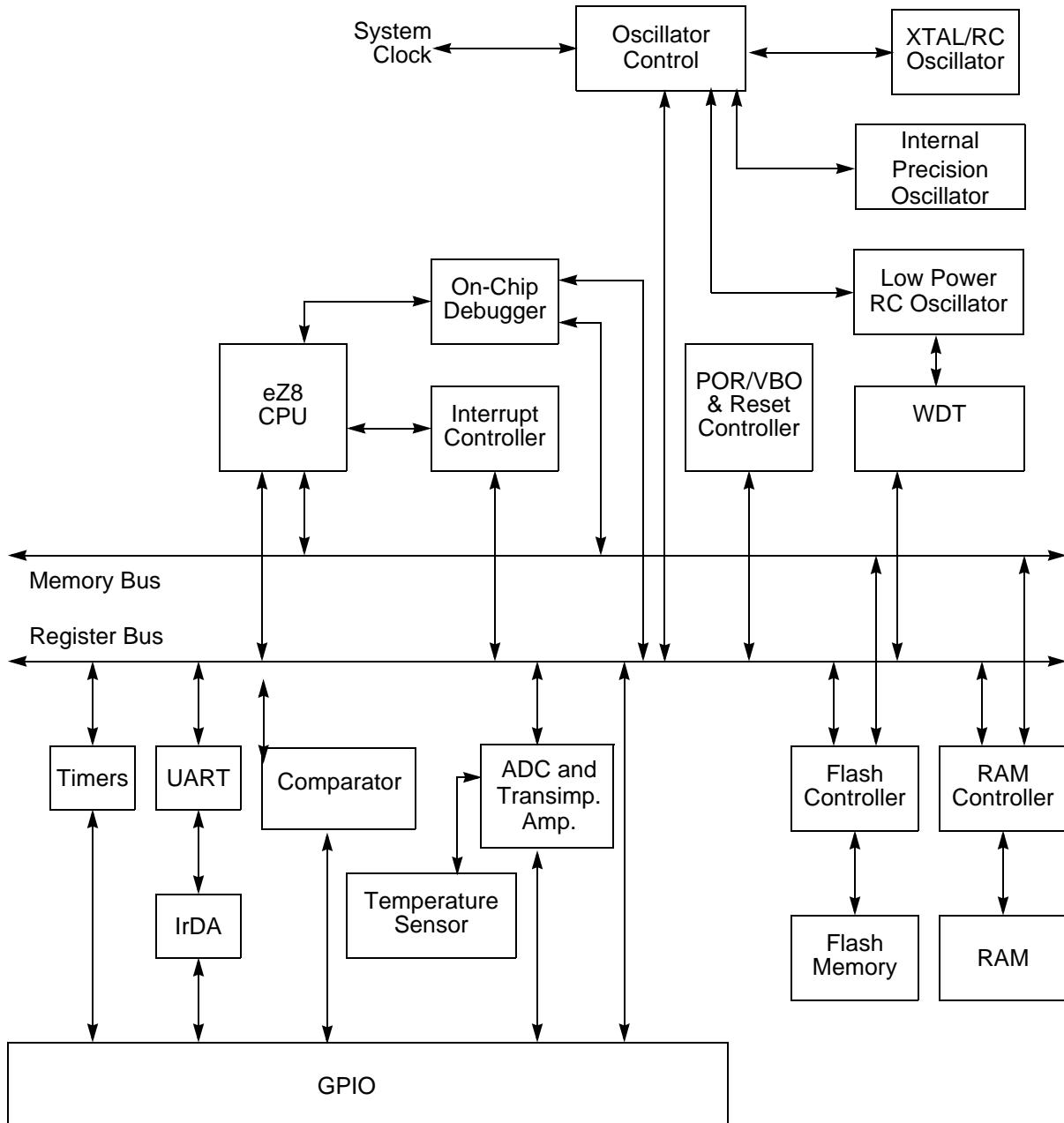


Figure 1. Z8 Encore! XP® F08xA Series Block Diagram

CPU and Peripheral Overview

eZ8 CPU Features

The eZ8 CPU, ZiLOG's latest 8-bit CPU, meets the continuing demand for faster and more code-efficient microcontrollers. The eZ8 CPU executes a superset of the original Z8® instruction set. The eZ8 CPU features are as follows:

- Direct register-to-register architecture allows each register to function as an accumulator, improving execution time and decreasing the required program memory.
- Software stack allows much greater depth in subroutine calls and interrupts than hardware stacks.
- Compatible with existing Z8® code.
- Expanded internal register file allows access up to 4 KB.
- New instructions improve execution efficiency for code developed using higher-level programming languages, including C.
- Pipelined instruction fetch and execution.
- New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC, LDCI, LEA, MULT, and SRL.
- New instructions support 12-bit linear addressing of the register file.
- Up to 10 MIPS operation.
- C-Compiler friendly.
- 2 to 9 clock cycles per instruction.

For more information regarding the eZ8 CPU, refer to *eZ8 CPU User Manual (UM0128)* available for download at www.zilog.com.

General Purpose Input/Output

The Z8 Encore! XP® F08xA Series features 6 to 25 port pins (Ports A–D) for general purpose Input/Output (GPIO). The number of GPIO pins available is a function of package. Each pin is individually programmable.

Flash Controller

The Flash controller programs and erases Flash Memory. The Flash controller supports protection against accidental program and erasure.

Internal Precision Oscillator

The internal precision oscillator (IPO) is a trimmable clock source that requires no external components.

Crystal Oscillator

The crystal oscillator circuit provides highly accurate clock frequencies with the use of an external crystal, ceramic resonator, or RC network.

10-Bit Analog-to-Digital Converter and Transimpedance Amplifier

The optional ADC converts an analog input signal to a 10-bit binary number. The ADC accepts inputs from eight different analog input pins in both SINGLE-ENDED and DIFFERENTIAL modes. The ADC block includes a transimpedance amplifier for current measurements.

Analog Comparator

The analog comparator compares the signal at an input pin with either an internal programmable voltage reference or a second input pin. The comparator output is used either to drive an output pin or to generate an interrupt.

Temperature Sensor

The temperature sensor produces an analog output proportional to the device temperature. This signal is sent either to the ADC or to the analog comparator.

Low-Battery Detector

The low-battery detector is able generate an interrupt when the supply voltage drops below a user-programmable level.

Universal Asynchronous Receiver/Transmitter

The UART is full-duplex and capable of handling asynchronous data transfers. The UART supports 8- and 9-bit data modes and selectable parity. The UART also supports multi-drop address processing in hardware. The UART BRG is configurable and is used as a basic 16-bit timer.

Timers

Two enhanced 16-bit reloadable timers is used for timing/counting events or for motor control operations. These timers provide a 16-bit programmable reload counter and operate in ONE-SHOT, CONTINUOUS, GATED, CAPTURE, CAPTURE RESTART, COMPARE, CAPTURE and COMPARE, PWM SINGLE OUTPUT, and PWM DUAL OUTPUT modes.

Interrupt Controller

The Z8 Encore! XP® F08xA Series products support up to 20 interrupts. These interrupts consist of eight internal peripheral interrupts and 12 general-purpose I/O pin interrupt sources. The interrupts have three levels of programmable interrupt priority.

Reset Controller

The Z8 Encore! XP® F08xA Series products can be reset using the RESET pin, POR, WDT time-out, STOP mode exit, or VBO warning signal. The RESET pin is bi-directional, which means that it functions as reset source as well as a reset indicator.

On-Chip Debugger

The Z8 Encore! XP® F08xA Series products feature an integrated OCD. The OCD provides a rich set of debugging capabilities, such as reading and writing registers, programming Flash memory, setting breakpoints, and executing code. A single-pin interface provides communication to the OCD.

Pin Description

The Z8 Encore! XP® F08xA Series products are available in a variety of packages styles and pin configurations. This chapter describes the signals and available pin configurations for each of the package styles. For information on the physical package specifications, see [Packaging on page 219](#).

Available Packages

[Table 2](#) lists the package styles that are available for each device in the Z8 Encore! XP® F08xA Series product line.

Table 2. Z8 Encore! XP® F08xA Series Package Options

Part Number	ADC	8-pin PDIP	8-pin SOIC	20-pin PDIP	20-pin SOIC	20-pin SSOP	28-pin PDIP	28-pin SOIC	28-pin SSOP	8-pin QFN/MLF-S
Z8F082A	Yes	X	X	X	X	X	X	X	X	X
Z8F081A	No	X	X	X	X	X	X	X	X	X

Pin Configurations

[Figure 2 through Figure 4](#) illustrate the pin configurations of all the packages available in the Z8 Encore! XP® F08xA Series. See [Table 3 on page 9](#) for description of the signals. The analog input alternate functions (ANAx) are not available on the Z8F081A devices. The analog supply pins (AV_{DD} and AV_{SS}) are also not available on these parts and are replaced by port pins PB6 and PB7.

At reset, all port A, B, and C pins default to an input state. In addition, no alternate functionality is enabled and the pins function as general purpose input ports until programmed otherwise. At powerup, the Port D0 pin defaults to the $\overline{\text{RESET}}$ alternate function.

The pin configurations listed in the following figures are preliminary and subject to change based on manufacturing limitations.

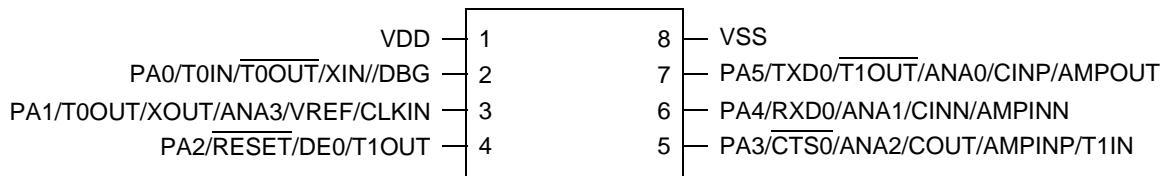


Figure 2. Z8 Encore! XP® F08xA Series 8-Pin SOIC, QFN/MLF-S, or PDIP Package

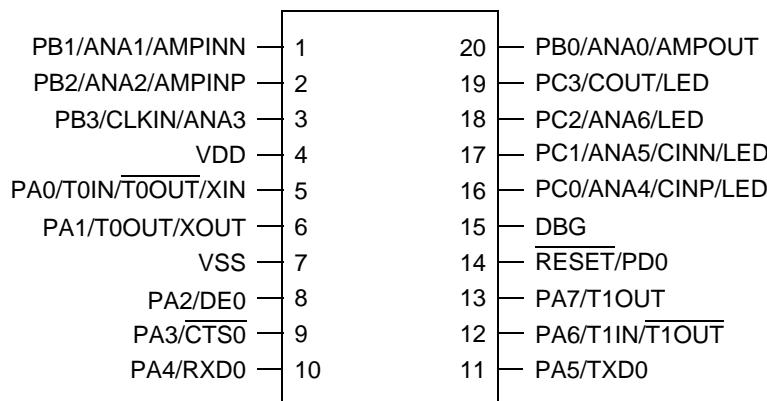


Figure 3. Z8 Encore! XP® F08xA Series in 20-Pin SOIC, SSOP or PDIP Package

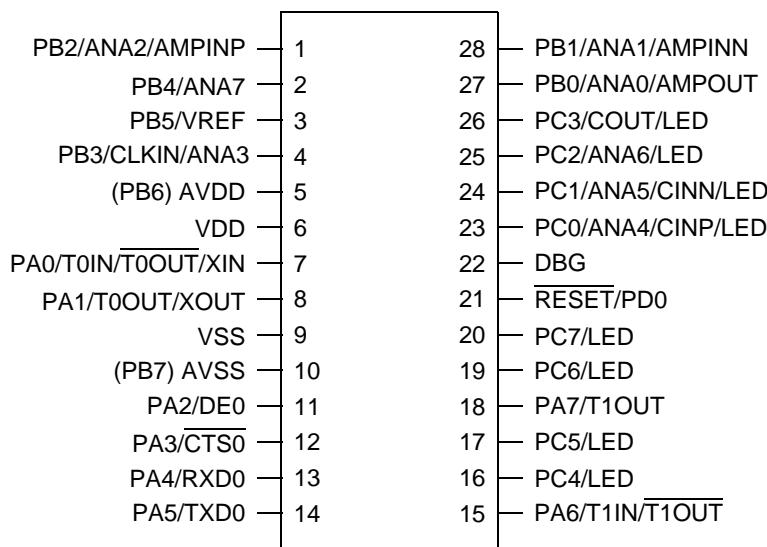


Figure 4. Z8 Encore! XP® F08xA Series in 28-Pin SOIC, SSOP or PDIP Package

Signal Descriptions

Table 3 describes the Z8 Encore! XP® F08xA Series signals. See [Pin Configurations on page 7](#) to determine the signals available for the specific package styles.

Table 3. Signal Descriptions

Signal Mnemonic	I/O	Description
General-Purpose I/O Ports A–D		
PA[7:0]	I/O	Port A: These pins are used for GPIO.
PB[7:0]	I/O	Port B: These pins are used for general-purpose I/O. PB6 and PB7 are available only in those devices without an ADC.
PC[7:0]	I/O	Port C: These pins are used for GPIO.
PD[0]	I/O	Port D: This pin is used for general-purpose output only.
Note: PB6 and PB7 are only available in 28-pin packages without ADC. In 28-pin packages with ADC, they are replaced by AV _{DD} and AV _{SS} .		
UART Controllers		
TXD0	O	Transmit Data: This signal is the transmit output from UART and IrDA.
RXD0	I	Receive Data: This signal is the receive input for UART and IrDA.
CTS0	I	Clear To Send: This signal is the flow control input for UART.
DE	O	Driver Enable: This signal allows automatic control of external RS-485 drivers. This signal is approximately the inverse of the TXE (Transmit Empty) bit in the UART Status 0 register. The DE signal can be used to ensure that the external RS-485 driver is enabled when data is transmitted by the UART.
Timers		
T0OUT/T1OUT	O	Timer Output 0–1: These signals are output from the timers.
T0OUT/T1OUT	O	Timer Complement Output 0–1: These signals are output from the timers in PWM DUAL OUTPUT mode.
T0IN/T1IN	I	Timer Input 0–1: These signals are used as the <u>capture</u> , gating and counter inputs. The T0IN signal is multiplexed T0OUT signals.
Comparator		
CINP/CINN	I	Comparator Inputs: These signals are positive and negative inputs to the comparator.
COUT	O	Comparator Output: This is the output of the comparator.

Table 3. Signal Descriptions (Continued)

Signal Mnemonic	I/O	Description
Analog		
ANA[7:0]	I	Analog Port: These signals are used as inputs to the ADC. The ANA0, ANA1 and ANA2 pins can also access the input and output of the integrated transimpedance amplifier.
VREF	I/O	Analog-to-digital converter reference voltage input.
Transimpedance Amplifier		
AMPINP/AMPINN	I	Transimpedance amplifier inputs: If enabled, these pins drive the positive and negative amplifier inputs respectively.
AMPOUT	O	Transimpedance amplifier output: If enabled, this pin is driven by the on-chip transimpedance amplifier.
Oscillators		
XIN	I	External Crystal Input: This is the input pin to the crystal oscillator. A crystal is connected between XIN and the XOUT pin to form the oscillator. In addition, this pin is used with external RC networks or external clock drivers to provide the system clock.
XOUT	O	External Crystal Output: This pin is the output of the crystal oscillator. A crystal is connected between XOUT and the XIN pin to form the oscillator.
Clock Input		
CLKIN	I	Clock Input Signal: This pin can be used to input a TTL-level signal to be used as the system clock.
LED Drivers		
LED	O	Direct LED drive capability: All Port C pins have the capability to drive an LED without any other external components. These pins have programmable drive strengths set by the GPIO block.
On-Chip Debugger		
DBG	I/O	Debug: This signal is the control and data input and output to and from the On-Chip Debugger.
Caution:		The DBG pin is open-drain and requires an external pull-up resistor to ensure proper operation.
Reset		
RESET	I/O	Reset: Generates a Reset when asserted (driven Low). Also serves as a reset indicator; the Z8 Encore! XP® forces this pin Low when in reset. This pin is open-drain and features an enabled internal pull-up resistor.

Table 3. Signal Descriptions (Continued)

Signal Mnemonic	I/O	Description
Power Supply		
V _{DD}	I	Digital power supply.
AV _{DD}	I	Analog power supply.
V _{SS}	I	Digital ground.
AV _{SS}	I	Analog ground.

Note: The AV_{DD} and AV_{SS} signals are available only in 28-pin packages with ADC. They are replaced by PB6 and PB7 on 28-pin packages without ADC.

Pin Characteristics

[Table 4](#) provides detailed information on the characteristics of each pin available on the Z8 Encore! XP® F08xA Series 20- and 28-pin devices. Data in [Table 4](#) is sorted alphabetically by the pin symbol mnemonic. [Table 4](#) describes 5 V-tolerance for the 20- and 28-pin packages only.

[Table 5 on page 12](#) provides detailed information on the characteristics for each pin available on the Z8 Encore! XP® F08xA Series 8-pin devices.

► **Note:** All six I/O pins on the 8-pin packages are 5 V-tolerant (unless the pull-up devices are enabled).

Table 4. Pin Characteristics (20- and 28-pin Devices)

Symbol Mnemonic	Reset Direction	Active Direction	Active Low or High	Tristate Output	Internal Pull-up or Pull- down	Schmitt Trigger Input	Open Drain Output	5 V Tolerance
AVDD	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AVSS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
DBG	I/O	I	N/A	Yes	No	Yes	Yes	Yes
PA[7:0]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PA[7:2] only
PB[7:0]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PB[7:6] only
PC[7:0]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PC[7:3] only

Table 4. Pin Characteristics (20- and 28-pin Devices) (Continued)

Symbol Mnemonic	Reset Direction	Active Low or High	Tristate Output	Internal Pull-up or Pull- down	Schmitt Trigger Input	Open Drain Output	5 V Tolerance
RESET/PD0	I/O	I/O (defaults to RESET)	Low (in Reset mode)	Yes (PD0 only)	Programmable for PD0; always on for RESET	Yes	Programmable for PD0; always on for RESET
V _{DD}	N/A	N/A	N/A	N/A		N/A	N/A
V _{SS}	N/A	N/A	N/A	N/A		N/A	N/A

► **Note:** PB6 and PB7 are available only in those devices without ADC.

Table 5. Pin Characteristics (8-Pin Devices)

Symbol Mnemonic	Reset Direction	Active Low or High	Tristate Output	Internal Pull-up or Pull- down	Schmitt Trigger Input	Open Drain Output	5 V Tolerance
PA0/DBG	I/O	I (but can change during reset if key sequence detected)	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable
PA1	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable
RESET/PA2	I/O	I/O (defaults to RESET)	N/A	Yes	Programmable for PA2; always on for RESET	Yes	Programmable for PA2; always on for RESET
PA[5:3]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable
V _{DD}	N/A	N/A	N/A	N/A	N/A	N/A	N/A
V _{SS}	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Address Space

The eZ8 CPU can access three distinct address spaces as follows:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral, and general-purpose I/O port control registers.
- The Program Memory contains addresses for all memory locations having executable code and/or data.
- The Data Memory contains addresses for all memory locations that contain data only.

These three address spaces are covered briefly in the following sections. For detailed information on the eZ8 CPU and its address space, refer to the *eZ8 CPU User Manual (UM0128)* available for download at www.zilog.com.

Register File

The Register File address space in the Z8 Encore!® MCU is 8 KB (8192 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as sources are read, and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 8 KB Register File address space is reserved for eZ8 CPU control, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256 B control register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and it produces unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. The Z8 Encore! XP® F08xA Series devices contain 1 KB on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect.

Program Memory

The eZ8 CPU supports 64 KB of Program Memory address space. The Z8 Encore! XP® F08xA Series devices contain 8 KB of on-chip Flash Memory in the Program Memory address space, depending on the device. Reading from Program Memory addresses

outside the available Flash Memory addresses returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. [Table 6](#) describes the Program Memory maps for the Z8 Encore! XP® F08xA Series products.

Table 6. Z8 Encore! XP®F08xA Series Program Memory Maps

Program Memory Address (Hex)	Function
Z8F082A and Z8F081A Products	
0000–0001	Flash Option Bits
0002–0003	Reset Vector
0004–0005	WDT Interrupt Vector
0006–0007	Illegal Instruction Trap
0008–0037	Interrupt Vectors*
003E–1FFF	Program Memory

* See [Table 33 on page 53](#) for a list of the interrupt vectors.

Data Memory

The Z8 Encore! XP® F08xA Series does not use the eZ8 CPU 64 KB Data Memory address space.

Flash Information Area

[Table 7](#) describes the Z8 Encore! XP® F08xA Series Flash Information Area. This 128 B Information Area is accessed by setting bit 7 of the Flash Page Select register to 1. When access is enabled, the Flash Information Area is mapped into the Program Memory and overlays the 128 bytes at addresses FE00H to FF7FH. When the Information Area access is enabled, all reads from these Program Memory addresses return the Information Area data rather than the Program Memory data. Access to the Flash Information Area is read-only.

Table 7. Z8 Encore! XP® F08xA Series Flash Memory Information Area Map

Program Memory Address (Hex)	Function
FE00–FE3F	ZiLOG Option bits
FE40–FE53	Part Number 20-character ASCII alphanumeric code Left justified and filled with FH
FE54–FE5F	Reserved
FE60–FE7F	ZiLOG calibration data
FE80–FFFF	Reserved

Register Map

Table 8 provides the address map for the Register File of the Z8 Encore! XP® F08xA Series devices. Not all devices and package styles in the Z8 Encore! XP® F08xA Series support the ADC, or all of the GPIO ports. Consider registers for unimplemented peripherals as reserved.

Table 8. Register File Address Map

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
General Purpose RAM				
Z8F082A/Z8F081A Devices				
000–3FF	General-Purpose Register File RAM	—	XX	
400–EFF	Reserved	—	XX	
Timer 0				
F00	Timer 0 High Byte	T0H	00	79
F01	Timer 0 Low Byte	T0L	01	79
F02	Timer 0 Reload High Byte	T0RH	FF	80
F03	Timer 0 Reload Low Byte	T0RL	FF	80
F04	Timer 0 PWM High Byte	T0PWMH	00	80
F05	Timer 0 PWM Low Byte	T0PWML	00	81
F06	Timer 0 Control 0	T0CTL0	00	81
F07	Timer 0 Control 1	T0CTL1	00	82
Timer 1				
F08	Timer 1 High Byte	T1H	00	79
F09	Timer 1 Low Byte	T1L	01	79
F0A	Timer 1 Reload High Byte	T1RH	FF	80
F0B	Timer 1 Reload Low Byte	T1RL	FF	80
F0C	Timer 1 PWM High Byte	T1PWMH	00	80
F0D	Timer 1 PWM Low Byte	T1PWML	00	81
F0E	Timer 1 Control 0	T1CTL0	00	81
F0F	Timer 1 Control 1	T1CTL1	00	79
F10–F3F	Reserved	—	XX	

Table 8. Register File Address Map (Continued)

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
UART 0				
F40	UART0 Transmit Data	U0TXD	XX	103
	UART0 Receive Data	U0RXD	XX	104
F41	UART0 Status 0	U0STAT0	0000011Xb	104
F42	UART0 Control 0	U0CTL0	00	106
F43	UART0 Control 1	U0CTL1	00	107
F44	UART0 Status 1	U0STAT1	00	105
F45	UART0 Address Compare	U0ADDR	00	109
F46	UART0 Baud Rate High Byte	U0BRH	FF	109
F47	UART0 Baud Rate Low Byte	U0BRL	FF	109
F48–F6F	Reserved	—	XX	
Analog-to-Digital Converter				
F70	ADC Control 0	ADCCTL0	00	126
F71	ADC Control 1	ADCCTL1	80	126
F72	ADC Data High Byte	ADCD_H	XX	129
F73	ADC Data Low Bits	ADCD_L	XX	129
F74	ADC High Threshold High Byte	ADCTHH	FF	130
F75	Reserved	—	XX	
F76	ADC Low Threshold High Byte	ADCTLH	00	130
F77–F7F	Reserved	—	XX	
Low Power Control				
F80	Power Control 0	PWRCTL0	80	33
F81	Reserved	—	XX	
LED Controller				
F82	LED Drive Enable	LEDEN	00	50
F83	LED Drive Level High Byte	LEDVLH	00	50
F84	LED Drive Level Low Byte	LEDVLLL	00	51
F85	Reserved	—	XX	
Oscillator Control				
F86	Oscillator Control	OSCCTL	A0	175
F87–F8F	Reserved	—	XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	133

Table 8. Register File Address Map (Continued)

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
F91–FBF	Reserved	—	XX	
Interrupt Controller				
FC0	Interrupt Request 0	IRQ0	00	57
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	59
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	60
FC3	Interrupt Request 1	IRQ1	00	58
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	60
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	61
FC6	Interrupt Request 2	IRQ2	00	58
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	62
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	62
FC9–FCC	Reserved	—	XX	
FCD	Interrupt Edge Select	IRQES	00	63
FCE	Shared Interrupt Select	IRQSS	00	63
FCF	Interrupt Control	IRQCTL	00	64
GPIO Port A				
FD0	Port A Address	PAADDR	00	42
FD1	Port A Control	PACTL	00	44
FD2	Port A Input Data	PAIN	XX	44
FD3	Port A Output Data	PAOUT	00	44
GPIO Port B				
FD4	Port B Address	PBADDR	00	42
FD5	Port B Control	PBCTL	00	44
FD6	Port B Input Data	PBIN	XX	44
FD7	Port B Output Data	PBOUT	00	44
GPIO Port C				
FD8	Port C Address	PCADDR	00	42
FD9	Port C Control	PCCTL	00	44
FDA	Port C Input Data	PCIN	XX	44
FDB	Port C Output Data	PCOUT	00	44
GPIO Port D				
FDC	Port D Address	PDADDR	00	42
FDD	Port D Control	PDCTL	00	44
FDE	Reserved	—	XX	

Table 8. Register File Address Map (Continued)

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
FDF	Port D Output Data	PDOUT	00	44
FE0–FEF	Reserved	—	XX	
Watchdog Timer				
FF0	Reset Status	RSTSTAT	XX	89
	Watchdog Timer Control	WDTCTL	XX	89
FF1	Watchdog Timer Reload Upper Byte	WDTU	FF	90
FF2	Watchdog Timer Reload High Byte	WDTH	FF	90
FF3	Watchdog Timer Reload Low Byte	WDTL	FF	90
FF4–FF5	Reserved	—	XX	
Trim Bit Control				
FF6	Trim Bit Address	TRMADR	00	150
FF7	Trim Data	TRMDR	XX	150
Flash Memory Controller				
FF8	Flash Control	FCTL	00	144
FF8	Flash Status	FSTAT	00	145
FF9	Flash Page Select	FPS	00	145
	Flash Sector Protect	FPROT	00	146
FFA	Flash Programming Frequency High Byte	FFREQH	00	147
FFB	Flash Programming Frequency Low Byte	FFREQL	00	147
eZ8 CPU				
FFC	Flags	—	XX	Refer to
FFD	Register Pointer	RP	XX	the eZ8
FFE	Stack Pointer High Byte	SPH	XX	CPU User
FFF	Stack Pointer Low Byte	SPL	XX	Manual (UM0128)
Note: XX = Undefined				

Reset, Stop Mode Recovery and Low-Voltage Detection

The Reset controller within the Z8 Encore! XP® F08xA Series controls Reset and Stop Mode Recovery operation and provides indication of low supply voltage conditions. In typical operation, the following events cause a Reset:

- Power-on reset (POR).
- Voltage Brownout (VBO).
- Watchdog Timer (WDT) time-out (when configured by the WDT_RES Flash Option bit to initiate a reset).
- External RESET pin assertion (when the Alternate Reset function is enabled by the GPIO register).
- On-Chip Debugger (OCD) initiated Reset (OCDCTL[0] set to 1).

When the device is in STOP mode, a Stop Mode Recovery is initiated by either of the following:

- WDT time-out.
- GPIO port input pin transition on an enabled Stop Mode Recovery source.

The low-voltage detection circuitry on the device (available on the 8-pin product versions only) performs the following functions:

- Generates the VBO reset when the supply voltage drops below a minimum safe level.
- Generates an interrupt when the supply voltage drops below a user-defined level (8-pin device only).

Reset Types

The Z8 Encore! XP® F08xA Series provides different types of Reset operation. Stop Mode Recovery is considered as a form of Reset operation. [Table 9](#) lists the types of Reset and their operating characteristics. The System Reset is longer if the external crystal oscillator is enabled by the Flash option bits, allowing additional time for the oscillator startup.

Table 9. Reset and Stop Mode Recovery Characteristics and Latency

Reset Characteristics and Latency			
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)
System Reset	Reset (as applicable)	Reset	66 internal precision oscillator cycles
System Reset with Crystal Oscillator Enabled	Reset (as applicable)	Reset	5000 internal precision oscillator cycles
Stop Mode Recovery	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	66 internal precision oscillator cycles
Stop Mode Recovery with Crystal Oscillator Enabled	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	5000 internal precision oscillator cycles

During a System Reset or Stop Mode Recovery, the internal precision oscillator requires 4 μ s to start up. Then, the Z8 Encore! XP® F08xA Series device is held in Reset for 66 cycles of the internal precision oscillator (IPO). If the crystal oscillator is enabled in the Flash option bits, this reset period is increased to 5000 IPO cycles. When a reset occurs as a result of a low-voltage condition or POR, this delay is measured from the time the supply voltage first exceeds the POR level (discussed later in this chapter). If the external pin reset remains asserted at the end of the reset period, the device remains in reset until the pin is deasserted.

At the beginning of Reset, all GPIO pins are configured as inputs with pull-up resistor disabled, except the pin PD0, which is shared with the reset pin. On Reset, the PD0 pin is configured as a bi-directional, open-drain reset pin. The pin is internally driven Low during port reset, after which the user code can reconfigure this pin as a general-purpose output pin.

During Reset, the eZ8 CPU and on-chip peripherals are non-active; however, the on-chip crystal oscillator and Watchdog Timer oscillator continue to run.

On Reset, control registers within the Register File that have a defined Reset value are loaded with their reset values. Other control registers (including the Stack Pointer, Register Pointer, and Flags) and general-purpose RAM are undefined following Reset. The eZ8 CPU fetches the value of Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address.

Because the control registers are re-initialized by a system reset, the system clock after reset is always the IPO. User software must reconfigure the oscillator control block, such that the correct system clock source is enabled and selected.

Reset Sources

Table 10 lists the possible sources of a system reset.

Table 10. Reset Sources and Resulting Reset Type

Operating Mode	Reset Source	Special Conditions
NORMAL or HALT modes	POR / VBO	Reset delay begins after supply voltage exceeds POR level.
	WDT time-out when configured for Reset	None.
	RESET pin assertion	All reset pulses less than three system clocks in width are ignored.
STOP mode	OCD initiated Reset (OCDCTL[0] set to 1)	System reset, except the OCD is unaffected by the reset.
	POR/ VBO	Reset delay begins after supply voltage exceeds POR level.
	RESET pin assertion	All reset pulses less than the specified analog delay are ignored (see Electrical Characteristics on page 204).
	DBG pin driven Low	None.

Power-On Reset

Each device in the Z8 Encore! XP® F08xA Series contains an internal power-on reset (POR) circuit. The POR circuit monitors the supply voltage and holds the device in the Reset state until the supply voltage reaches a safe operating level. When the supply voltage exceeds the POR voltage threshold (V_{POR}), the device is held in the Reset state until the POR Counter has timed out. If the crystal oscillator is enabled by the option bits, this timeout is longer.

After the Z8 Encore! XP® F08xA Series device exits the POR state, the eZ8 CPU fetches the Reset vector. Following POR, the POR status bit in the WDT Control (WDTCTL) register is set to 1.

Figure 5 illustrates POR operation. See [Electrical Characteristics on page 204](#) for the POR threshold voltage (V_{POR}).

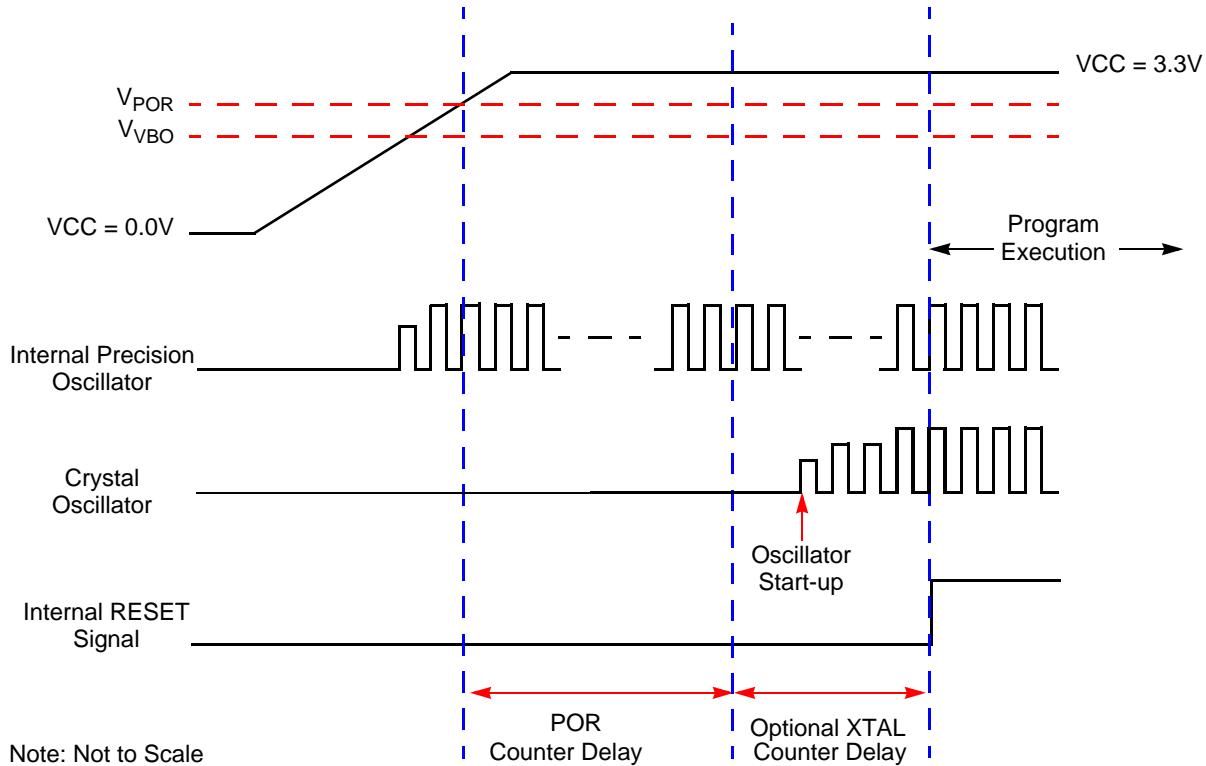


Figure 5. Power-On Reset Operation

Voltage Brownout Reset

The devices in the Z8 Encore! XP® F08xA Series provide low VBO protection. The VBO circuit senses when the supply voltage drops to a unsafe level (below the VBO threshold voltage) and forces the device into the Reset state. While the supply voltage remains below the POR voltage threshold (V_{POR}), the VBO block holds the device in the Reset state.

After the supply voltage again exceeds the POR voltage threshold, the device progresses through a full System Reset sequence, as described in the power-on reset section. Following POR, the POR status bit in the Reset Status (RSTSTAT) register is set to 1. [Figure 6](#) illustrates VBO operation. See chapter [Electrical Characteristics on page 204](#) for the VBO and POR threshold voltages (V_{VBO} and V_{POR}).

The VBO circuit is either enabled or disabled during STOP mode. Operation during STOP mode is set by the VBO_AO Flash Option Bit. See chapter [Flash Option Bits on page 148](#) for information on configuring VBO_AO.

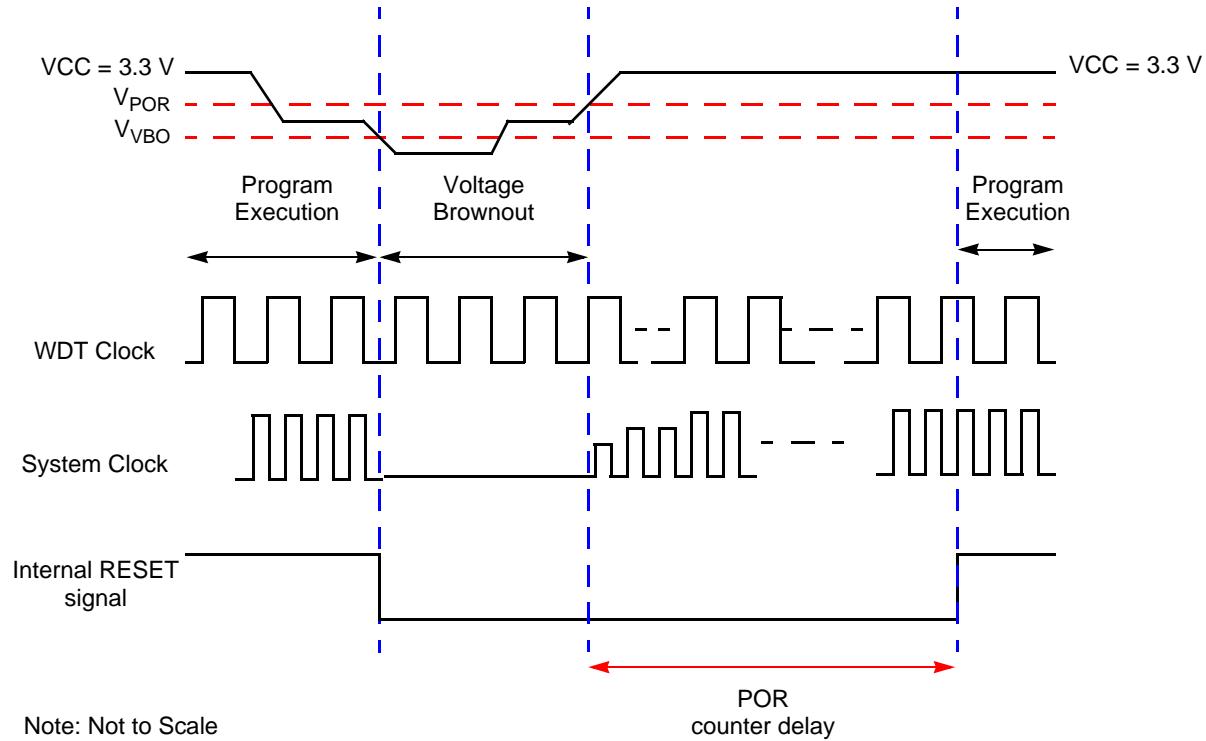


Figure 6. Voltage Brownout Reset Operation

The POR level is greater than the VBO level by the specified hysteresis value. This ensures that the device undergoes a POR after recovering from a VBO condition.

Watchdog Timer Reset

If the device is in NORMAL or STOP mode, the Watchdog Timer (WDT) initiates a system reset at time-out if the WDT_RES Flash Option Bit is programmed to 1. This is the unprogrammed state of the WDT_RES Flash Option Bit. If the bit is programmed to 0, it configures the WDT to cause an interrupt, not a system reset, at time-out. The WDT status bit in the WDT Control register is set to signify that the reset was initiated by the WDT.

External Reset Input

The RESET pin has a Schmitt-triggered input and an internal pull-up resistor. When the RESET pin is asserted for a minimum of four system clock cycles, the device progresses through the system reset sequence. Because of the possible asynchronicity of the system clock and reset signals, the required reset duration can be as short as three clock periods

and as long as four. A reset pulse of three clock cycles in duration might trigger a reset; a pulse of four cycles in duration always triggers a reset.

While the RESET input pin is asserted Low, the Z8 Encore! XP® F08xA Series devices remain in the Reset state. If the RESET pin is held Low beyond the system reset time-out, the device exits the Reset state on the system clock rising edge following RESET pin deassertion. Following a system reset initiated by the external RESET pin, the EXT status bit in the WDT Control (WDTCTL) register is set to 1.

External Reset Indicator

During system reset or when enabled by the GPIO logic (see [Port A–D Control Registers on page 44](#)), the RESET pin functions as an open-drain (active Low) reset mode indicator in addition to the input functionality. This reset output feature allows an Z8 Encore! XP® F08xA Series device to reset other components to which it is connected, even if that reset is caused by internal sources such as POR, VBO, or WDT events.

After an internal reset event occurs, the internal circuitry begins driving the RESET pin Low. The RESET pin is held Low by the internal circuitry until the appropriate delay listed in [Table 9](#) has elapsed.

On-Chip Debugger Initiated Reset

A POR is initiated using the OCD by setting the RST bit in the OCD Control register. The OCD block is not reset but the rest of the chip goes through a normal system reset. The RST bit automatically clears during the system reset. Following the system reset, the POR bit in the WDT Control register is set.

Stop Mode Recovery

When the eZ8 CPU executes a STOP instruction, the system enters a STOP mode. See chapter [Low-Power Modes on page 31](#) for detailed STOP mode information. During Stop Mode Recovery, the CPU is held in reset for 66 IPO cycles if the crystal oscillator is disabled or 5000 cycles if it is enabled.

Stop Mode Recovery does not affect on-chip registers other than the WDT Control register (WDTCTL) and the Oscillator Control register (OSCCTL). After any Stop Mode Recovery, the IPO is enabled and selected as the system clock. If another system clock source is required or IPO disabling is required, the Stop Mode Recovery code must reconfigure the oscillator control block such that the correct system clock source is enabled and selected.

The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address. Following Stop Mode Recovery, the STOP bit in the WDT Control

register is set to 1. [Table 11](#) lists the Stop Mode Recovery sources and resulting actions. The section following the table provides more detailed information about each of the Stop Mode Recovery sources.

Table 11. Stop Mode Recovery Sources and Resulting Action

Operating Mode	Stop Mode Recovery Source	Action
STOP mode	WDT time-out when configured for Reset	Stop Mode Recovery
	WDT time-out when configured for interrupt	Stop Mode Recovery followed by interrupt (if interrupts are enabled)
	Data transition on any GPIO Port pin enabled as a Stop Mode Recovery source	Stop Mode Recovery
	Assertion of external <u>RESET</u> Pin	System Reset
	Debug Pin driven Low	System Reset

Stop Mode Recovery Using WDT Time-Out

If the WDT times out during STOP mode, the device undergoes a Stop Mode Recovery sequence. In the WDT Control register, the WDT and STOP bits are set to 1. If the WDT is configured to generate an interrupt on time-out and the Z8 Encore! XP® F08xA Series device is configured to respond to interrupts, the eZ8 CPU services the WDT interrupt request following the normal Stop Mode Recovery sequence.

Stop Mode Recovery Using a GPIO Port Pin Transition

Each of the GPIO Port pins can be configured as a Stop Mode Recovery input source. On any GPIO pin enabled as a Stop Mode Recovery source, a change in the input pin value (from High to Low or from Low to High) initiates Stop Mode Recovery. In the WDT Control register, the STOP bit is set to 1.

Caution: In STOP mode, the GPIO Port Input Data registers (PxIN) are disabled. The Port Input Data registers record the port transition only if the signal stays on the port pin through the end of the Stop Mode Recovery delay. As a result, short pulses on the port pin initiates Stop Mode Recovery without being written to the Port Input Data register or without initiating an interrupt (if enabled for that pin).

Stop Mode Recovery Using the External RESET Pin

When the Z8 Encore! XP® F08xA Series device is in STOP mode and the external RESET pin is driven Low, a system reset occurs. Because of a glitch filter operating on the RESET

pin, the Low pulse must be greater than the minimum width specified, or it is ignored. See [Electrical Characteristics on page 204](#) for details.

Low-Voltage Detection

In addition to the VBO Reset described earlier, it is also possible to generate an interrupt when the supply voltage drops below a selected value. See [Trim Bit Address 0003H on page 154](#) for details on the low-voltage detection (LVD) threshold levels available. The LVD function is available on the 8-pin product versions only.

When the supply voltage drops below the LVD threshold, the LVD bit of the RSTSTAT register is set to 1. This bit remains 1 until the low-voltage condition goes away. Reading or writing this bit does not clear it. The LVD circuit also generates an interrupt when so enabled (see [Interrupt Vectors and Priority on page 55](#)). The LVD is not latched, so enabling the interrupt is the only way to guarantee detection of a transient low-voltage event.

The LVD functionality depends on circuitry shared with the VBO block; therefore disabling the VBO also disables the LVD.

Reset Register Definitions

This section describes the Reset register pin definitions.

Reset Status Register

The Reset Status (RSTSTAT) register is a read-only register that indicates the source of the most recent Reset event. It also indicates a Stop Mode Recovery event and indicates a WDT time-out. Reading this register resets the upper four bits to 0.

The RSTSTAT register shares its address with the WDT Control register, which is write-only ([Table 12](#)).

Table 12. Reset Status Register (RSTSTAT)

BITS	7	6	5	4	3	2	1	0
FIELD	POR	STOP	WDT	EXT	Reserved			LVD
RESET	See descriptions below			0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
ADDR	FF0H							

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-on reset	1	0	0	0
Reset using <u>RESET</u> pin assertion	0	0	0	1
Reset using WDT time-out	0	0	1	0
Reset using the OCD (OCTCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG Pin driven Low	1	0	0	0
Stop Mode Recovery using GPIO pin transition	0	1	0	0
Stop Mode Recovery using WDT time-out	0	1	1	0

POR—Power-on Reset Indicator

This bit is set to 1, if a POR event occurs. This bit is reset to 0 if a WDT time-out or Stop Mode Recovery occurs. This bit is also reset to 0 when the register is read.

STOP—Stop Mode Recovery Indicator

This bit is set to 1, if a Stop Mode Recovery occurs. If the STOP and WDT bits are both set to 1, the Stop Mode Recovery occurred because of a WDT time-out. If the STOP bit is 1 and the WDT bit is 0, the Stop Mode Recovery was not caused by a WDT time-out. This bit is reset by a POR or a WDT time-out that occurred while not in STOP mode. Reading the RSTSTAT register also resets this bit.

WDT—WDT Time-out Indicator

This bit is set to 1, if a WDT time-out occurs. A POR resets this pin. A Stop Mode Recovery from a change in an input pin also resets this bit. Reading the RSTSTAT register resets this bit. This read must occur before clearing the WDT interrupt.

EXT—External Reset Indicator

This bit is set to 1, a Reset initiated by the external RESET pin occurs. A POR or a Stop Mode Recovery due to a change in an input pin resets this bit. Reading the RSTSTAT register resets this bit.

Reserved—Must be 0.

LVD—Low-Voltage Detection Indicator

If this bit is set to 1, the current state of the supply voltage is below the low-voltage detection threshold. This value is not latched but is a real-time indicator of the supply voltage level.

Low-Power Modes

The Z8 Encore! XP® F08xA Series products contain power-saving features. The highest level of power reduction is provided by the STOP mode. The next lower level of power reduction is provided by the HALT mode.

Further power saving is implemented by disabling individual peripheral blocks while operating in NORMAL mode.

STOP Mode

The device enters STOP mode after executing the eZ8 CPU's STOP instruction. In STOP mode, the operating characteristics are:

- Primary crystal oscillator and internal precision oscillator are stopped; XIN and XOUT (if previously enabled) are disabled, and pins PA0/PA1 revert to the states programmed by the GPIO registers.
- System clock is stopped.
- eZ8 CPU is stopped.
- Program Counter (PC) stops incrementing.
- Watchdog Timer (WDT) internal RC oscillator continues to operate if enabled by the Oscillator Control register.
- If enabled, the WDT logic continues to operate.
- If enabled for operation in STOP mode by the associated Flash Option bit, the Voltage Brownout (VBO) protection circuit continues to operate.
- Transimpedance amplifier in the ADC block continues to operate if enabled by the Power Control register to do so; all other portions of the ADC are disabled.
- All other on-chip peripherals are non-active.

To minimize current in STOP mode, all GPIO pins that are configured as digital inputs must be driven to one of the supply rails (V_{CC} or GND). The device is brought out of STOP mode using Stop Mode Recovery. For more information on Stop Mode Recovery, see chapter on [Reset, Stop Mode Recovery and Low-Voltage Detection](#) on page 21.

HALT Mode

The device enters HALT mode after executing the eZ8 CPU HALT instruction. In HALT mode, the operating characteristics are:

- Primary oscillator is enabled and continues to operate.
- System clock is enabled and continues to operate.
- eZ8 CPU is stopped.
- Program counter (PC) stops incrementing.
- WDT's internal RC oscillator continues to operate.
- If enabled, the WDT continues to operate.
- All other on-chip peripherals continue to operate.

The eZ8 CPU is brought out of HALT mode by any of the following operations:

- Interrupt
- WDT time-out (interrupt or reset)
- Power-on reset (POR)
- VBO reset
- External RESET pin assertion

To minimize current in HALT mode, all GPIO pins that are configured as inputs must be driven to one of the supply rails (V_{CC} or GND).

Peripheral-Level Power Control

In addition to the STOP and HALT modes, it is possible to disable each peripheral on each of the Z8 Encore! XP® F08xA Series devices. Disabling a given peripheral minimizes its power consumption.

Power Control Register Definitions

The following section describes the Power Control register definitions.

Power Control Register 0

Each bit of the following registers disables a peripheral block, either by gating its system clock input or by removing power from the block.

The default state of the transimpedance amplifier is OFF. To use the transimpedance amplifier, clear the TRAM bit, turning it ON. Clearing this bit might interfere with normal ADC measurements on ANA0 (the transimpedance output). This bit enables the amplifier even in STOP mode. If the amplifier is not required in STOP mode, disable it. Failure to perform this results in STOP mode currents greater than specified.

► **Note:** The Power Control Register 0 (PWRCTL0) is only reset during a power-on reset sequence. Other system reset events do not affect it.

Table 13. Power Control Register 0 (PWRCTL0)

BITS	7	6	5	4	3	2	1	0
FIELD	TRAM	Reserved		VBO	TEMP	ADC	COMP	Reserved
RESET	1	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F80H							

TRAM— Transimpedance Amplifier Disable

0 = Transimpedance Amplifier is enabled (this applies even in STOP mode).

1 = Transimpedance Amplifier is disabled.

Reserved—Must be 0.

VBO—VBO Detector Disable

This bit and the VBO_AO Flash option bit must both enable the VBO for the VBO to be active.

0 = VBO enabled

1 = VBO disabled

TEMP—Temperature Sensor Disable

0 = Temperature sensor enabled

1 = Temperature sensor disabled

ADC—ADC Disable

0 = ADC enabled

1 = ADC disabled

COMP—Comparator Disable

0 = Comparator enabled

1 = Comparator disabled

Reserved—Must be 0.

General-Purpose Input/Output

The Z8 Encore! XP® F08xA Series products support a maximum of 25 port pins (Ports A–D) for general-purpose input/output (GPIO) operations. Each port contains control and data registers. The GPIO Control registers determine data direction, open-drain, output drive current, programmable pull-ups, Stop Mode Recovery functionality, and alternate pin functions. Each port pin is individually programmable. In addition, the Port C pins are capable of direct LED drive at programmable drive strengths.

GPIO Port Availability by Device

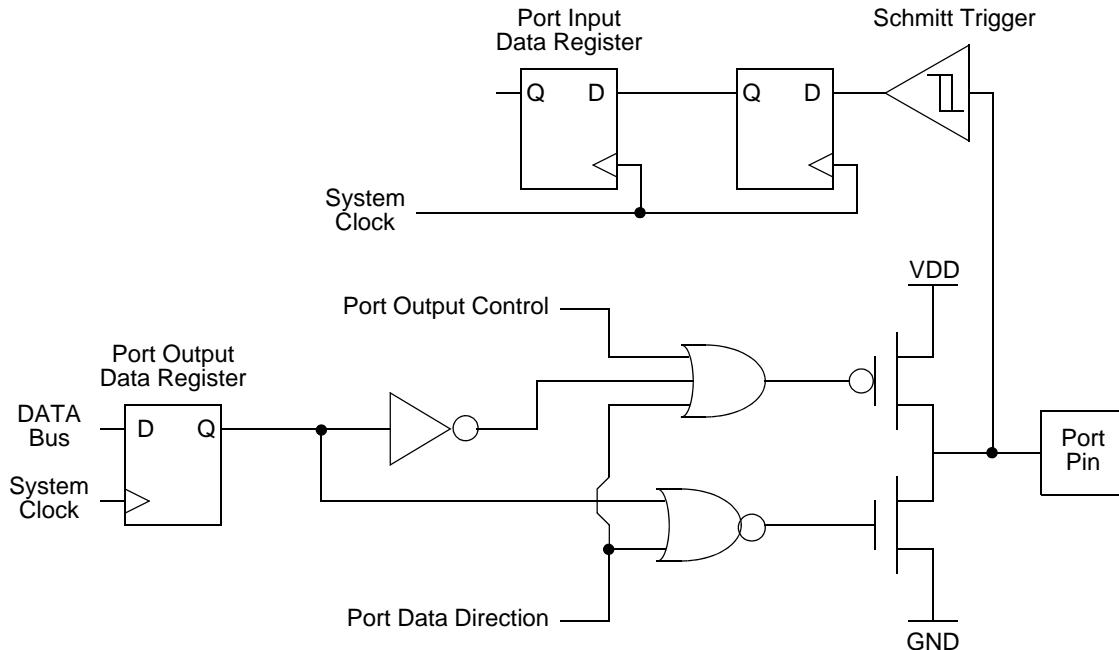

[Table 14](#) lists the port pins available with each device and package type.

Table 14. Port Availability by Device and Package Type

Devices	Package	10-Bit					Total I/O
		ADC	Port A	Port B	Port C	Port D	
Z8F082APB, Z8F082ASB	8-pin	Yes	[5.0]	N/A	No	No	6
Z8F081APB, Z8F081ASB	8-pin	No	[5.0]	N/A	No	No	6
Z8F082APH, Z8F082AHH	20-pin	Yes	[7:0]	[3:0]	[3:0]	[0]	17
Z8F081APH, Z8F081AHH	20-pin	No	[7:0]	[3:0]	[3:0]	[0]	17
Z8F082APJ, Z8F082ASJ	28-pin	Yes	[7:0]	[5:0]	[7:0]	[0]	23
Z8F081APJ, Z8F081ASJ	28-pin	No	[7:0]	[7:0]	[7:0]	[0]	25

Architecture

[Figure 7](#) illustrates a simplified block diagram of a GPIO port pin. In this figure, the ability to accommodate alternate functions and variable port current drive strength are not illustrated.

Figure 7. GPIO Port Pin Block Diagram

GPIO Alternate Functions

Many of the GPIO port pins are used for GPIO and access to on-chip peripheral functions such as the timers and serial communication devices. The Port A–D alternate function sub-registers configure these pins for either GPIO or alternate function operation. When a pin is configured for alternate function, control of the port pin direction (input/output) is passed from the Port A–D Data Direction registers to the alternate function assigned to this pin. [Table 15 on page 38](#) lists the alternate functions possible with each port pin. The alternate function associated at a pin is defined through Alternate Function Sets sub-registers AFS1 and AFS2.

The crystal oscillator functionality is not controlled by the GPIO block. When the crystal oscillator is enabled in the oscillator control block, the GPIO functionality of PA0 and PA1 is overridden. In that case, those pins function as input and output for the crystal oscillator.

PA0 and PA6 contain two different timer functions, a timer input and a complementary timer output. Both these functions require the same GPIO configuration. The selection between the two functions is based on the timer mode. For more details, see [Timers on page 65](#).

Direct LED Drive

The Port C pins provide a current sunked output capable of driving an LED without requiring an external resistor. The output sinks current at programmable levels, 3 mA, 7 mA, 13 mA, and 20 mA. This mode is enabled through the Alternate Function sub-register, AFS1 and is programmable through the LED control registers.

For proper function, the LED anode must be connected to V_{DD} and the cathode to the GPIO pin.

Using all Port C pins in LED drive mode with maximum current, can result in excessive total current. For details on the maximum total current for the applicable package, see [Electrical Characteristics on page 204](#).

Shared Reset Pin

On the 20- and 28-pin devices, the PD0 pin shares function with a bi-directional reset pin. Unlike all other I/O pins, this pin does not default to GPIO function on power-up. This pin acts as a bi-directional reset until the user software reconfigures it. The PD0 pin is output-only in GPIO mode.

On the 8-pin product versions, the reset pin is shared with PA2; but not limited to output-only in the GPIO mode.

Shared Debug Pin

On the 8-pin version of this device, the debug pin shares function with the PA0 GPIO pin. This pin performs as a general-purpose input pin on power-up, but the debug logic monitors this pin during the reset sequence to determine if the unlock sequence occurs. If unlock sequence is present, the debug function is unlocked and the debug pin no longer functions as a GPIO pin. If the unlock sequence is not present, the debug feature is disabled until another reset event occurs. For more details, see [On-Chip Debugger on page 158](#).

Crystal Oscillator Override

For systems using a crystal oscillator, port pins PA0 and PA1 are used to connect the crystal. When the crystal oscillator is enabled (see [Oscillator Control Register Definitions on page 175](#)), the GPIO settings are overridden and PA0 and PA1 are disabled.

5 V Tolerance

All six I/O pins on the 8-pin devices are 5 V-tolerant, unless the programmable pull-ups are enabled. If the pull-ups are enabled and inputs higher than V_{DD} are applied to these parts, excessive current flows through those pull-up devices and damages the chip.

In the 20- and 28-pin devices, any pin which shares functionality with an ADC, crystal or comparator port is not 5 V-tolerant, including PA[1:0], PB[5:0] and PC[2:0]. All other signal pins are 5 V-tolerant, and handles inputs higher than V_{DD} even with the pull-ups enabled.

External Clock Setup

For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator Control register ([page 175](#)) such that the external oscillator is selected as the system clock. For 8-pin devices use port pin PA1 instead of PB3.

Table 15. Port Alternate Function Mapping (20/28-Pin Parts)

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port A	PA0	T0IN/T0OUT	Timer0 Input/Timer0 Output Complement	N/A
		Reserved		N/A
	PA1	T0OUT	Timer0 Output	N/A
		Reserved		N/A
	PA2	DE0	UART0 Driver Enable	N/A
		Reserved		N/A
	PA3	CTS0	UART0 Clear to Send	N/A
		Reserved		N/A
PA4	RXD0/IRRX0		UART0 / IrDA 0 Receive Data	N/A
		Reserved		N/A
PA5	TXD0/IRTX0		UART0 / IrDA 0 Transmit Data	N/A
		Reserved		N/A
PA6	T1IN/T1OUT		Timer1 Input/Timer1 Output Complement	N/A
		Reserved		N/A
PA7	T1OUT		Timer 1 Output	N/A
		Reserved		N/A

Table 15. Port Alternate Function Mapping (20/28-Pin Parts) (Continued)

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port B	PB0	Reserved		AFS1[0]: 0
		ANA0/AMPOUT	ADC Analog Input/Transamp Output	AFS1[0]: 1
	PB1	Reserved		AFS1[1]: 0
		ANA1/AMPINN	ADC Analog Input/Transamp Input (N)	AFS1[1]: 1
	PB2	Reserved		AFS1[2]: 0
		ANA2/AMPINP	ADC Analog Input/Transamp Input (P)	AFS1[2]: 1
	PB3	CLKIN	External Clock Input	AFS1[3]: 0
		ANA3	ADC Analog Input	AFS1[3]: 1
	PB4	Reserved		AFS1[4]: 0
		ANA7	ADC Analog Input	AFS1[4]: 1
PB5	Reserved			AFS1[5]: 0
		VREF	ADC Voltage Reference	AFS1[5]: 1
PB6	Reserved			AFS1[6]: 0
		Reserved		AFS1[6]: 1
PB7	Reserved			AFS1[7]: 0
		Reserved		AFS1[7]: 1

Table 15. Port Alternate Function Mapping (20/28-Pin Parts) (Continued)

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port C	PC0	Reserved		AFS1[0]: 0
		ANA4/CINP/LED Drive	ADC or Comparator Input, or LED drive	AFS1[0]: 1
	PC1	Reserved		AFS1[1]: 0
		ANA5/CINN/ LED Drive	ADC or Comparator Input, or LED drive	AFS1[1]: 1
	PC2	Reserved		AFS1[2]: 0
		ANA6/LED	ADC Analog Input or LED Drive	AFS1[2]: 1
	PC3	COUT	Comparator Output	AFS1[3]: 0
		LED	LED drive	AFS1[3]: 1
PC4	Reserved			AFS1[4]: 0
	LED	LED Drive		AFS1[4]: 1
PC5	Reserved			AFS1[5]: 0
	LED	LED Drive		AFS1[5]: 1
PC6	Reserved			AFS1[6]: 0
	LED	LED Drive		AFS1[6]: 1
PC7	Reserved			AFS1[7]: 0
	LED	LED Drive		AFS1[7]: 1

Note: Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in [Port A–D Alternate Function Sub-Registers on page 45](#) automatically enables the associated alternate function.

Table 16. Port Alternate Function Mapping (8-Pin Parts)

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Select Register AFS1	Alternate Function Select Register AFS2
Port A	PA0	T0IN	Timer 0 Input	AFS1[0]: 0	AFS1[0]: 0
		Reserved		AFS1[0]: 0	AFS2[0]: 1
		Reserved		AFS1[0]: 1	AFS2[0]: 0
		T0OUT	Timer 0 Output Complement	AFS1[0]: 1	AFS2[0]: 1
	PA1	T0OUT	Timer 0 Output	AFS1[1]: 0	AFS2[1]: 0
		Reserved		AFS1[1]: 0	AFS2[1]: 1
		CLKIN	External Clock Input	AFS1[1]: 1	AFS2[1]: 0
		Analog Functions*	ADC Analog Input/VREF	AFS1[1]: 1	AFS2[1]: 1
	PA2	DE0	UART 0 Driver Enable	AFS1[2]: 0	AFS2[2]: 0
		RESET	External Reset	AFS1[2]: 0	AFS2[2]: 1
		T1OUT	Timer 1 Output	AFS1[2]: 1	AFS2[2]: 0
		Reserved		AFS1[2]: 1	AFS2[2]: 1
	PA3	CTS0	UART 0 Clear to Send	AFS1[3]: 0	AFS2[3]: 0
		COUT	Comparator Output	AFS1[3]: 0	AFS2[3]: 1
		T1IN	Timer 1 Input	AFS1[3]: 1	AFS2[3]: 0
		Analog Functions*	ADC Analog Input/Transamp Input (P)	AFS1[3]: 1	AFS2[3]: 1
	PA4	RXD0	UART 0 Receive Data	AFS1[4]: 0	AFS2[4]: 0
		Reserved		AFS1[4]: 0	AFS2[4]: 1
		Reserved		AFS1[4]: 1	AFS2[4]: 0
		Analog Functions*	ADC/Comparator Input (N)/Transamp Input (N)	AFS1[4]: 1	AFS2[4]: 1
	PA5	TXD0	UART 0 Transmit Data	AFS1[5]: 0	AFS2[5]: 0
		T1OUT	Timer 1 Output Complement	AFS1[5]: 0	AFS2[5]: 1
		Reserved		AFS2[5]: 1	AFS1[5]: 0

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Select Register AFS1	Alternate Function Select Register AFS2
Port A (Continued)	PA5	Analog Functions*	ADC/Comparator Input (P) Transamp Output	AFS2[5]: 1	AFS1[5]: 1

* Analog functions include ADC inputs, ADC reference, comparator inputs, and transimpedance amplifier ports.

Note: Also, alternate function selection as described in [Port A–D Alternate Function Sub-Registers on page 45](#) must be enabled.

GPIO Interrupts

Many of the GPIO port pins are used as interrupt sources. Some port pins are configured to generate an interrupt request on either the rising edge or falling edge of the pin input signal. Other port pin interrupt sources generate an interrupt when any edge occurs (both rising and falling). For more information on interrupts using the GPIO pins, see chapter [Interrupt Controller on page 52](#).

GPIO Control Register Definitions

Four registers for each port provide access to GPIO control, input data, and output data. [Table 17](#) lists these port registers. Use the Port A–D Address and Control registers together to provide access to sub-registers for port configuration and control.

Table 17. GPIO Port Registers and Sub-Registers

Port Register Mnemonic	Port Register Name
PxADDR	Port A–D Address Register (Selects sub-registers)
PxCTL	Port A–D Control Register (Provides access to sub-registers)
PxIN	Port A–D Input Data Register
PxOUT	Port A–D Output Data Register
Port Sub-Register Mnemonic	Port Register Name
PxDD	Data Direction
PxAF	Alternate Function

Table 17. GPIO Port Registers and Sub-Registers (Continued)

Port Register Mnemonic	Port Register Name
PxOC	Output Control (Open-Drain)
PxHDE	High Drive Enable
PxSMRE	Stop Mode Recovery Source Enable
PxPUE	Pull-up Enable
PxAFS1	Alternate Function Set 1
PxAFS2	Alternate Function Set 2

Port A–D Address Registers

The Port A–D Address registers select the GPIO port functionality accessible through the Port A–D Control registers. The Port A–D Address and Control registers combine to provide access to all GPIO port controls (Table 18).

Table 18. Port A–D GPIO Address Registers (PxADDR)

BITS	7	6	5	4	3	2	1	0
FIELD	PADDR[7:0]							
RESET	00H							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FD0H, FD4H, FD8H, FDCH							

PADDR[7:0]—Port Address

The Port Address selects one of the sub-registers accessible through the Port Control register.

PADDR[7:0] Port Control sub-register accessible using the Port A–D Control Registers

00H	No function. Provides some protection against accidental port reconfiguration.
01H	Data Direction
02H	Alternate Function
03H	Output Control (Open-Drain)
04H	High Drive Enable
05H	Stop Mode Recovery Source Enable
06H	Pull-up Enable
07H	Alternate Function Set 1

PADDR[7:0] Port Control sub-register accessible using the Port A–D Control Registers

08H Alternate Function Set 2

09H–FFH No function

Port A–D Control Registers

The Port A–D Control registers set the GPIO port operation. The value in the corresponding Port A–D Address register determines which sub-register is read from or written to by a Port A–D Control register transaction (Table 19).

Table 19. Port A–D Control Registers (PxCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	PCTL							
RESET	00H							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FD1H, FD5H, FD9H, FDDH							

PCTL[7:0]—Port Control

The Port Control register provides access to all sub-registers that configure the GPIO Port operation.

Port A–D Data Direction Sub-Registers

The Port A–D Data Direction sub-register is accessed through the Port A–D Control register by writing 01H to the Port A–D Address register (Table 20).

Table 20. Port A–D Data Direction Sub-Registers (PxDD)

BITS	7	6	5	4	3	2	1	0
FIELD	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	If 01H in Port A–D Address Register, accessible through the Port A–D Control Register							

DD[7:0]—Data Direction

These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction register setting.

0 = Output. Data in the Port A–D Output Data register is driven onto the port pin.

1 = Input. The port pin is sampled and the value written into the Port A–D Input Data register. The output driver is tristated.

Port A–D Alternate Function Sub-Registers

The Port A–D Alternate Function sub-register (Table 21) is accessed through the Port A–D Control register by writing 02H to the Port A–D Address register. The Port A–D Alternate Function sub-registers enable the alternate function selection on pins. If disabled, pins functions as GPIO. If enabled, select one of four alternate functions using alternate function set subregisters 1 and 2 as described in the [Port A–D Alternate Function Set 1 Sub-Registers on page 47](#) and [Port A–D Alternate Function Set 2 Sub-Registers on page 48](#). See [GPIO Alternate Functions on page 35](#) to determine the alternate function associated with each port pin.

Caution: Do not enable alternate functions for GPIO port pins for which there is no associated alternate function. Failure to follow this guideline results in unpredictable operation.

Table 21. Port A–D Alternate Function Sub-Registers (PxAF)

BITS	7	6	5	4	3	2	1	0
FIELD	AF7	AF6	AF5	AF4	AF3	AF2	AF1	AF0
RESET	00H (Ports A–C); 01H (Port D); 04H (Port A of 8-pin device)							
R/W	R/W							
ADDR	If 02H in Port A–D Address Register, accessible through the Port A–D Control Register							

AF[7:0]—Port Alternate Function enabled

0 = The port pin is in NORMAL mode and the DD_X bit in the Port A–D Data Direction sub-register determines the direction of the pin.

1 = The alternate function selected through Alternate Function Set sub-registers is enabled. Port pin operation is controlled by the alternate function.

Port A–D Output Control Sub-Registers

The Port A–D Output Control sub-register (Table 22) is accessed through the Port A–D Control register by writing 03H to the Port A–D Address register. Setting the bits in the Port A–D Output Control sub-registers to 1 configures the specified port pins for Open-drain operation. These sub-registers affect the pins directly and as a result, alternate functions are also affected.

Table 22. Port A–D Output Control Sub-Registers (PxOC)

BITS	7	6	5	4	3	2	1	0
FIELD	POC7	POC6	POC5	POC4	POC3	POC2	POC1	POC0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	If 03H in Port A–D Address Register, accessible through the Port A–D Control Register							

POC[7:0]—Port Output Control

These bits function independently of the alternate function bit and always disable the drains if set to 1.

0 = The drains are enabled for any output mode (unless overridden by the alternate function).

1 = The drain of the associated pin is disabled (OPEN-DRAIN mode).

Port A–D High Drive Enable Sub-Registers

The Port A–D High Drive Enable sub-register (Table 23) is accessed through the Port A–D Control register by writing 04H to the Port A–D Address register. Setting the bits in the Port A–D High Drive Enable sub-registers to 1 configures the specified port pins for high current output drive operation. The Port A–D High Drive Enable sub-register affects the pins directly and as a result, alternate functions are also affected.

Table 23. Port A–D High Drive Enable Sub-Registers (PxHDE)

BITS	7	6	5	4	3	2	1	0
FIELD	PHDE7	PHDE6	PHDE5	PHDE4	PHDE3	PHDE2	PHDE1	PHDE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	If 04H in Port A–D Address Register, accessible through the Port A–D Control Register							

PHDE[7:0]—Port High Drive Enabled

0 = The port pin is configured for standard output current drive.

1 = The port pin is configured for high output current drive.

Port A–D Stop Mode Recovery Source Enable Sub-Registers

The Port A–D Stop Mode Recovery Source Enable sub-register (Table 24) is accessed through the Port A–D Control register by writing 05H to the Port A–D Address register. Setting the bits in the Port A–D Stop Mode Recovery Source Enable sub-registers to 1 configures the specified port pins as a Stop Mode Recovery source. During STOP mode, any logic transition on a port pin enabled as a Stop Mode Recovery source initiates Stop Mode Recovery.

Table 24. Port A–D Stop Mode Recovery Source Enable Sub-Registers (PxSMRE)

BITS	7	6	5	4	3	2	1	0
FIELD	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMRE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	If 05H in Port A–D Address Register, accessible through the Port A–D Control Register							

PSMRE[7:0]—Port Stop Mode Recovery Source Enabled

0 = The port pin is not configured as a Stop Mode Recovery source. Transitions on this pin during STOP mode do not initiate Stop Mode Recovery.

1 = The port pin is configured as a Stop Mode Recovery source. Any logic transition on this pin during STOP mode initiates Stop Mode Recovery.

Port A–D Pull-up Enable Sub-Registers

The Port A–D Pull-up Enable sub-register ([Table 25](#)) is accessed through the Port A–D Control register by writing 06H to the Port A–D Address register. Setting the bits in the Port A–D Pull-up Enable sub-registers enables a weak internal resistive pull-up on the specified port pins.

Table 25. Port A–D Pull-Up Enable Sub-Registers (PxPUE)

BITS	7	6	5	4	3	2	1	0
FIELD	PPUE7	PPUE6	PPUE5	PPUE4	PPUE3	PPUE2	PPUE1	PPUE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	If 06H in Port A–D Address Register, accessible through the Port A–D Control register							

PPUE[7:0]—Port Pull-up Enabled

0 = The weak pull-up on the Port pin is disabled.

1 = The weak pull-up on the Port pin is enabled.

Port A–D Alternate Function Set 1 Sub-Registers

The Port A–D Alternate Function Set1 sub-register ([Table 26](#)) is accessed through the Port A–D Control register by writing 07H to the Port A–D Address register. The Alternate Function Set 1 sub-registers selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register are defined in [GPIO Alternate Functions on page 35](#).

► **Note:** Alternate function selection on port pins must also be enabled as described in [Port A–D Alternate Function Sub-Registers on page 45](#).

Table 26. Port A–D Alternate Function Set 1 Sub-Registers (PxAFS1)

BITS	7	6	5	4	3	2	1	0
FIELD	PAFS17	PAFS16	PAFS15	PAFS14	PAFS13	PAFS12	PAFS11	PAFS10
RESET	00H (all ports of 20- and 28-pin devices); 04H (Port A of 8-pin device)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	If 07H in Port A–D Address Register, accessible through the Port A–D Control Register							

PAFS1[7:0]—Port Alternate Function Set 1

0 = Port Alternate Function selected as defined in [Table 14](#) in the [GPIO Alternate Functions](#) section.1 = Port Alternate Function selected as defined in [Table 14](#) in the [GPIO Alternate Functions](#) section.**Port A–D Alternate Function Set 2 Sub-Registers**

The Port A–D Alternate Function Set 2 sub-register ([Table 27](#)) is accessed through the Port A–D Control register by writing 08H to the Port A–D Address register. The Alternate Function Set 2 sub-registers selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register is defined in [Table 14](#) in the section [GPIO Alternate Functions on page 35](#).

► **Note:** Alternate function selection on port pins must also be enabled as described in [Port A–D Alternate Function Sub-Registers on page 45](#).

Table 27. Port A–D Alternate Function Set 2 Sub-Registers (PxAFS2)

BITS	7	6	5	4	3	2	1	0
FIELD	PAFS27	PAFS26	PAFS25	PAFS24	PAFS23	PAFS22	PAFS21	PAFS20
RESET	000H (all ports of 20- and 28-pin devices); 04H (Port A of 8-pin device)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	If 08H in Port A–D Address Register, accessible through the Port A–D Control Register							

PAFS2[7:0]—Port Alternate Function Set 2

0 = Port Alternate Function selected as defined in [Table 14 GPIO Alternate Functions](#) section.1 = Port Alternate Function selected as defined in [Table 14 GPIO Alternate Functions](#) section.

Port A–C Input Data Registers

Reading from the Port A–C Input Data registers (Table 28) returns the sampled values from the corresponding port pins. The Port A–C Input Data registers are read-only. The value returned for any unused ports is 0. Unused ports include those missing on the 8- and 28-pin packages, as well as those missing on the ADC-enabled, 28-pin packages.

Table 28. Port A–C Input Data Registers (PxIN)

BITS	7	6	5	4	3	2	1	0
FIELD	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0
RESET	X	X	X	X	X	X	X	X
R/W	R	R	R	R	R	R	R	R
ADDR	FD2H, FD6H, FDAH							

PIN[7:0]—Port Input Data

Sampled data from the corresponding port pin input.

0 = Input data is logical 0 (Low).

1 = Input data is logical 1 (High).

Port A–D Output Data Register

The Port A–D Output Data register (Table 29) controls the output data to the pins.

Table 29. Port A–D Output Data Register (PxOUT)

BITS	7	6	5	4	3	2	1	0
FIELD	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FD3H, FD7H, FDBH, FDFH							

POUT[7:0]—Port Output Data

These bits contain the data to be driven to the port pins. The values are only driven if the corresponding pin is configured as an output and the pin is not configured for Alternate Function operation.

0 = Drive a logical 0 (Low).

1 = Drive a logical 1 (High). High value is not driven if the drain has been disabled by setting the corresponding Port Output Control register bit to 1.

LED Drive Enable Register

The LED Drive Enable register (Table 30) activates the controlled current drive. The Port C pin must first be enabled by setting the Alternate Function register to select the LED function.

Table 30. LED Drive Enable (LEDEN)

BITS	7	6	5	4	3	2	1	0
FIELD	LEDEN[7:0]							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F82H							

LEDEN[7:0]—LED Drive Enable

These bits determine which Port C pins are connected to an internal current sink.

0 = Tristate the Port C pin.

1 = Connect controlled current sink to the Port C pin.

LED Drive Level High Register

The LED Drive Level registers contain two control bits for each Port C pin (Table 31). These two bits select between four programmable drive levels. Each pin is individually programmable.

Table 31. LED Drive Level High Register (LEDLVLH)

BITS	7	6	5	4	3	2	1	0
FIELD	LEDLVLH[7:0]							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F83H							

LEDLVLH[7:0]—LED Level High bit

{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.

00 = 3 mA

01 = 7 mA

10 = 13 mA

11 = 20 mA

LED Drive Level Low Register

The LED Drive Level registers contain two control bits for each Port C pin (Table 32). These two bits select between four programmable drive levels. Each pin is individually programmable.

Table 32. LED Drive Level Low Register (LEDLVLL)

BITS	7	6	5	4	3	2	1	0
FIELD	LEDLVLL[7:0]							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F84H							

LEDLVLH[7:0]—LED Level High

{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.

00 = 3 mA

01 = 7 mA

10 = 13 mA

11 = 20 mA

Interrupt Controller

The interrupt controller on the Z8 Encore! XP® 8K Series products prioritizes the interrupt requests from the on-chip peripherals and the GPIO port pins. The features of the interrupt controller include the following:

- Twenty unique interrupt vectors:
 - Fourteen GPIO port pin interrupt sources (two are shared).
 - Ten on-chip peripheral interrupt sources (two are shared).
- Flexible GPIO interrupts:
 - Eight selectable rising and falling edge GPIO interrupts.
 - Four dual-edge interrupts.
- Three levels of individually programmable interrupt priority.
- Watchdog Timer (WDT) and low-voltage detect (LVD) are configured to generate an interrupt.

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly manner and force the CPU to start an interrupt service routine (ISR). Usually this ISR is involved with the exchange of data, status information, or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts, the interrupt controller has no effect on operation. For more information on interrupt servicing by the eZ8 CPU, refer to the *eZ8 CPU User Manual (UM0128)* available for download at www.zilog.com.

Interrupt Vector Listing

Table 33 lists all the interrupts available in order of priority. The interrupt vector is stored with the most significant byte (MSB) at the even Program Memory address and the least significant byte (LSB) at the following odd Program Memory address.

► **Note:** Some port interrupts are not available on the 8-pin and 20-pin packages. The ADC interrupt is unavailable on devices not containing an ADC.

Table 33. Trap and Interrupt Vectors in Order of Priority

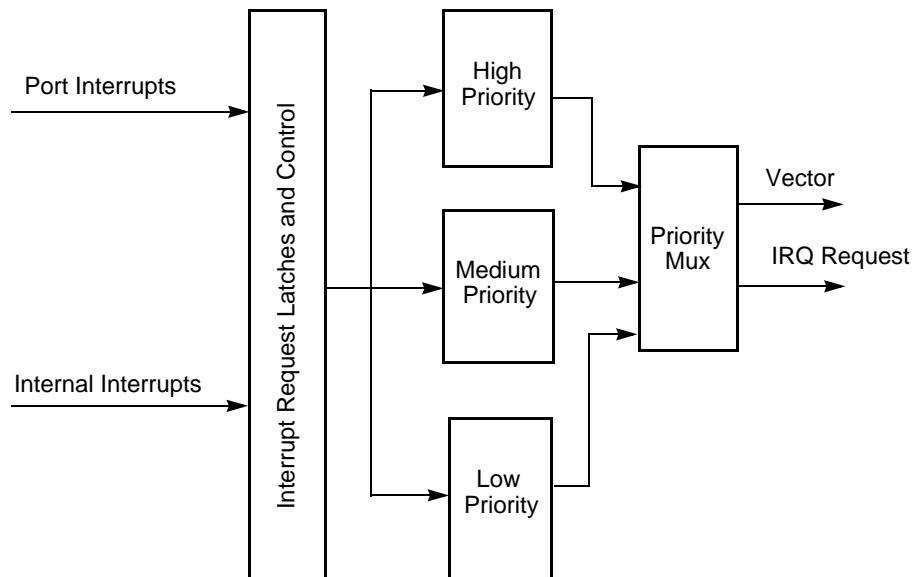

Interrupt Priority	Program Memory Vector Address	Interrupt or Trap Source
Highest	0002H	Reset (not an interrupt)
	0004H	Watchdog Timer (see Watchdog Timer chapter)
	003AH	Primary Oscillator Fail Trap (not an interrupt)
	003CH	Watchdog Oscillator Fail Trap (not an interrupt)
	0006H	Illegal Instruction Trap (not an interrupt)
	0008H	Reserved
	000AH	Timer 1
	000CH	Timer 0
	000EH	UART 0 receiver
	0010H	UART 0 transmitter
	0012H	Reserved
	0014H	Reserved
	0016H	ADC
	0018H	Port A7, selectable rising or falling input edge or LVD (see Reset, Stop Mode Recovery and Low-Voltage Detection on page 21)
	001AH	Port A6, selectable rising or falling input edge or Comparator Output
	001CH	Port A5, selectable rising or falling input edge
	001EH	Port A4, selectable rising or falling input edge
	0020H	Port A3 or Port D3, selectable rising or falling input edge
	0022H	Port A2 or Port D2, selectable rising or falling input edge
	0024H	Port A1, selectable rising or falling input edge
	0026H	Port A0, selectable rising or falling input edge
	0028H	Reserved
	002AH	Reserved
	002CH	Reserved
	002EH	Reserved
	0030H	Port C3, both input edges

Table 33. Trap and Interrupt Vectors in Order of Priority (Continued)

Interrupt Priority	Program Memory Vector Address	Interrupt or Trap Source
	0032H	Port C2, both input edges
	0034H	Port C1, both input edges
Lowest	0036H	Port C0, both input edges
	0038H	Reserved

Architecture

Figure 8 illustrates the interrupt controller block diagram.

Figure 8. Interrupt Controller Block Diagram

Operation

The following section describes the function of interrupt controller.

Master Interrupt Enable

The master interrupt enable bit (IRQE) in the Interrupt Control register globally enables and disables interrupts.

Interrupts are globally enabled by any of the following actions:

- Execution of an Enable Interrupt (EI) instruction.
- Execution of an Return from Interrupt (IRET) instruction.
- Writing a 1 to the IRQE bit in the Interrupt Control register.

Interrupts are globally disabled by any of the following actions:

- Execution of a Disable Interrupt (DI) instruction.
- eZ8 CPU acknowledgement of an interrupt service request from the interrupt controller.
- Writing a 0 to the IRQE bit in the Interrupt Control register.
- Reset.
- Execution of a Trap instruction.
- Illegal instruction Trap.
- Primary Oscillator Fail Trap.
- Watchdog Oscillator Fail Trap.

Interrupt Vectors and Priority

The interrupt controller supports three levels of interrupt priority. Level 3 is the highest priority, Level 2 is the second highest priority, and Level 1 is the lowest priority. If all of the interrupts are enabled with identical interrupt priority (for example, all interrupts as Level 2 interrupts), the interrupt priority is assigned from highest to lowest as specified in [Table 33 on page 53](#). Level 3 interrupts are always assigned higher priority than Level 2 interrupts which, in turn, always are assigned higher priority than Level 1 interrupts. Within each interrupt priority level (Level 1, Level 2, or Level 3), priority is assigned as specified in [Table 33 on page 53](#). Reset, Watchdog Timer interrupt (if enabled), Primary Oscillator Fail Trap, Watchdog Oscillator Fail Trap, and Illegal Instruction Trap always have highest (Level 3) priority.

Interrupt Assertion

Interrupt sources assert their interrupt requests for only a single system clock period (single pulse). When the interrupt request is acknowledged by the eZ8 CPU, the corresponding bit in the Interrupt Request register is cleared until the next interrupt occurs. Writing a 0 to the corresponding bit in the Interrupt Request register clears the interrupt request.

Caution: The following coding style that clears bits in the Interrupt Request registers is not recommended. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost.

```
LDX r0, IRQ0
AND r0, MASK
LDX IRQ0, r0
```


Caution: To avoid missing interrupts, use the following coding style to clear bits in the Interrupt Request 0 register:

```
ANDX IRQ0, MASK
```

Software Interrupt Assertion

Program code generates interrupts directly. Writing 1 to the correct bit in the Interrupt Request register triggers an interrupt (assuming that interrupt is enabled). When the interrupt request is acknowledged by the eZ8 CPU, the bit in the Interrupt Request register is automatically cleared to 0.

Caution: The following coding style used to generate software interrupts by setting bits in the Interrupt Request registers is not recommended. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost.

```
LDX r0, IRQ0
OR r0, MASK
LDX IRQ0, r0
```


Caution: To avoid missing interrupts, use the following coding style to set bits in the Interrupt Request registers:

```
ORX IRQ0, MASK
```

Interrupt Control Register Definitions

For all interrupts other than the Watchdog Timer interrupt, the Primary Oscillator Fail Trap, and the Watchdog Oscillator Fail Trap, the Interrupt Control registers enable individual interrupts, set interrupt priorities, and indicate interrupt requests.

Interrupt Request 0 Register

The Interrupt Request 0 (IRQ0) register (Table 34) stores the interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the Interrupt Request 0 register to determine if any interrupt requests are pending.

Table 34. Interrupt Request 0 Register (IRQ0)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	T1I	T0I	U0RXI	U0TXI	Reserved	Reserved	ADCI
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC0H							

Reserved—Must be 0.

T1I—Timer1 Interrupt Request

0 = No interrupt request is pending for Timer1.

1 = An interrupt request from Timer1 is awaiting service.

T0I—Timer0 Interrupt Request

0 = No interrupt request is pending for Timer0.

1 = An interrupt request from Timer 0 is awaiting service.

U0RXI—UART0 Receiver Interrupt Request

0 = No interrupt request is pending for the UART0 receiver.

1 = An interrupt request from the UART 0 receiver is awaiting service.

U0TXI—UART0 Transmitter Interrupt Request

0 = No interrupt request is pending for the UART0 transmitter.

1 = An interrupt request from the UART 0 transmitter is awaiting service.

ADCI—ADC Interrupt Request

0 = No interrupt request is pending for the ADC.

1 = An interrupt request from the ADC is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) register (Table 35) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the Interrupt Request 1 register to determine if any interrupt requests are pending.

Table 35. Interrupt Request 1 Register (IRQ1)

BITS	7	6	5	4	3	2	1	0
FIELD	PA7VI	PA6CI	PA5I	PA4I	PA3I	PA2I	PA1I	PA0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC3H							

PA7VI—PA7 or LVD Interrupt Request

0 = No interrupt request is pending for GPIO Port A or LVD.

1 = An interrupt request from GPIO Port A or LVD.

PA6CI—PA6 or Comparator Interrupt Request

0 = No interrupt request is pending for GPIO Port A or Comparator.

1 = An interrupt request from GPIO Port A or Comparator.

PAxI—Port A pin *x* Interrupt Request

0 = No interrupt request is pending for GPIO Port A pin *x*.

1 = An interrupt request from GPIO Port A pin *x* is awaiting service.

where *x* indicates the specific GPIO Port pin number (0–5).

Interrupt Request 2 Register

The Interrupt Request 2 (IRQ2) register (Table 36) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ2 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the Interrupt Request 2 register to determine if any interrupt requests are pending.

Table 36. Interrupt Request 2 Register (IRQ2)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved				PC3I	PC2I	PC1I	PC0I
RESET	0	0	0	0	0	0	0	0

Table 36. Interrupt Request 2 Register (IRQ2)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC6H							

Reserved—Must be 0.

PCxI—Port C pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port C pin x .

1 = An interrupt request from GPIO Port C pin x is awaiting service.

where x indicates the specific GPIO Port C pin number (0–3).

IRQ0 Enable High and Low Bit Registers

[Table 37](#) describes the priority control for IRQ0. The IRQ0 Enable High and Low Bit registers ([Tables 38 and 39](#)) form a priority encoded enabling for interrupts in the Interrupt Request 0 register. Priority is generated by setting bits in each register.

Table 37. IRQ0 Enable and Priority Encoding

IRQ0ENH[x]	IRQ0ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Note: x indicates the register bits from 0–7.

Table 38. IRQ0 Enable High Bit Register (IRQ0ENH)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	T1ENH	T0ENH	U0RENH	U0TENH	Reserved	Reserved	ADCENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC1H							

Reserved—Must be 0.

T1ENH—Timer1 Interrupt Request Enable High bit

T0ENH—Timer0 Interrupt Request Enable High bit

U0RENH—UART0 Receive Interrupt Request Enable High bit

U0TENH—UART0 Transmit Interrupt Request Enable High bit
ADCENH—ADC Interrupt Request Enable High bit

Table 39. IRQ0 Enable Low Bit Register (IRQ0ENL)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	T1ENL	T0ENL	U0RENL	U0TENL	Reserved	Reserved	ADCENL
RESET	0	0	0	0	0	0	0	0
R/W	R	R/W	R/W	R/W	R/W	R	R	R/W
ADDR	FC2H							

Reserved—Must be 0.

T1ENL—Timer 1 Interrupt Request Enable Low bit
T0ENL—Timer 0 Interrupt Request Enable Low bit
U0RENL—UART 0 Receive Interrupt Request Enable Low bit
U0TENL—UART 0 Transmit Interrupt Request Enable Low bit
ADCENL—ADC Interrupt Request Enable Low bit

IRQ1 Enable High and Low Bit Registers

Table 40 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit registers (**Tables 41 and 42**) form a priority encoded enabling for interrupts in the Interrupt Request 1 register. Priority is generated by setting bits in each register.

Table 40. IRQ1 Enable and Priority Encoding

IRQ1ENH[x]	IRQ1ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Note: x indicates the register bits from 0–7.

Table 41. IRQ1 Enable High Bit Register (IRQ1ENH)

BITS	7	6	5	4	3	2	1	0
FIELD	PA7VENH	PA6CENH	PA5ENH	PA4ENH	PA3ENH	PA2ENH	PA1ENH	PA0ENH
RESET	0	0	0	0	0	0	0	0

Table 41. IRQ1 Enable High Bit Register (IRQ1ENH)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC4H							

PA7VENH — Port A Bit [7] or LVD Interrupt Request Enable High bit
 PA6CENH—Port A Bit[6] or Comparator Interrupt Request Enable High Bit
 PAxENH—Port A Bit[x] Interrupt Request Enable High Bit

See the Shared Interrupt Select register for selection of either Port A or Port D as the interrupt source.

Table 42. IRQ1 Enable Low Bit Register (IRQ1ENL)

BITS	7	6	5	4	3	2	1	0
FIELD	PA7VENL	PA6CENL	PA5ENL	PA4ENL	PA3ENL	PA2ENL	PA1ENL	PA0ENL
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC5H							

PA7VENL— Port A Bit [7] or LVD Interrupt Request Enable Low bit
 PA6CENL—Port A Bit[6] or Comparator Interrupt Request Enable Low bit
 PAxENL—Port A Bit[x] Interrupt Request Enable Low bit

IRQ2 Enable High and Low Bit Registers

Table 43 describes the priority control for IRQ2. The IRQ2 Enable High and Low Bit registers (Tables 44 and 45) form a priority encoded enabling for interrupts in the Interrupt Request 2 register. Priority is generated by setting bits in each register.

Table 43. IRQ2 Enable and Priority Encoding

IRQ2ENH[x]	IRQ2ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Note: x indicates the register bits from 0–7.

Table 44. IRQ2 Enable High Bit Register (IRQ2ENH)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved				C3ENH	C2ENH	C1ENH	C0ENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC7H							

Reserved—Must be 0.

C3ENH—PC3 Interrupt Request Enable High bit

C2ENH—PC2 Interrupt Request Enable High bit

C1ENH—PC1 Interrupt Request Enable High bit

C0ENH—PC0 Interrupt Request Enable High bit

Table 45. IRQ2 Enable Low Bit Register (IRQ2ENL)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved				C3ENL	C2ENL	C1ENL	C0ENL
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC8H							

Reserved—Must be 0.

C3ENL—PC3 Interrupt Request Enable Low bit

C2ENL—PC2 Interrupt Request Enable Low bit

C1ENL—PC1 Interrupt Request Enable Low bit

C0ENL—PC0 Interrupt Request Enable Low bit

Interrupt Edge Select Register

The Interrupt Edge Select (IRQES) register (Table 46) determines whether an interrupt is generated for the rising edge or falling edge on the selected GPIO Port A or Port D input pin.

Table 46. Interrupt Edge Select Register (IRQES)

BITS	7	6	5	4	3	2	1	0
FIELD	IES7	IES6	IES5	IES4	IES3	IES2	IES1	IES0
RESET	0	0	0	0	0	0	0	0

Table 46. Interrupt Edge Select Register (IRQES)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FCDH							

IES_x—Interrupt Edge Select _x0 = An interrupt request is generated on the falling edge of the PA_x input or PD_x.1 = An interrupt request is generated on the rising edge of the PA_x input PD_x.
where _x indicates the specific GPIO Port pin number (0 through 7).

Shared Interrupt Select Register

The Shared Interrupt Select (IRQSS) register (Table 47) determines the source of the PAD_xS interrupts. The Shared Interrupt Select register (Table 47) selects between Port A and alternate sources for the individual interrupts.

Because these shared interrupts are edge-triggered, it is possible to generate an interrupt just by switching from one shared source to another. For this reason, an interrupt must be disabled before switching between sources.

Table 47. Shared Interrupt Select Register (IRQSS)

BITS	7	6	5	4	3	2	1	0
FIELD	PA7VS	PA6CS	Reserved					
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FCEH							

PA7VS – PA7/LVD Selection

0 = PA7 is used for the interrupt for PA7VS interrupt request.

1 = The LVD is used for the interrupt for PA7VS interrupt request.

PA6CS—PA6/Comparator Selection

0 = PA6 is used for the interrupt for PA6CS interrupt request.

1 = The Comparator is used for the interrupt for PA6CS interrupt request.

Reserved—Must be 0.

Interrupt Control Register

The Interrupt Control (IRQCTL) register (Table 48) contains the master enable bit for all interrupts.

Table 48. Interrupt Control Register (IRQCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	IRQE	Reserved						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R	R	R	R	R	R	R
ADDR	FCFH							

IRQE—Interrupt Request Enable

This bit is set to 1 by executing an EI (Enable Interrupts) or IRET (Interrupt Return) instruction, or by a direct register write of a 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8 CPU acknowledgement of an interrupt request, Reset or by a direct register write of 0 to this bit.

0 = Interrupts are disabled.

1 = Interrupts are enabled.

Reserved—Must be 0.

Timers

These Z8 Encore! XP® F08xA Series products contain up to two 16-bit reloadable timers that are used for timing, event counting, or generation of pulse-width modulated (PWM) signals. The timer features include:

- 16-bit reload counter.
- Programmable prescaler with prescale values ranging from 1 to 128.
- PWM output generation.
- Capture and Compare capability.
- External input pin for timer input, clock gating, or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency.
- Timer output pin.
- Timer interrupt.

In addition to the timers described in this chapter, the baud rate generator (BRG) of the UART (if unused) can also provide basic timing functionality. See [Universal Asynchronous Receiver/Transmitter on page 92](#) for information on using the BRG as an additional timer.

Architecture

[Figure 9](#) illustrates the architecture of the timers.

Figure 9. Timer Block Diagram

Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the timer reaches FFFFH, the timer rolls over to 0000H and continues counting.

Timer Operating Modes

The timers are configured to operate in the following modes:

ONE-SHOT Mode

In ONE-SHOT mode, the timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. On reaching the Reload value, the timer generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H. The timer is automatically disabled and stops counting.

Also, if the Timer Output Alternate function is enabled, the timer output pin changes state for one system clock cycle (from Low to High or from High to Low) on timer Reload. If it

is appropriate to have the timer output make a state change at a One-Shot time-out (rather than a single cycle pulse), first set the TPOL bit in the Timer Control register to the start value before enabling ONE-SHOT mode. After starting the timer, set TPOL to the opposite bit value.

The steps to configure a timer for ONE-SHOT mode and initiating the count are as follows:

1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for ONE-SHOT mode.
 - Set the prescale value.
 - Set the initial output level (High or Low) if using the Timer Output alternate function.
2. Write to the Timer High and Low Byte registers to set the starting count value.
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
6. Write to the Timer Control register to enable the timer and initiate counting.

In ONE-SHOT mode, the system clock always provides the timer input. The timer period is given by the following equation:

$$\text{ONE-SHOT Mode Time-Out Period (s)} = \frac{(\text{Reload Value} - \text{Start Value}) \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$$

CONTINUOUS Mode

In CONTINUOUS mode, the timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. When the timer count reaches the Reload value, it generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

The steps for configuring a timer for CONTINUOUS mode and initiating the count are as follows:

1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for CONTINUOUS mode.
 - Set the prescale value.

- If using the Timer Output alternate function, set the initial output level (High or Low).
- 2. Write to the Timer High and Low Byte registers to set the starting count value (usually 0001H). This action only affects the first pass in CONTINUOUS mode. After the first timer Reload in CONTINUOUS mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Enable the timer interrupt (if appropriate) and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin (if using the Timer Output function) for the Timer Output alternate function.
- 6. Write to the Timer Control register to enable the timer and initiate counting.

In CONTINUOUS mode, the system clock always provides the timer input. The timer period is given by the following equation:

$$\text{CONTINUOUS Mode Time-Out Period (s)} = \frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$$

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, use the ONE-SHOT mode equation to determine the first time-out period.

COUNTER Mode

In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO Port pin Timer Input alternate function. The TPOL bit in the Timer Control register determines whether the count occurs on the rising edge or the falling edge of the Timer Input signal. In COUNTER mode, the prescaler is disabled.

Caution: The input frequency of the Timer Input signal must not exceed one-fourth the system clock frequency.

On reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

The steps to configure a timer for COUNTER mode and initiating the count are as follows:

1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COUNTER mode.
 - Select either the rising edge or falling edge of the Timer Input signal for the count. This selection also sets the initial logic level (High or Low) for the Timer Output.

alternate function. However, the Timer Output function is not required to be enabled.

2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER mode. After the first timer Reload in COUNTER mode, counting always begins at the reset value of 0001H. In COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
5. Configure the associated GPIO port pin for the Timer Input alternate function.
6. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
7. Write to the Timer Control register to enable the timer.

In COUNTER mode, the number of Timer Input transitions since the timer start is given by the following equation:

COUNTER Mode Timer Input Transitions = Current Count Value – Start Value

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER mode, the timer counts input transitions from the analog comparator output. The TPOL bit in the Timer Control register selects whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPARATOR COUNTER mode, the prescaler is disabled.

Caution: The frequency of the comparator output signal must not exceed one-fourth the system clock frequency.

After reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Steps to configure a timer for COMPARATOR COUNTER mode and initiating the count are as follows:

1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COMPARATOR COUNTER mode.
 - Select either the rising edge or falling edge of the comparator output signal for the count. This also sets the initial logic level (High or Low) for the Timer Output

Alternate function. However, the Timer Output function is not required to be enabled.

2. Write to the Timer High and Low Byte registers to set the starting count value. This action only affects the first pass in COMPARATOR COUNTER mode. After the first timer Reload in COMPARATOR COUNTER mode, counting always begins at the reset value of 0001H. Generally, in COMPARATOR COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
6. Write to the Timer Control register to enable the timer.

In COMPARATOR COUNTER mode, the number of comparator output transitions since the timer start is given by the following equation:

$$\text{Comparator Output Transitions} = \text{Current Count Value} - \text{Start Value}$$

PWM SINGLE OUTPUT Mode

In PWM SINGLE OUTPUT mode, the timer outputs a PWM output signal through a GPIO port pin. The timer input is the system clock. The timer first counts up to the 16-bit PWM match value stored in the Timer PWM High Byte and Low Byte registers. When the timer count value matches the PWM value, the Timer Output toggles. The timer continues counting until it reaches the Reload value stored in the Timer Reload High and Low Byte registers. On reaching the Reload value, the timer generates an interrupt, and the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

If the TPOL bit in the Timer Control register is set to 1, the Timer Output signal begins as a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The Timer Output signal returns to a High (1) after the timer reaches the Reload value and is reset to 0001H.

If the TPOL bit in the Timer Control register is set to 0, the Timer Output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is reset to 0001H.

The steps to configure a timer for PWM SINGLE OUTPUT mode and initiating the PWM operation are as follows:

1. Write to the Timer Control register to:
 - Disable the timer.

- Configure the timer for PWM mode.
- Set the prescale value.
- Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function.

2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset in PWM mode, counting always begins at the reset value of 0001H.
3. Write to the PWM High and Low Byte registers to set the PWM value.
4. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM period). The Reload value must be greater than the PWM value.
5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
6. Configure the associated GPIO port pin for the Timer Output alternate function.
7. Write to the Timer Control register to enable the timer and initiate counting.

The PWM period is represented by the following equation:

$$\text{PWM Period (s)} = \frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$$

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, use the ONE-SHOT mode equation to determine the first PWM time-out period.

If TPOL bit is set to 0, the ratio of the PWM output High time to the total period is represented by:

$$\text{PWM Output High Time Ratio (\%)} = \frac{\text{Reload Value} - \text{PWM Value}}{\text{Reload Value}} \times 100$$

If TPOL bit is set to 1, the ratio of the PWM output High time to the total period is represented by:

$$\text{PWM Output High Time Ratio (\%)} = \frac{\text{PWM Value}}{\text{Reload Value}} \times 100$$

PWM DUAL OUTPUT Mode

In PWM DUAL OUTPUT mode, the timer outputs a PWM output signal pair (basic PWM signal and its complement) through two GPIO port pins. The timer input is the system clock. The timer first counts up to the 16-bit PWM match value stored in the Timer PWM High and Low Byte registers. When the timer count value matches the PWM value, the timer output toggles. The timer continues counting until it reaches the Reload value stored

in the Timer Reload High and Low Byte registers. On reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

If the TPOL bit in the Timer Control register is set to 1, the Timer Output signal begins as a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The Timer Output signal returns to a High (1) after the timer reaches the Reload value and is reset to 0001H.

If the TPOL bit in the Timer Control register is set to 0, the Timer Output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is reset to 0001H.

The timer also generates a second PWM output signal, Timer Output Complement. The Timer Output Complement is the complement of the Timer Output PWM signal. A programmable deadband delay can be configured to time delay (0 to 128 system clock cycles) PWM output transitions on these two pins from a Low to a High (inactive to active). This ensures a time gap between the deassertion of one PWM output to the assertion of its complement.

The steps to configure a timer for PWM DUAL OUTPUT mode and initiating the PWM operation are as follows:

1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for PWM DUAL OUTPUT mode. Setting the timer in this mode also involves writing to TMODEHI bit in TxCTL1 register.
 - Set the prescale value.
 - Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function.
2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset in PWM mode, counting always begins at the reset value of 0001H.
3. Write to the PWM High and Low Byte registers to set the PWM value.
4. Write to the PWM Control register to set the PWM deadband delay value. The deadband delay must be less than the duration of the positive phase of the PWM signal (as defined by the PWM High and Low Byte registers). It must also be less than the duration of the negative phase of the PWM signal (as defined by the difference between the PWM registers and the Timer Reload registers).
5. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM period). The Reload value must be greater than the PWM value.

6. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
7. Configure the associated GPIO port pin for the Timer Output and Timer Output Complement alternate functions. The Timer Output Complement function is shared with the Timer Input function for both timers. Setting the timer mode to Dual PWM automatically switches the function from Timer In to Timer Out Complement.
8. Write to the Timer Control register to enable the timer and initiate counting.

The PWM period is represented by the following equation:

$$\text{PWM Period (s)} = \frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$$

If an initial starting value other than 0001H is loaded into the Timer High Byte and Timer Low Byte registers, the ONE-SHOT mode equation determines the first PWM time-out period.

If TPOL bit is set to 0, the ratio of the PWM output High time to the total period is represented by:

$$\text{PWM Output High Time Ratio (\%)} = \frac{\text{Reload Value} - \text{PWM Value}}{\text{Reload Value}} \times 100$$

If TPOL bit is set to 1, the ratio of the PWM output High time to the total period is represented by:

$$\text{PWM Output High Time Ratio (\%)} = \frac{\text{PWM Value}}{\text{Reload Value}} \times 100$$

CAPTURE Mode

In CAPTURE mode, the current timer count value is recorded when the appropriate external Timer Input transition occurs. The Capture count value is written to the Timer PWM High Byte and Timer PWM Low Byte registers. The timer input is the system clock. The TPOL bit in the Timer Control register determines if the Capture occurs on a rising edge or a falling edge of the Timer Input signal. When the Capture event occurs, an interrupt is generated and the timer continues counting. The INPCAP bit in TxCTL1 register is set to indicate the timer interrupt is resulted by an input capture event.

The timer continues counting up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. On reaching the Reload value, the timer generates an interrupt and continues counting. The INPCAP bit in TxCTL1 register clears indicating that the timer interrupt is not because of an input capture event.

The steps to configure a timer for CAPTURE mode and initiating the count are as follows:

1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for CAPTURE mode.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
4. Clear the Timer PWM High and Low Byte registers to 0000H. Clearing these registers allows the user software to determine if interrupts were generated by either a Capture event or a reload. If the PWM High and Low Byte registers still contain the value 0000H after the interrupt, the interrupt was generated by a Reload.
5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL1 register.
6. Configure the associated GPIO port pin for the Timer Input Alternate function.
7. Write to the Timer Control register to enable the timer and initiate counting.

In CAPTURE mode, the elapsed time from timer start to Capture event is calculated using the following equation:

$$\text{Capture Elapsed Time (s)} = \frac{(\text{Capture Value} - \text{Start Value}) \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$$

CAPTURE RESTART Mode

In CAPTURE RESTART mode, the current timer count value is recorded when the acceptable external Timer Input transition occurs. The Capture count value is written to the Timer PWM High and Low Byte registers. The timer input is the system clock. The TPOL bit in the Timer Control register determines if the Capture occurs on a rising edge or a falling edge of the Timer Input signal. When the Capture event occurs, an interrupt is generated and the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is set to indicate the timer interrupt results from an input capture event.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High Byte and Timer Reload Low Byte registers. On reaching the Reload value, the timer generates an interrupt, the count value in the Timer High Byte and Timer Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is cleared to indicate the timer interrupt is not caused by an input capture event.

The steps for configuring a timer for CAPTURE RESTART mode and initiating the count are as follows:

1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for CAPTURE RESTART mode. Setting the mode also involves writing to TMODEHI bit in TxCTL1 register.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows the user software to determine if interrupts were generated by either a Capture event or a Reload. If the PWM High and Low Byte registers still contain the value 0000H after the interrupt, the interrupt was generated by a Reload.
5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input Capture and Reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL1 register.
6. Configure the associated GPIO port pin for the Timer Input alternate function.
7. Write to the Timer Control register to enable the timer and initiate counting.

In CAPTURE mode, the elapsed time from timer start to Capture event is calculated using the following equation:

$$\text{Capture Elapsed Time (s)} = \frac{(\text{Capture Value} - \text{Start Value}) \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$$

COMPARE Mode

In COMPARE mode, the timer counts up to the 16-bit maximum Compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. On reaching the Compare value, the timer generates an interrupt and continues counting (the timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) On Compare.

If the Timer reaches FFFFH, the timer takes value 0000H and continues counting.

Steps for configuring a timer for COMPARE mode and initiating the count are as follows:

1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COMPARE mode.
 - Set the prescale value.
 - Set the initial logic level (High or Low) for the Timer Output alternate function, if appropriate.
2. Write to the Timer High and Low Byte registers to set the starting count value.
3. Write to the Timer Reload High and Low Byte registers to set the Compare value.
4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers.
5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
6. Write to the Timer Control register to enable the timer and initiate counting.

In COMPARE mode, the system clock always provides the timer input. The Compare time is calculated using the following equation:

$$\text{Compare Mode Time (s)} = \frac{(\text{Compare Value} - \text{Start Value}) \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$$

GATED Mode

In GATED mode, the timer counts only when the Timer Input signal is in its active state (asserted), as determined by the TPOL bit in the Timer Control register. When the Timer Input signal is asserted, counting begins. A timer interrupt is generated when the Timer Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal deassertion generated the interrupt, read the associated GPIO input value and compare to the value stored in the TPOL bit.

The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. When reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes (assuming the Timer Input signal remains asserted). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer reset.

Steps for configuring a timer for GATED mode and initiating the timer count are as follows:

1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for GATED mode.

- Set the prescale value.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. Writing these registers only affects the first pass in GATED mode. After the first timer reset in GATED mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input deassertion and reload events. If appropriate, configure the timer interrupt to be generated only at the input deassertion event or the reload event by setting TICONFIG field of the TxCTL1 register.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control register to enable the timer.
- 7. Assert the Timer Input signal to initiate the counting.

CAPTURE/COMPARE Mode

In CAPTURE/COMPARE mode, the timer begins counting on the first external Timer Input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL bit in the Timer Control register. The timer input is the system clock.

Every subsequent acceptable transition (after the first) of the Timer Input signal captures the current count value. The Capture value is written to the Timer PWM High and Low Byte registers. When the Capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H, and counting resumes. The INPCAP bit in TxCTL1 register is set to indicate the timer interrupt is caused by an input capture event.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. On reaching the Compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is cleared to indicate the timer interrupt is not because of an input capture event.

The steps for configuring a timer for CAPTURE/COMPARE mode and initiating the count are as follows:

1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for CAPTURE/COMPARE mode.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
2. Write to the Timer High and Low Byte registers to set the initial count value (typically 0001H).

3. Write to the Timer Reload High and Low Byte registers to set the Compare value.
4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt are generated for both input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL1 register.
5. Configure the associated GPIO port pin for the Timer Input alternate function.
6. Write to the Timer Control register to enable the timer.
7. Counting begins on the first appropriate transition of the Timer Input signal. No interrupt is generated by this first edge.

In CAPTURE/COMPARE mode, the elapsed time from timer start to Capture event is calculated using the following equation:

$$\text{Capture Elapsed Time (s)} = \frac{(\text{Capture Value} - \text{Start Value}) \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$$

Reading the Timer Count Values

The current count value in the timers is read while counting (enabled). This capability has no effect on timer operation. When the timer is enabled and the Timer High Byte register is read, the contents of the Timer Low Byte register are placed in a holding register. A subsequent read from the Timer Low Byte register returns the value in the holding register. This operation allows accurate reads of the full 16-bit timer count value while enabled. When the timers are not enabled, a read from the Timer Low Byte register returns the actual value in the counter.

Timer Pin Signal Operation

Timer Output is a GPIO port pin alternate function. The Timer Output is toggled every time the counter is reloaded.

The timer input is used as a selectable counting source. It shares the same pin as the complementary timer output. When selected by the GPIO Alternate Function registers, this pin functions as a timer input in all modes except for the PWM DUAL OUTPUT mode. For this mode, there is no timer input available.

Timer Control Register Definitions

The following section describes the Timer Control registers.

Timer 0–1 High and Low Byte Registers

The Timer 0–1 High and Low Byte (TxH and TxL) registers (Tables 49 and 50) contain the current 16-bit timer count value. When the timer is enabled, a read from TxH causes the value in TxL to be stored in a temporary holding register. A read from TxL always returns this temporary register when the timers are enabled. When the timer is disabled, reads from the TxL reads the register directly.

Writing to the Timer High and Low Byte registers while the timer is enabled is not recommended. There are no temporary holding registers available for write operations, so simultaneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are written during counting, the 8-bit written value is placed in the counter (High or Low Byte) at the next clock edge. The counter continues counting from the new value.

Table 49. Timer 0–1 High Byte Register (TxH)

BITS	7	6	5	4	3	2	1	0
FIELD	TH							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F00H, F08H							

Table 50. Timer 0–1 Low Byte Register (TxL)

BITS	7	6	5	4	3	2	1	0
FIELD	TL							
RESET	0	0	0	0	0	0	0	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F01H, F09H							

TH and TL—Timer High and Low Bytes

These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value.

Timer Reload High and Low Byte Registers

The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers (Tables 51 and 52) store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte register are stored in a temporary holding register. When a write to the Timer

Reload Low Byte register occurs, the temporary holding register value is written to the Timer High Byte register. This operation allows simultaneous updates of the 16-bit Timer Reload value.

In COMPARE mode, the Timer Reload High and Low Byte registers store the 16-bit Compare value.

Table 51. Timer 0–1 Reload High Byte Register (TxRH)

BITS	7	6	5	4	3	2	1	0
FIELD	TRH							
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F02H, F0AH							

Table 52. Timer 0–1 Reload Low Byte Register (TxRL)

BITS	7	6	5	4	3	2	1	0
FIELD	TRL							
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F03H, F0BH							

TRH and TRL—Timer Reload Register High and Timer Reload Register Low
These two bytes form the 16-bit Reload value, {TRH[7:0], TRL[7:0]}. This value sets the maximum count value which initiates a timer reload to 0001H. In COMPARE mode, these two bytes form the 16-bit Compare value.

Timer 0-1 PWM High and Low Byte Registers

The Timer 0-1 PWM High and Low Byte (TxPWMH and TxPWML) registers (Tables 53 and Table 54) control pulse-width modulator (PWM) operations. These registers also store the Capture values for the CAPTURE and CAPTURE/COMPARE modes.

Table 53. Timer 0–1 PWM High Byte Register (TxPWMH)

BITS	7	6	5	4	3	2	1	0
FIELD	PWMH							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F04H, F0CH							

Table 54. Timer 0–1 PWM Low Byte Register (TxPWML)

BITS	7	6	5	4	3	2	1	0
FIELD	PWML							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F05H, F0DH							

PWMH and PWML—Pulse-Width Modulator High and Low Bytes

These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current 16-bit timer count. When a match occurs, the PWM output changes state. The PWM output value is set by the TPOL bit in the Timer Control Register (TxCTL1) register.

The TxPWMH and TxPWML registers also store the 16-bit captured timer value when operating in CAPTURE or CAPTURE/COMPARE modes.

Timer 0–1 Control Registers**Time 0–1 Control Register 0**

The Timer Control Register 0 (TxCTL0) and Timer Control Register 1 (TxCTL1) determine the timer operating mode. It also includes a programmable PWM deadband delay, two bits to configure timer interrupt definition, and a status bit to identify if the most recent timer interrupt is caused by an input capture event.

Table 55. Timer 0–1 Control Register 0 (TxCTL0)

BITS	7	6	5	4	3	2	1	0
FIELD	TMODEHI	TICONFIG		Reserved	PWMD			INPCAP
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F06H, F0EH							

TMODEHI—Timer Mode High bit

This bit along with the TMODE field in TxCTL1 register determines the operating mode of the timer. This is the most significant bit of the Timer mode selection value. See the TxCTL1 register description on the next page for additional details.

TICONFIG—Timer Interrupt Configuration

This field configures timer interrupt definition.

- 0x = Timer Interrupt occurs on all defined Reload, Compare and Input events
- 10 = Timer Interrupt only on defined Input Capture/Deassertion events
- 11 = Timer Interrupt only on defined Reload/Compare events

Reserved—Must be 0.

PWMD—PWM Delay value

This field is a programmable delay to control the number of system clock cycles delay before the Timer Output and the Timer Output Complement are forced to their active state.

- 000 = No delay
- 001 = 2 cycles delay
- 010 = 4 cycles delay
- 011 = 8 cycles delay
- 100 = 16 cycles delay
- 101 = 32 cycles delay
- 110 = 64 cycles delay
- 111 = 128 cycles delay

INPCAP—Input Capture event

This bit indicates if the most recent timer interrupt is caused by a Timer Input Capture event.

- 0 = Previous timer interrupt is not a result of Timer Input Capture event
- 1 = Previous timer interrupt is a result of Timer Input Capture event

Timer 0–1 Control Register 1

The Timer 0–1 Control (TxCTL1) registers enable/disable the timers, set the prescaler value, and determine the timer operating mode.

Table 56. Timer 0–1 Control Register 1 (TxCTL1)

BITS	7	6	5	4	3	2	1	0
FIELD	TEN	TPOL	PRES			TMODE		
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F07H, F0FH							

TEN—Timer Enable

0 = Timer is disabled.

1 = Timer enabled to count.

TPOL—Timer Input/Output Polarity

Operation of this bit is a function of the current operating mode of the timer.

ONE-SHOT mode

When the timer is disabled, the Timer Output signal is set to the value of this bit.
When the timer is enabled, the Timer Output signal is complemented on timer Reload.

CONTINUOUS mode

When the timer is disabled, the Timer Output signal is set to the value of this bit.
When the timer is enabled, the Timer Output signal is complemented On timer Reload.

COUNTER mode

If the timer is enabled the Timer Output signal is complemented after timer reload.
0 = Count occurs on the rising edge of the Timer Input signal.
1 = Count occurs on the falling edge of the Timer Input signal.

PWM SINGLE OUTPUT mode

0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) on PWM count match and forced Low (0) on Reload.
1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) on PWM count match and forced High (1) on Reload.

CAPTURE mode

0 = Count is captured on the rising edge of the Timer Input signal.
1 = Count is captured on the falling edge of the Timer Input signal.

COMPARE mode

When the timer is disabled, the Timer Output signal is set to the value of this bit.
When the timer is enabled, the Timer Output signal is complemented on timer Reload.

GATED mode

0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the falling edge of the Timer Input.
1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the rising edge of the Timer Input.

CAPTURE/COMPARE mode

0 = Counting is started on the first rising edge of the Timer Input signal. The current count is captured on subsequent rising edges of the Timer Input signal.
1 = Counting is started on the first falling edge of the Timer Input signal. The current count is captured on subsequent falling edges of the Timer Input signal.

PWM DUAL OUTPUT mode

0 = Timer Output is forced Low (0) and Timer Output Complement is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced High (1) on PWM count match and forced Low (0) on Reload. When enabled, the Timer Output Complement is forced Low (0) on PWM count match and forced High (1) on Reload. The PWMD field in TxCTL0 register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output

Complement is forced to High (1).

1 = Timer Output is forced High (1) and Timer Output Complement is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced Low (0) on PWM count match and forced High (1) on Reload. When enabled, the Timer Output Complement is forced High (1) on PWM count match and forced Low (0) on Reload. The PWMD field in TxCTL0 register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to Low (0).

CAPTURE RESTART mode

0 = Count is captured on the rising edge of the Timer Input signal.
1 = Count is captured on the falling edge of the Timer Input signal.

COMPARATOR COUNTER mode

When the timer is disabled, the Timer Output signal is set to the value of this bit.
When the timer is enabled, the Timer Output signal is complemented on timer Reload.

Caution: When the Timer Output alternate function TxOUT on a GPIO port pin is enabled, TxOUT will change to whatever state the TPOL bit is in. The timer does not need to be enabled for that to happen. Also, the Port data direction sub register is not needed to be set to output on TxOUT. Changing the TPOL bit with the timer enabled and running does not immediately change the TxOUT.

PRES—Prescale value.

The timer input clock is divided by 2^{PRES} , where PRES can be set from 0 to 7. The prescaler is reset each time the Timer is disabled. This reset ensures proper clock division each time the Timer is restarted.

000 = Divide by 1
001 = Divide by 2
010 = Divide by 4
011 = Divide by 8
100 = Divide by 16
101 = Divide by 32
110 = Divide by 64
111 = Divide by 128

TMODE—Timer mode

This field along with the TMODEHI bit in TxCTL0 register determines the operating mode of the timer. TMODEHI is the most significant bit of the Timer mode selection value.

0000 = ONE-SHOT mode
0001 = CONTINUOUS mode
0010 = COUNTER mode
0011 = PWM SINGLE OUTPUT mode
0100 = CAPTURE mode
0101 = COMPARE mode

0110 = GATED mode
0111 = CAPTURE/COMPARE mode
1000 = PWM DUAL OUTPUT mode
1001 = CAPTURE RESTART mode
1010 = COMPARATOR COUNTER mode

Watchdog Timer

The Watchdog Timer (WDT) protects against corrupt or unreliable software, power faults, and other system-level problems which places the Z8 Encore! XP® F08xA Series devices into unsuitable operating states. The WDT includes the following features:

- On-chip RC oscillator.
- A selectable time-out response: reset or interrupt.
- 24-bit programmable time-out value.

Operation

The WDT is a retriggerable one-shot timer that resets or interrupts the Z8 Encore! XP® F08xA Series devices when the WDT reaches its terminal count. The WDT uses a dedicated on-chip RC oscillator as its clock source. The WDT operates in only two modes: ON and OFF. Once enabled, it always counts and must be refreshed to prevent a time-out. Perform an enable by executing the WDT instruction or by setting the WDT_AO Flash Option Bit. The WDT_AO bit forces the WDT to operate immediately on reset, even if a WDT instruction has not been executed.

The WDT is a 24-bit reloadable downcounter that uses three 8-bit registers in the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is described by the following equation:

$$\text{WDT Time-out Period (ms)} = \frac{\text{WDT Reload Value}}{10}$$

where the WDT reload value is the decimal value of the 24-bit value given by {WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator frequency is 10 KHz. The WDT cannot be refreshed after it reaches the value 000002H. The WDT Reload Value must not be set to values below 000004H. [Table 57](#) provides information about approximate time-out delays for the minimum and maximum WDT reload values.

Table 57. Watchdog Timer Approximate Time-Out Delays

WDT Reload Value (Hex)	WDT Reload Value (Decimal)	Approximate Time-Out Delay (with 10KHz typical WDT oscillator frequency)	
		Typical	Description
000004	4	400 µs	Minimum time-out delay
FFFFFF	16,777,215	28 minutes	Maximum time-out delay

Watchdog Timer Refresh

When first enabled, the WDT is loaded with the value in the WDT Reload registers. The WDT counts down to 000000H until the eZ8 CPU executes a WDT instruction. Execution of the WDT instruction causes the downcounter to be reloaded with the WDT Reload value stored in the WDT Reload registers. Counting resumes following the reload operation.

When the Z8 Encore! XP® F08xA Series devices are operating in DEBUG mode (using the On-Chip Debugger), the WDT is continuously refreshed to prevent any WDT time-outs.

Watchdog Timer Time-Out Response

The WDT times out when the counter reaches the value 000000H. A time-out of the WDT generates either an interrupt or a system reset. The WDT_RES Flash Option bit determines the time-out response of the WDT. See [Flash Option Bits on page 148](#) for information regarding programming of the WDT_RES Flash Option bit.

WDT Interrupt in Normal Operation

If configured to generate an interrupt when a time-out occurs, the WDT issues an interrupt request to the interrupt controller and sets the WDT status bit in the WDT Control register. If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address. After time-out and interrupt generation, the WDT counter rolls over to its maximum value of FFFFFH and continues counting. The WDT counter is not automatically returned to its Reload Value.

The Reset Status register ([page 28](#)) must be read before clearing the WDT interrupt. This read clears the WDT time-out flag and prevents further WDT interrupts for immediately occurring.

WDT Interrupt in STOP Mode

If configured to generate an interrupt when a time-out occurs and the Z8 Encore! XP® F08xA Series devices are in STOP mode, the WDT automatically initiates a Stop Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP bit in the WDT Control register are set to 1 following a WDT time-out in STOP mode. See [Reset, Stop Mode Recovery and Low-Voltage Detection on page 21](#) for more information about Stop Mode Recovery.

If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU responds to the interrupt request by fetching the WDT interrupt vector and executing code from the vector address.

WDT Reset in NORMAL Operation

If configured to generate a Reset when a time-out occurs, the WDT forces the device into the System Reset state. The WDT status bit in the WDT Control register is set to 1. See [Reset, Stop Mode Recovery and Low-Voltage Detection on page 21](#) for more information about system reset.

WDT Reset in STOP Mode

If configured to generate a Reset when a time-out occurs and the device is in STOP mode, the WDT initiates a Stop Mode Recovery. Both the WDT status bit and the STOP bit in the Watchdog Timer Control register are set to 1 following WDT time-out in STOP mode. For more information, see [Reset, Stop Mode Recovery and Low-Voltage Detection on page 21](#).

Watchdog Timer Reload Unlock Sequence

Writing the unlock sequence to the WDT Control register (WDTCTL) address unlocks the three WDT Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers. The following sequence is required to unlock the WDT Reload Byte registers (WDTU, WDTH, and WDTL) for write access.

1. Write 55H to the Watchdog Timer Control register (WDTCTL).
2. Write AAH to the Watchdog Timer Control register (WDTCTL).
3. Write the Watchdog Timer Reload Upper Byte register (WDTU).
4. Write the Watchdog Timer Reload High Byte register (WDTH).
5. Write the Watchdog Timer Reload Low Byte register (WDTL).

All three Watchdog Timer Reload registers must be written in the order listed above. No other registers must be written between each of the above operations. If a register write

occurs, the lock state machine resets and no further writes occur unless the sequence is restarted. The value in the WDT Reload registers is loaded into the counter when the WDT is first enabled and every time a WDT instruction is executed.

Watchdog Timer Control Register Definitions

The following section describes the Watchdog Timer Control registers.

Watchdog Timer Control Register

The WDT Control (WDTCTL) register is a write-only control register. Writing the 55H, AAH unlock sequence to the WDTCTL register address unlocks the three WDT Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers.

This register address is shared with the read-only Reset Status register.

Table 58. Watchdog Timer Control Register (WDTCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	WDTUNLK							
RESET	X	X	X	X	X	X	X	X
R/W	W	W	W	W	W	W	W	W
ADDR	FF0H							

WDTUNLK—Watchdog Timer Unlock

The user software must write the correct unlocking sequence to this register before it is allowed to modify the contents of the WDT Reload registers.

Watchdog Timer Reload Upper, High and Low Byte Registers

The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) registers (Tables 59 through 61) form the 24-bit reload value that is loaded into the Watchdog Timer when a WDT instruction executes. The 24-bit reload value is {WDTU[7:0], WDTH[7:0], WDTL[7:0]}. Writing to these registers sets the appropriate reload value. Reading from these registers returns the current WDT count value.

Caution: The 24-bit WDT Reload Value must not be set to a value less than 000004H.

Table 59. Watchdog Timer Reload Upper Byte Register (WDTU)

BITS	7	6	5	4	3	2	1	0
FIELD	WDTU							
RESET	1	1	1	1	1	1	1	1
R/W	R/W*							
ADDR	FF1H							
R/W* - Read returns the current WDT count value. Write sets the appropriate Reload Value.								

WDTU—WDT Reload Upper byte

Most significant byte (MSB), Bits[23:16], of the 24-bit WDT reload value.

Table 60. Watchdog Timer Reload High Byte Register (WDTH)

BITS	7	6	5	4	3	2	1	0
FIELD	WDTH							
RESET	1	1	1	1	1	1	1	1
R/W	R/W*							
ADDR	FF2H							
R/W* - Read returns the current WDT count value. Write sets the appropriate Reload Value.								

WDTH—WDT Reload High byte

Middle byte, Bits[15:8], of the 24-bit WDT reload value.

Table 61. Watchdog Timer Reload Low Byte Register (WDTL)

BITS	7	6	5	4	3	2	1	0
FIELD	WDTL							
RESET	1	1	1	1	1	1	1	1
R/W	R/W*							
ADDR	FF3H							
R/W* - Read returns the current WDT count value. Write sets the appropriate Reload Value.								

WDTL—WDT Reload Low byte

Least significant byte (LSB), Bits[7:0], of the 24-bit WDT reload value.

Universal Asynchronous Receiver/Transmitter

The universal asynchronous receiver/transmitter (UART) is a full-duplex communication channel capable of handling asynchronous data transfers. The UART uses a single 8-bit data mode with selectable parity. Features of the UART include:

- 8-bit asynchronous data transfer.
- Selectable even- and odd-parity generation and checking.
- Option of one or two STOP bits.
- Separate transmit and receive interrupts.
- Framing, parity, overrun, and break detection.
- Separate transmit and receive enables.
- 16-bit baud rate generator (BRG).
- Selectable MULTIPROCESSOR (9-bit) mode with three configurable interrupt schemes.
- BRG can be configured and used as a basic 16-bit timer.
- Driver Enable output for external bus transceivers.

Architecture

The UART consists of three primary functional blocks: transmitter, receiver, and baud rate generator. The UART's transmitter and receiver function independently, but employ the same baud rate and data format. [Figure 10](#) illustrates the UART architecture.

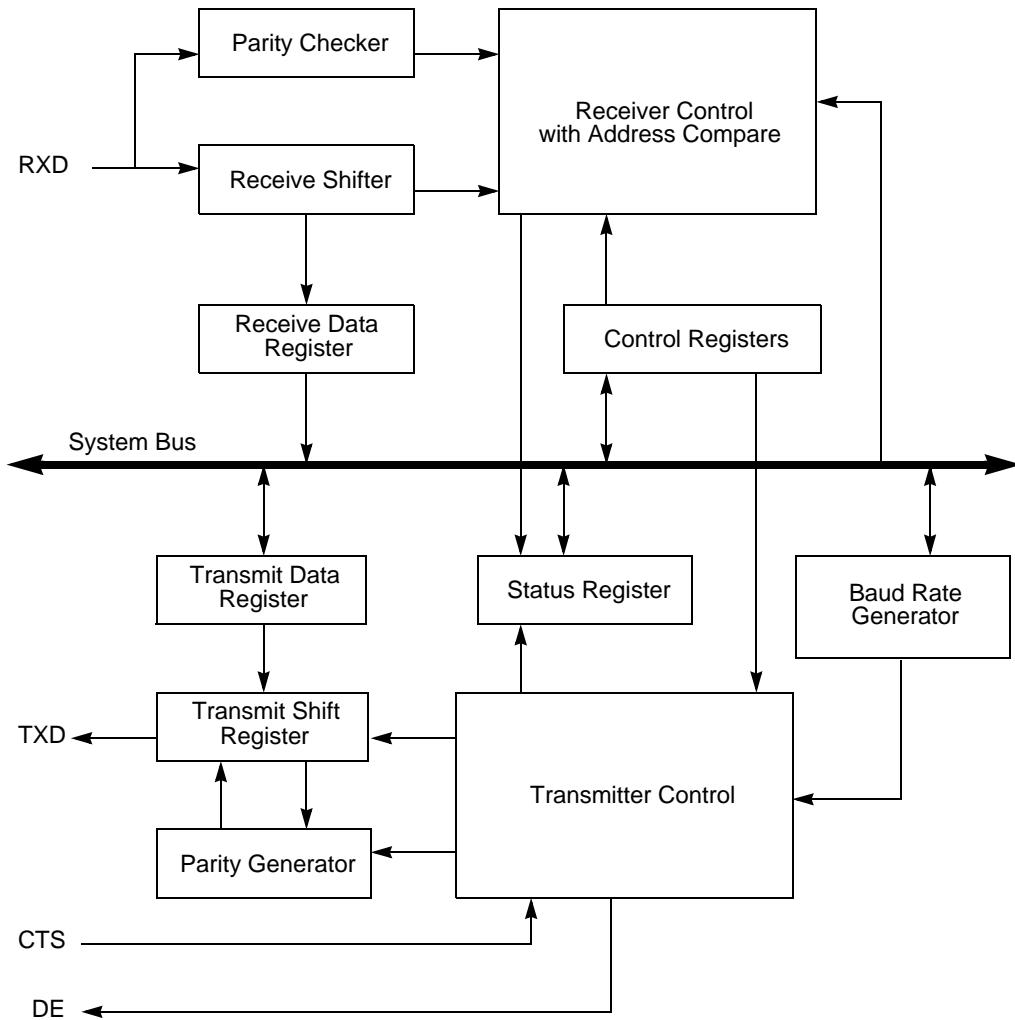


Figure 10. UART Block Diagram

Operation

The operation of UART is explained in the following sections.

Data Format

The UART always transmits and receives data in an 8-bit data format, least-significant bit first. An even or odd parity bit can be added to the data stream. Each character begins with an active Low Start bit and ends with either 1 or 2 active High Stop bits. [Figures 11 and](#)

12 illustrates the asynchronous data format employed by the UART without parity and with parity, respectively.

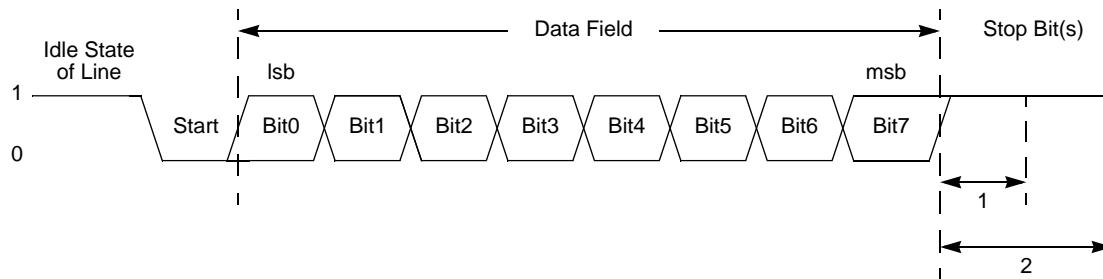


Figure 11. UART Asynchronous Data Format without Parity

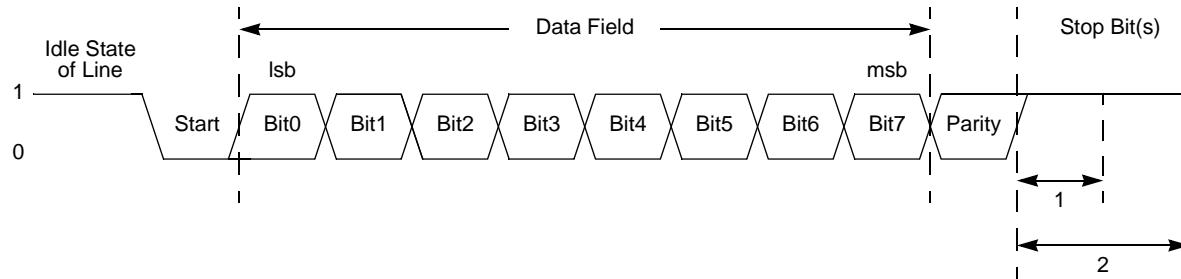


Figure 12. UART Asynchronous Data Format with Parity

Transmitting Data using the Polled Method

Follow these steps to transmit data using the polled method of operation:

1. Write to the UART Baud Rate High and Low Byte registers to set the required baud rate.
2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
3. Write to the UART Control 1 register, if MULTIPROCESSOR mode is appropriate to enable MULTIPROCESSOR (9-bit) mode functions.
4. Set the Multiprocessor Mode Select (MPEN) bit to enable MULTIPROCESSOR mode.
5. Write to the UART Control 0 register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission
 - Set the parity enable bit (PEN), if parity is appropriate and MULTIPROCESSOR mode is not enabled, and select either even or odd parity (PSEL).

- Set or clear the CTSE bit to enable or disable control from the remote receiver using the Clear To Send (\overline{CTS}) pin.

6. Check the TDRE bit in the UART Status 0 register to determine if the Transmit Data register is empty (indicated by a 1). If empty, continue to Step 6. If the Transmit Data register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit Data register becomes available to receive new data.
7. Write the UART Control 1 register to select the outgoing address bit.
8. Set the multiprocessor bit transmitter (MPBT) if sending an address byte. Clear the MPBT bit if sending a data byte.
9. Write the data byte to the UART Transmit Data register. The transmitter automatically transfers the data to the Transmit Shift register and transmits the data.
10. Make any changes to the multiprocessor bit transmitter (MPBT) value, if appropriate, and MULTIPROCESSOR mode is enabled.
11. To transmit additional bytes, return to Step 5.

Transmitting Data using the Interrupt-Driven Method

The UART Transmitter interrupt indicates the availability of the Transmit Data register to accept new data for transmission. Follow these steps to configure the UART for interrupt-driven data transmission:

1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud rate.
2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
3. Execute a DI instruction to disable interrupts.
4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and set the acceptable priority.
5. Write to the UART Control 1 register to enable MULTIPROCESSOR (9-bit) mode functions, if MULTIPROCESSOR mode is appropriate.
6. Set the multiprocessor mode select bit (MPEN) to enable MULTIPROCESSOR mode.
7. Write to the UART Control 0 register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission
 - Enable parity, if appropriate and if MULTIPROCESSOR mode is not enabled, and select either even or odd parity.
 - Set or clear CTSE to enable or disable control from the remote receiver using the \overline{CTS} pin.
8. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data transmission. Because the UART Transmit Data register is empty, an interrupt is generated immediately. When the UART Transmit interrupt is detected, the associated interrupt service routine (ISR) performs the following:

1. Write the UART Control 1 register to select the multiprocessor bit for the byte to be transmitted:
Set the multiprocessor bit transmitter (MPBT) if sending an address byte, clear it if sending a data byte.
2. Write the data byte to the UART Transmit Data register. The transmitter automatically transfers the data to the Transmit Shift register and transmits the data.
3. Clear the UART Transmit interrupt bit in the applicable Interrupt Request register.
4. Execute the IRET instruction to return from the interrupt service routine and wait for the Transmit Data register to become empty again.

Receiving Data using the Polled Method

Follow these steps to configure the UART for polled data reception:

1. Write to the UART Baud Rate High and Low Byte registers to set an acceptable baud rate for the incoming data stream.
2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
3. Write to the UART Control 1 register to enable MULTIPROCESSOR mode functions, if appropriate.
4. Write to the UART Control 0 register to:
 - Set the receive enable bit (REN) to enable the UART for data reception
 - Enable parity, if appropriate and if MULTIPROCESSOR mode is not enabled, and select either even or odd parity.
5. Check the RDA bit in the UART Status 0 register to determine if the Receive Data register contains a valid data byte (indicated by a 1). If RDA is set to 1 to indicate available data, continue to Step 5. If the Receive Data register is empty (indicated by a 0), continue to monitor the RDA bit awaiting reception of the valid data.
6. Read data from the UART Receive Data register. If operating in MULTIPROCESSOR (9-bit) mode, further actions are required depending on the MULTIPROCESSOR mode bits MPMD[1:0].
7. Return to Step 4 to receive additional data.

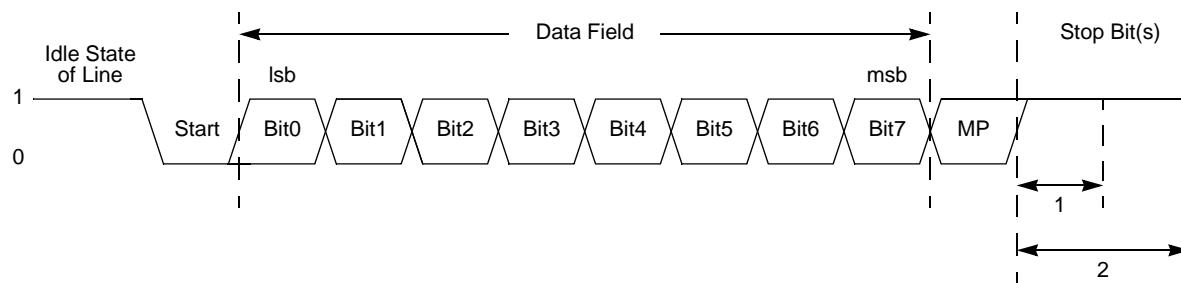
Receiving Data using the Interrupt-Driven Method

The UART Receiver interrupt indicates the availability of new data (as well as error conditions). Follow these steps to configure the UART receiver for interrupt-driven operation:

1. Write to the UART Baud Rate High and Low Byte registers to set the acceptable baud rate.
2. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
3. Execute a DI instruction to disable interrupts.
4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set the acceptable priority.
5. Clear the UART Receiver interrupt in the applicable Interrupt Request register.
6. Write to the UART Control 1 register to enable MULTIPROCESSOR (9-bit) mode functions, if appropriate.
 - Set the multiprocessor mode select (MPEN) to Enable MULTIPROCESSOR mode.
 - Set the MULTIPROCESSOR mode bits, $MPMD[1:0]$, to select the acceptable address matching scheme.
 - Configure the UART to interrupt on received data and errors or errors only (interrupt on errors only is unlikely to be useful for Z8 Encore!® devices without a DMA block)
7. Write the device address to the Address Compare register (automatic MULTIPROCESSOR modes only).
8. Write to the UART Control 0 register to:
 - Set the receive enable bit (REN) to enable the UART for data reception
 - Enable parity, if appropriate and if MULTIPROCESSOR mode is not enabled, and select either even or odd parity.
9. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data reception. When the UART Receiver interrupt is detected, the associated interrupt service routine (ISR) performs the following:

1. Checks the UART Status 0 register to determine the source of the interrupt - error, break, or received data.
2. Reads the data from the UART Receive Data register if the interrupt was because of data available. If operating in MULTIPROCESSOR (9-bit) mode, further actions are required depending on the MULTIPROCESSOR mode bits $MPMD[1:0]$.
3. Clears the UART Receiver interrupt in the applicable Interrupt Request register.


4. Executes the IRET instruction to return from the interrupt service routine and await more data.

Clear To Send (CTS) Operation

The CTS pin, if enabled by the CTSE bit of the UART Control 0 register, performs flow control on the outgoing transmit datastream. The Clear To Send (CTS) input pin is sampled one system clock before beginning any new character transmission. To delay transmission of the next data character, an external receiver must deassert CTS at least one system clock cycle before a new data transmission begins. For multiple character transmissions, this action is typically performed during Stop Bit transmission. If CTS deasserts in the middle of a character transmission, the current character is sent completely.

MULTIPROCESSOR (9-bit) Mode

The UART has a MULTIPROCESSOR (9-bit) mode that uses an extra (9th) bit for selective communication when a number of processors share a common UART bus. In MULTIPROCESSOR mode (also referred to as 9-Bit mode), the multiprocessor (MP) bit is transmitted immediately following the 8-bits of data and immediately preceding the Stop bit(s) as illustrated in [Figure 13](#). The character format is:

Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format

In MULTIPROCESSOR (9-bit) mode, the Parity bit location (9th bit) becomes the Multiprocessor control bit. The UART Control 1 and Status 1 registers provide MULTIPROCESSOR (9-bit) mode control and status information. If an automatic address matching scheme is enabled, the UART Address Compare register holds the network address of the device.

MULTIPROCESSOR (9-bit) Mode Receive Interrupts

When MULTIPROCESSOR mode is enabled, the UART only processes frames addressed to it. The determination of whether a frame of data is addressed to the UART can be made in hardware, software or some combination of the two, depending on the multiprocessor configuration bits. In general, the address compare feature reduces the load on the CPU because it does not require access to the UART when it receives data directed to other

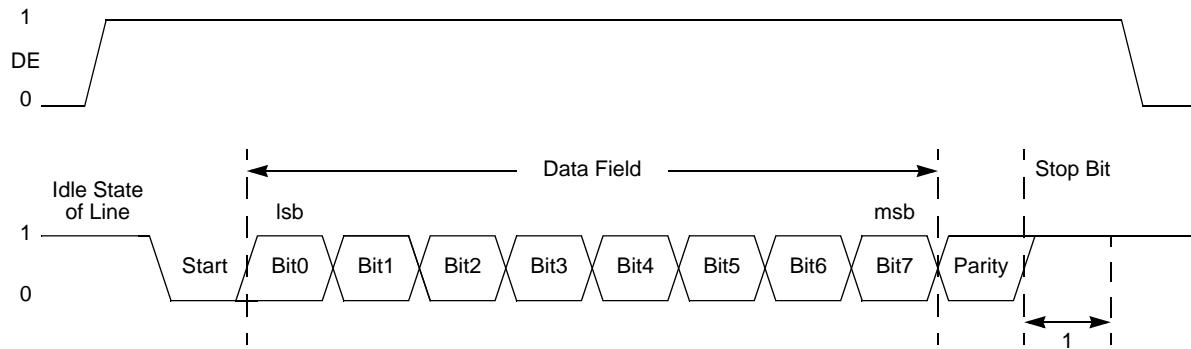
devices on the multi-node network. The following three MULTIPROCESSOR modes are available in hardware:

- Interrupt on all address bytes
- Interrupt on matched address bytes and correctly framed data bytes
- Interrupt only on correctly framed data bytes

These modes are selected using MPMD [1 : 0] in the UART Control 1 register. For all multiprocessor modes, bit MPEN of the UART Control 1 Register must be set to 1.

The first scheme is enabled by writing 01b to MPMD [1 : 0]. In this mode, all incoming address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt service routine must manually check the address byte that caused triggered the interrupt. If it matches the UART address, the software clears MPMD[0]. Each new incoming byte interrupts the CPU. The software is responsible for determining the end of the frame. It checks for the end-of-frame by reading the MPRX bit of the UART Status 1 Register for each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame is different from the UART's address, MPMD [0] must be set to 1 causing the UART interrupts to go inactive until the next address byte. If the new frame's address matches the UART's, the data in the new frame is processed as well.

The second scheme requires the following: set MPMD [1 : 0] to 10B and write the UART's address into the UART Address Compare register. This mode introduces additional hardware control, interrupting only on frames that match the UART's address. When an incoming address byte does not match the UART's address, it is ignored. All successive data bytes in this frame are also ignored. When a matching address byte occurs, an interrupt is issued and further interrupts now occur on each successive data byte. When the first data byte in the frame is read, the NEWFRM bit of the UART Status 1 Register is asserted. All successive data bytes have NEWFRM=0. When the next address byte occurs, the hardware compares it to the UART's address. If there is a match, the interrupt continues and the NEWFRM bit is set for the first byte of the new frame. If there is no match, the UART ignores all incoming bytes until the next address match.


The third scheme is enabled by setting MPMD [1 : 0] to 11b and by writing the UART's address into the UART Address Compare register. This mode is identical to the second scheme, except that there are no interrupts on address bytes. The first data byte of each frame remains accompanied by a NEWFRM assertion.

External Driver Enable

The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This feature reduces the software overhead associated with using a GPIO pin to control the transceiver when communicating on a multi-transceiver bus, such as RS-485.

Driver Enable is an active High signal that envelopes the entire transmitted data frame including parity and Stop bits as illustrated in [Figure 14](#). The Driver Enable signal asserts when a byte is written to the UART Transmit Data register. The Driver Enable signal

asserts at least one UART bit period and no greater than two UART bit periods before the Start bit is transmitted. This allows a setup time to enable the transceiver. The Driver Enable signal deasserts one system clock period after the final Stop bit is transmitted. This system clock delay allows both time for data to clear the transceiver before disabling it, as well as the ability to determine if another character follows the current character. In the event of back to back characters (new data must be written to the Transmit Data register before the previous character is completely transmitted) the DE signal is not deasserted between characters. The DEPOL bit in the UART Control Register 1 sets the polarity of the Driver Enable signal.

Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)

The Driver Enable to Start bit setup time is calculated as follows:

$$\left(\frac{1}{\text{Baud Rate (Hz)}} \right) \leq \text{DE to Start Bit Setup Time (s)} \leq \left(\frac{2}{\text{Baud Rate (Hz)}} \right)$$

UART Interrupts

The UART features separate interrupts for the transmitter and the receiver. In addition, when the UART primary functionality is disabled, the BRG also functions as a basic timer with interrupt capability.

Transmitter Interrupts

The transmitter generates a single interrupt when the Transmit Data Register Empty bit (TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for transmission. The TDRE interrupt occurs after the Transmit shift register has shifted the first bit of data out. The Transmit Data register can now be written with the next character to send. This action provides 7 bit periods of latency to load the Transmit Data register before the Transmit shift register completes shifting the current character. Writing to the UART Transmit Data register clears the TDRE bit to 0.

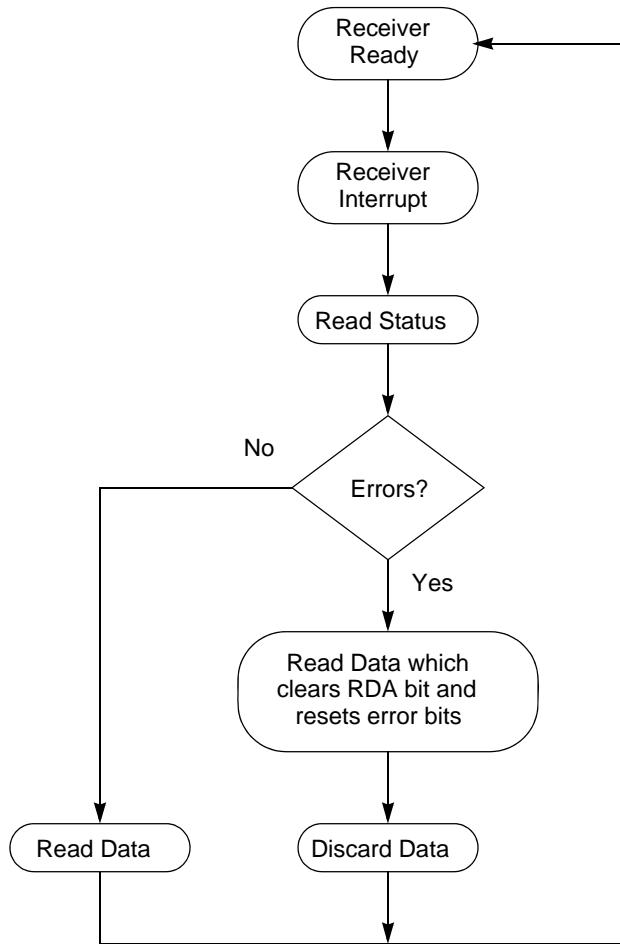
Receiver Interrupts

The receiver generates an interrupt when any of the following occurs:

- A data byte is received and is available in the UART Receive Data register. This interrupt can be disabled independently of the other receiver interrupt sources. The received data interrupt occurs after the receive character has been received and placed in the Receive Data register. To avoid an overrun error, the software must respond to the received data available condition before the next character is completely received.

► **Note:** In MULTIPROCESSOR mode (MPEN = 1), the receive data interrupts are dependent on the multiprocessor configuration and the most recent address byte.

- A break is received.
- An overrun is detected.
- A data framing error is detected.


UART Overrun Errors

When an overrun error condition occurs the UART prevents overwriting of the valid data currently in the Receive Data register. The Break Detect and Overrun status bits are not displayed until after the valid data has been read.

After the valid data has been read, the UART Status 0 register is updated to indicate the overrun condition (and Break Detect, if applicable). The RDA bit is set to 1 to indicate that the Receive Data register contains a data byte. Because the overrun error occurred, this byte cannot contain valid data and must be ignored. The BRKD bit indicates if the overrun was caused by a break condition on the line. After reading the status byte indicating an overrun error, the Receive Data register must be read again to clear the error bits in the UART Status 0 register. Updates to the Receive Data register occur only when the next data word is received.

UART Data and Error Handling Procedure

[Figure 15](#) illustrates the recommended procedure for use in UART receiver interrupt service routines.

Figure 15. UART Receiver Interrupt Service Routine Flow

Baud Rate Generator Interrupts

If the baud rate generator (BRG) interrupt enable is set, the UART Receiver interrupt asserts when the UART BRG reloads. This condition allows the BRG to function as an additional counter if the UART functionality is not employed.

UART Baud Rate Generator

The UART baud rate generator creates a lower frequency baud rate clock for data transmission. The input to the BRG is the system clock. The UART Baud Rate High and Low Byte registers combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the

data transmission rate (baud rate) of the UART. The UART data rate is calculated using the following equation:

$$\text{UART Data Rate (bits/s)} = \frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$$

When the UART is disabled, the BRG functions as a basic 16-bit timer with interrupt on time-out. To configure the BRG as a timer with interrupt on time-out, complete the following procedure:

1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 register to 0.
2. Load the acceptable 16-bit count value into the UART Baud Rate High and Low Byte registers.
3. Enable the BRG timer function and associated interrupt by setting the BIRQ bit in the UART Control 1 register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

$$\text{Interrupt Interval (s)} = \text{System Clock Period (s)} \times \text{BRG[15:0]}$$

UART Control Register Definitions

The UART control registers support the UART and the associated Infrared Encoder/Decoders. For more information about the infrared operation, see [Infrared Encoder/Decoder chapter](#) on [page 113](#).

UART Transmit Data Register

Data bytes written to the UART Transmit Data register ([Table 62](#)) are shifted out on the TXD_x pin. The Write-only UART Transmit Data register shares a Register File address with the read-only UART Receive Data register.

Table 62. UART Transmit Data Register (U0TXD)

BITS	7	6	5	4	3	2	1	0
FIELD	TXD							
RESET	X	X	X	X	X	X	X	X
R/W	W	W	W	W	W	W	W	W
ADDR	F40H							

TXD—Transmit Data

UART transmitter data byte to be shifted out through the TXD_x pin.

UART Receive Data Register

Data bytes received through the RXD_x pin are stored in the UART Receive Data register ([Table 63](#)). The read-only UART Receive Data register shares a Register File address with the write-only UART Transmit Data register.

Table 63. UART Receive Data Register (U0RXD)

BITS	7	6	5	4	3	2	1	0
FIELD	RXD							
RESET	X	X	X	X	X	X	X	X
R/W	R	R	R	R	R	R	R	R
ADDR	F40H							

RXD—Receive Data

UART receiver data byte from the RXD_x pin

UART Status 0 Register

The UART Status 0 and Status 1 registers ([Table 64](#) and [Table 65](#)) identify the current UART operating configuration and status.

Table 64. UART Status 0 Register (U0STAT0)

BITS	7	6	5	4	3	2	1	0
FIELD	RDA	PE	OE	FE	BRKD	TDRE	TXE	CTS
RESET	0	0	0	0	0	1	1	X
R/W	R	R	R	R	R	R	R	R
ADDR	F41H							

RDA—Receive Data Available

This bit indicates that the UART Receive Data register has received data. Reading the UART Receive Data register clears this bit.

0 = The UART Receive Data register is empty.

1 = There is a byte in the UART Receive Data register.

PE—Parity Error

This bit indicates that a parity error has occurred. Reading the UART Receive Data register clears this bit.

0 = No parity error has occurred.
1 = A parity error has occurred.

OE—Overrun Error

This bit indicates that an overrun error has occurred. An overrun occurs when new data is received and the UART Receive Data register has not been read. If the RDA bit is reset to 0, reading the UART Receive Data register clears this bit.

0 = No overrun error occurred.
1 = An overrun error occurred.

FE—Framing Error

This bit indicates that a framing error (no Stop bit following data reception) was detected. Reading the UART Receive Data register clears this bit.

0 = No framing error occurred.
1 = A framing error occurred.

BRKD—Break Detect

This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop bit(s) are all 0s this bit is set to 1. Reading the UART Receive Data register clears this bit.

0 = No break occurred.

1 = A break occurred.

TDRE—Transmitter Data Register Empty

This bit indicates that the UART Transmit Data register is empty and ready for additional data. Writing to the UART Transmit Data register resets this bit.

0 = Do not write to the UART Transmit Data register.

1 = The UART Transmit Data register is ready to receive an additional byte to be transmitted.

TXE—Transmitter Empty

This bit indicates that the transmit shift register is empty and character transmission is finished.

0 = Data is currently transmitting.
1 = Transmission is complete.

CTS— $\overline{\text{CTS}}$ signal

When this bit is read it returns the level of the $\overline{\text{CTS}}$ signal. This signal is active Low.

UART Status 1 Register

This register contains multiprocessor control and status bits.

Table 65. UART Status 1 Register (U0STAT1)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved						NEWFRM	MPRX

Table 65. UART Status 1 Register (U0STAT1)

RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R/W	R/W	R	R
ADDR	F44H							

Reserved—Must be 0.

NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive Data register resets this bit to 0.

0 = The current byte is not the first data byte of a new frame.

1 = The current byte is the first data byte of a new frame.

MPRX—Multiprocessor Receive

Returns the value of the most recent multiprocessor bit received. Reading from the UART Receive Data register resets this bit to 0.

UART Control 0 and Control 1 Registers

The UART Control 0 and Control 1 registers (Tables 66 and 67) configure the properties of the UART's transmit and receive operations. The UART Control registers must not be written while the UART is enabled.

Table 66. UART Control 0 Register (U0CTL0)

BITS	7	6	5	4	3	2	1	0
FIELD	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F42H							

TEN—Transmit Enable

This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is low and the CTSE bit is 1, the transmitter is enabled.

0 = Transmitter disabled.

1 = Transmitter enabled.

REN—Receive Enable

This bit enables or disables the receiver.

0 = Receiver disabled.

1 = Receiver enabled.

CTSE—CTS Enable

0 = The CTS signal has no effect on the transmitter.1 = The UART recognizes the CTS signal as an enable control from the transmitter.

PEN—Parity Enable

This bit enables or disables parity. Even or odd is determined by the PSEL bit.

0 = Parity is disabled.

1 = The transmitter sends data with an additional parity bit and the receiver receives an additional parity bit.

PSEL—Parity Select

0 = Even parity is transmitted and expected on all received data.

1 = Odd parity is transmitted and expected on all received data.

SBRK—Send Break

This bit pauses or breaks data transmission. Sending a break interrupts any transmission in progress, so ensure that the transmitter has finished sending data before setting this bit.

0 = No break is sent.

1 = Forces a break condition by setting the output of the transmitter to zero.

STOP—Stop Bit Select

0 = The transmitter sends one stop bit.

1 = The transmitter sends two stop bits.

LBEN—Loop Back Enable

0 = Normal operation.

1 = All transmitted data is looped back to the receiver.

Table 67. UART Control 1 Register (U0CTL1)

BITS	7	6	5	4	3	2	1	0
FIELD	MPMD[1]	MPEN	MPMD[0]	MPBT	DEPOL	BRGCTL	RDAIRQ	IREN
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F43H							

MPMD[1:0]—MULTIPROCESSOR Mode

If MULTIPROCESSOR (9-bit) mode is enabled,

00 = The UART generates an interrupt request on all received bytes (data and address).

01 = The UART generates an interrupt request only on received address bytes.

10 = The UART generates an interrupt request when a received address byte matches the value stored in the Address Compare register and on all successive data bytes until an address mismatch occurs.

11 = The UART generates an interrupt request on all received data bytes for which the most recent address byte matched the value in the Address Compare register.

MPEN—MULTIPROCESSOR (9-bit) Enable

This bit is used to enable MULTIPROCESSOR (9-bit) mode.

0 = Disable MULTIPROCESSOR (9-bit) mode.

1 = Enable MULTIPROCESSOR (9-bit) mode.

MPBT—Multiprocessor Bit Transmit

This bit is applicable only when MULTIPROCESSOR (9-bit) mode is enabled. The 9th bit is used by the receiving device to determine if the data byte contains address or data information.

0 = Send a 0 in the multiprocessor bit location of the data stream (data byte).

1 = Send a 1 in the multiprocessor bit location of the data stream (address byte).

DEPOL—Driver Enable Polarity

0 = DE signal is Active High.

1 = DE signal is Active Low.

BRGCTL—Baud Rate Control

This bit causes an alternate UART behavior depending on the value of the REN bit in the UART Control 0 Register.

When the UART receiver is not enabled (REN=0), this bit determines whether the Baud Rate Generator issues interrupts.

0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value

1 = The BRG generates a receive interrupt when it counts down to 0. Reads from the Baud Rate High and Low Byte registers return the current BRG count value.

When the UART receiver is enabled (REN=1), this bit allows reads from the Baud Rate Registers to return the BRG count value instead of the Reload Value.

0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value.

1 = Reads from the Baud Rate High and Low Byte registers return the current BRG count value. Unlike the Timers, there is no mechanism to latch the Low Byte when the High Byte is read.

RDAIRQ—Receive Data Interrupt Enable

0 = Received data and receiver errors generates an interrupt request to the Interrupt Controller.

1 = Received data does not generate an interrupt request to the Interrupt Controller. Only receiver errors generate an interrupt request.

IREN—Infrared Encoder/Decoder Enable

0 = Infrared Encoder/Decoder is disabled. UART operates normally.

1 = Infrared Encoder/Decoder is enabled. The UART transmits and receives data through the Infrared Encoder/Decoder.

UART Address Compare Register

The UART Address Compare register stores the multi-node network address of the UART. When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare register. Receive interrupts and RDA assertions only occur in the event of a match.

Table 68. UART Address Compare Register (U0ADDR)

BITS	7	6	5	4	3	2	1	0
FIELD	COMP_ADDR							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F45H							

COMP_ADDR—Compare Address

This 8-bit value is compared to incoming address bytes.

UART Baud Rate High and Low Byte Registers

The UART Baud Rate High and Low Byte registers (Tables 69 and 70) combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART.

Table 69. UART Baud Rate High Byte Register (U0BRH)

BITS	7	6	5	4	3	2	1	0
FIELD	BRH							
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F46H							

Table 70. UART Baud Rate Low Byte Register (U0BRL)

BITS	7	6	5	4	3	2	1	0
FIELD	BRL							
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F47H							

The UART data rate is calculated using the following equation:

$$\text{UART Baud Rate (bits/s)} = \frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$$

For a given UART data rate, calculate the integer baud rate divisor value using the following equation:

$$\text{UART Baud Rate Divisor Value (BRG)} = \text{Round}\left(\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Data Rate (bits/s)}}\right)$$

The baud rate error relative to the acceptable baud rate is calculated using the following equation:

$$\text{UART Baud Rate Error (\%)} = 100 \times \left(\frac{\text{Actual Data Rate} - \text{Desired Data Rate}}{\text{Desired Data Rate}} \right)$$

For reliable communication, the UART baud rate error must never exceed 5 percent.

Table 71 provides information about data rate errors for popular baud rates and commonly used crystal oscillator frequencies.

Table 71. UART Baud Rates

10.0 MHz System Clock				5.5296 MHz System Clock			
Acceptable Rate (KHz)	BRG Divisor (Decimal)	Actual Rate (KHz)	Error (%)	Acceptable Rate (KHz)	BRG Divisor (Decimal)	Actual Rate (KHz)	Error (%)
1250.0	N/A	N/A	N/A	1250.0	N/A	N/A	N/A
625.0	1	625.0	0.00	625.0	N/A	N/A	N/A
250.0	3	208.33	-16.67	250.0	1	345.6	38.24
115.2	5	125.0	8.51	115.2	3	115.2	0.00
57.6	11	56.8	-1.36	57.6	6	57.6	0.00
38.4	16	39.1	1.73	38.4	9	38.4	0.00
19.2	33	18.9	0.16	19.2	18	19.2	0.00
9.60	65	9.62	0.16	9.60	36	9.60	0.00
4.80	130	4.81	0.16	4.80	72	4.80	0.00
2.40	260	2.40	-0.03	2.40	144	2.40	0.00
1.20	521	1.20	-0.03	1.20	288	1.20	0.00
0.60	1042	0.60	-0.03	0.60	576	0.60	0.00

Table 71. UART Baud Rates (Continued)

0.30	2083	0.30	0.2	0.30	1152	0.30	0.00
------	------	------	-----	------	------	------	------

Table 71. UART Baud Rates (Continued)

3.579545 MHz System Clock				1.8432 MHz System Clock			
Acceptable Rate (KHz)	BRG Divisor (Decimal)	Actual Rate (KHz)	Error (%)	Acceptable Rate (KHz)	BRG Divisor (Decimal)	Actual Rate (KHz)	Error (%)
1250.0	N/A	N/A	N/A	1250.0	N/A	N/A	N/A
625.0	N/A	N/A	N/A	625.0	N/A	N/A	N/A
250.0	1	223.72	-10.51	250.0	N/A	N/A	N/A
115.2	2	111.9	-2.90	115.2	1	115.2	0.00
57.6	4	55.9	-2.90	57.6	2	57.6	0.00
38.4	6	37.3	-2.90	38.4	3	38.4	0.00
19.2	12	18.6	-2.90	19.2	6	19.2	0.00
9.60	23	9.73	1.32	9.60	12	9.60	0.00
4.80	47	4.76	-0.83	4.80	24	4.80	0.00
2.40	93	2.41	0.23	2.40	48	2.40	0.00
1.20	186	1.20	0.23	1.20	96	1.20	0.00
0.60	373	0.60	-0.04	0.60	192	0.60	0.00
0.30	746	0.30	-0.04	0.30	384	0.30	0.00

Infrared Encoder/Decoder

The Z8 Encore! XP® F08xA Series products contain a fully-functional, high-performance UART with Infrared Encoder/Decoder (Endec). The Infrared Endec is integrated with an on-chip UART to allow easy communication between the Z8 Encore!® MCU and IrDA Physical Layer specification, Version 1.3-compliant infrared transceivers. Infrared communication provides secure, reliable, low-cost, point-to-point communication between PCs, PDAs, cell phones, printers, and other infrared enabled devices.

Architecture

Figure 16 illustrates the architecture of the Infrared Endec.

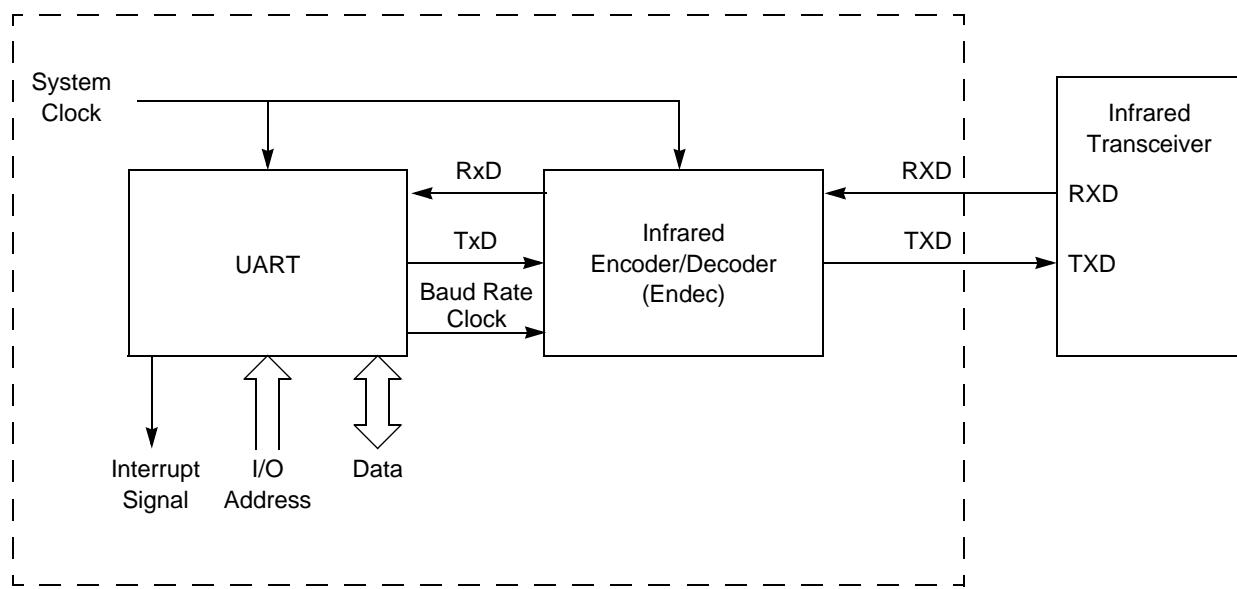


Figure 16. Infrared Data Communication System Block Diagram

Operation

When the Infrared Endec is enabled, the transmit data from the associated on-chip UART is encoded as digital signals in accordance with the IrDA standard and output to the infrared transceiver through the TXD pin. Similarly, data received from the infrared transceiver is passed to the Infrared Endec through the RXD pin, decoded by the Infrared Endec, and

passed to the UART. Communication is half-duplex, which means that simultaneous data transmission and reception is not allowed.

The baud rate is set by the UART's baud rate generator (BRG) and supports IrDA standard baud rates from 9600 baud to 115.2 Kbaud. Higher baud rates are possible, but do not meet IrDA specifications. The UART must be enabled to use the Infrared Endec. The Infrared Endec data rate is calculated using the following equation:

$$\text{Infrared Data Rate (bits/s)} = \frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$$

Transmitting IrDA Data

The data to be transmitted using the infrared transceiver is first sent to the UART. The UART's transmit signal (TXD) and baud rate clock are used by the IrDA to generate the modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared data bit is 16 clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains low for the full 16 clock period. If the data to be transmitted is 0, the transmitter first outputs a seven clock low period, followed by a 3 clock high pulse. Finally, a 6 clock low pulse is output to complete the full 16 clock data period. [Figure 17](#) illustrates IrDA data transmission. When the Infrared Endec is enabled, the UART's TXD signal is internal to the Z8 Encore! XP® F08xA Series products while the IR_TXD signal is output through the TXD pin.

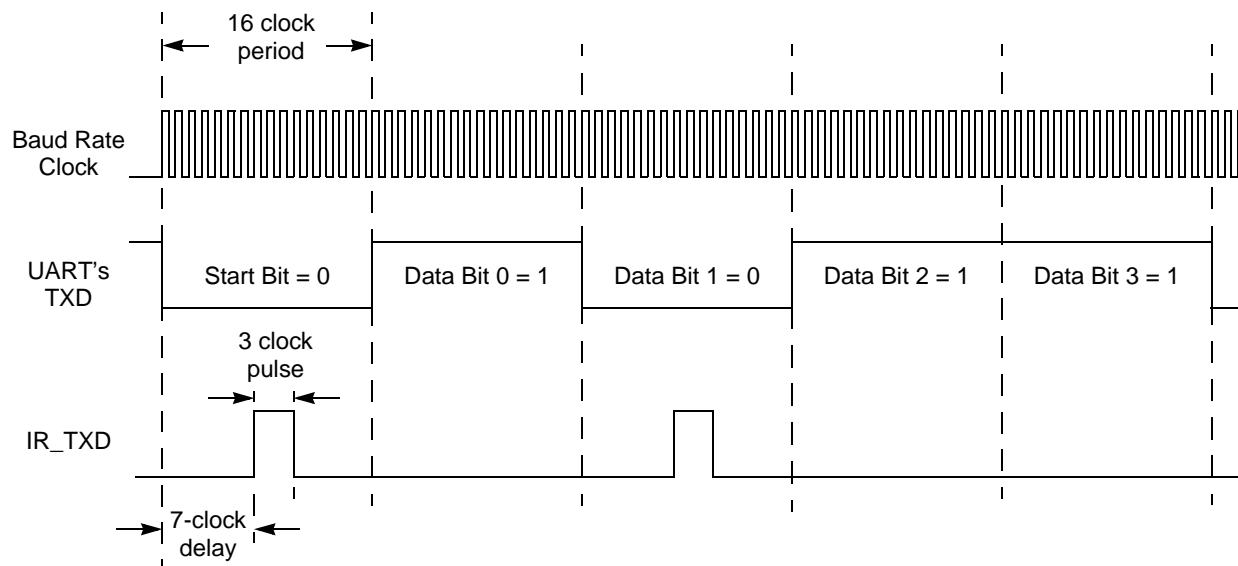


Figure 17. Infrared Data Transmission

Receiving IrDA Data

Data received from the infrared transceiver using the IR_RXD signal through the RXD pin is decoded by the Infrared Endec and passed to the UART. The UART's baud rate clock is used by the Infrared Endec to generate the demodulated signal (RXD) that drives the UART. Each UART/Infrared data bit is 16-clocks wide. Figure 18 illustrates data reception. When the Infrared Endec is enabled, the UART's RXD signal is internal to the Z8 Encore! XP® F08xA Series products while the IR_RXD signal is received through the RXD pin.

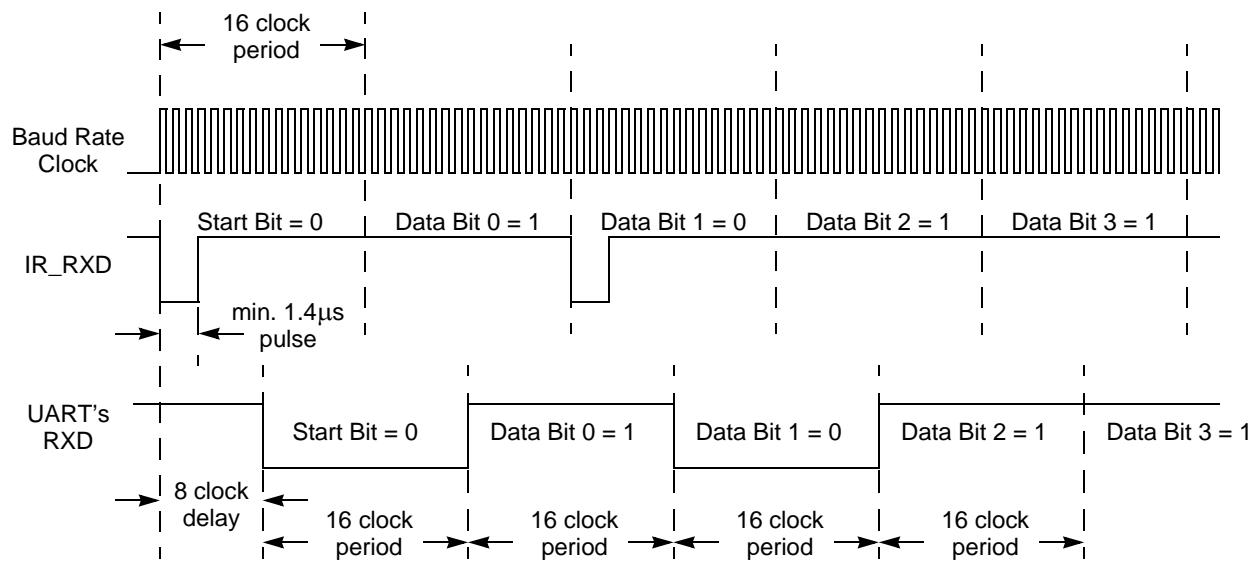


Figure 18. IrDA Data Reception

Infrared Data Reception

Caution: The system clock frequency must be at least 1.0 MHz to ensure proper reception of the 1.4 μ s minimum width pulses allowed by the IrDA standard.

Endec Receiver Synchronization

The IrDA receiver uses a local baud rate clock counter (0 to 15 clock periods) to generate an input stream for the UART and to create a sampling window for detection of incoming pulses. The generated UART input (UART RXD) is delayed by 8 baud rate clock periods with respect to the incoming IrDA data stream. When a falling edge in the input data stream is detected, the Endec counter is reset. When the count reaches a value of 8, the UART RXD value is updated to reflect the value of the decoded data. When the count reaches 12 baud clock periods, the sampling window for the next incoming pulse opens. The window remains open until the count again reaches 8 (in other words, 24 baud clock periods since the previous pulse was detected), giving the Endec a sampling window of

minus four baud rate clocks to plus eight baud rate clocks around the expected time of an incoming pulse. If an incoming pulse is detected inside this window this process is repeated. If the incoming data is a logical 1 (no pulse), the Endec returns to the initial state and waits for the next falling edge. As each falling edge is detected, the Endec clock counter is reset, re-synchronizing the Endec to the incoming signal, allowing the Endec to tolerate jitter and baud rate errors in the incoming data stream. Re-synchronizing the Endec does not alter the operation of the UART, which ultimately receives the data. The UART is only synchronized to the incoming data stream when a Start bit is received.

Infrared Encoder/Decoder Control Register Definitions

All Infrared Endec configuration and status information is set by the UART control registers as defined beginning on [page 92](#).

Caution: To prevent spurious signals during IrDA data transmission, set the `IREN` bit in the UART Control 1 register to 1 to enable the Infrared Endec before enabling the GPIO Port alternate function for the corresponding pin.

Analog-to-Digital Converter

The analog-to-digital converter (ADC) converts an analog input signal to its digital representation. The features of this sigma-delta ADC include:

- 11-bit resolution in DIFFERENTIAL mode.
- 10-bit resolution in SINGLE-ENDED mode.
- Eight single-ended analog input sources are multiplexed with GPIO ports.
- 9th analog input obtained from temperature sensor peripheral.
- Eleven pairs of differential inputs also multiplexed with GPIO ports.
- Differential input gain with two selectable values: unity and 20x.
- Transimpedance amplifier for current measurements.
- Interrupt on conversion complete.
- Interrupt on sample value greater than programmable high threshold.
- Interrupt on sample value smaller than programmable low threshold.
- Internal voltage reference generator with three selectable levels.
- Manual in-circuit calibration is possible employing user code (offset calibration).

Architecture

Figure 19 illustrates the major functional blocks of the ADC. An analog multiplexer network selects the ADC input from the available analog pins, ANA0 through ANA7.

The input stage of the ADC allows both differential gain and buffering. The following input options are available:

- Unbuffered input (SINGLE-ENDED and DIFFERENTIAL modes).
- Buffered input with unity gain (SINGLE-ENDED and DIFFERENTIAL modes).
- Buffered input with 20x gain (DIFFERENTIAL mode only).
- Transimpedance mode with full pin access to the feedback path.

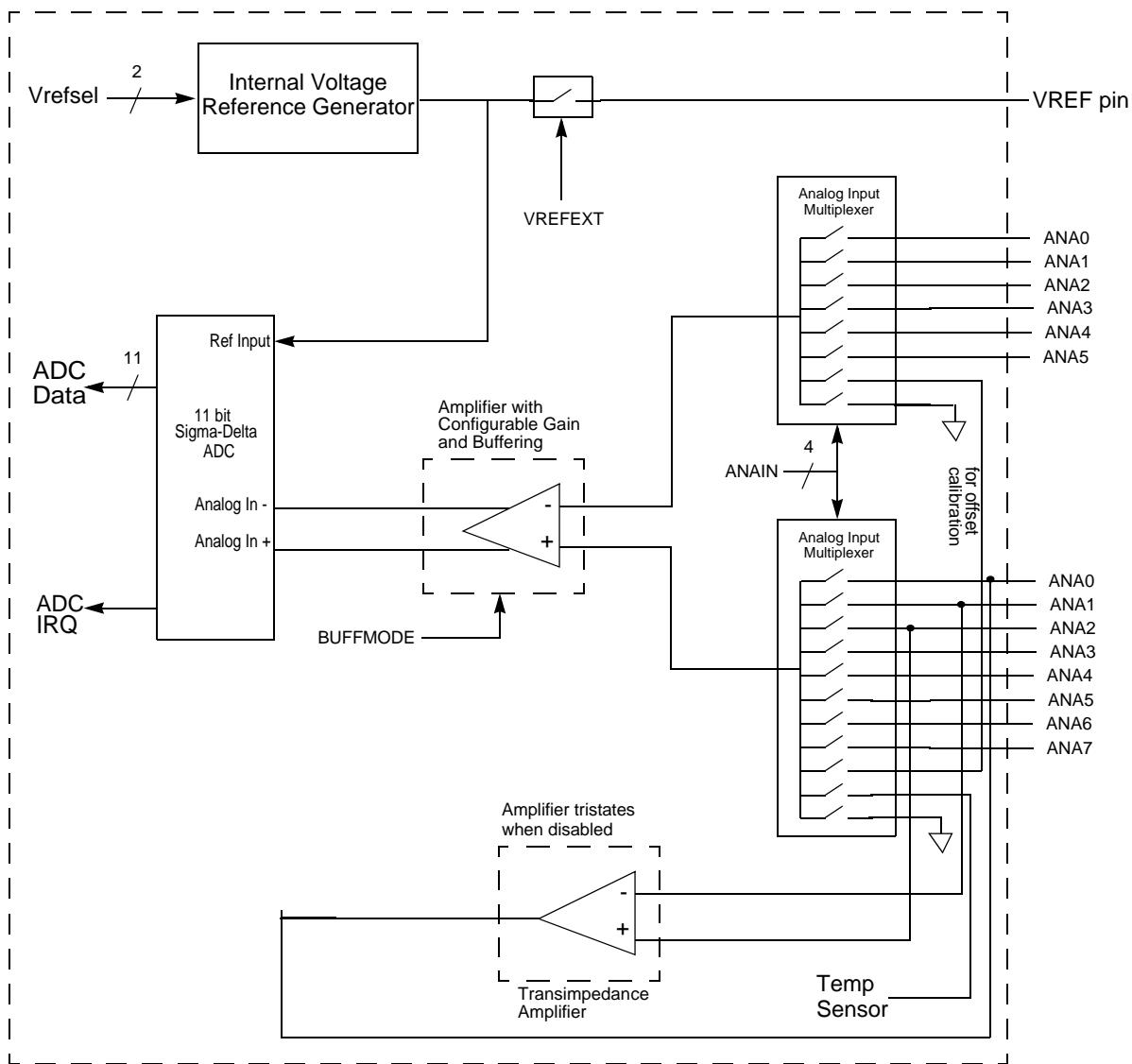


Figure 19. Analog-to-Digital Converter Block Diagram

Operation

The following sections describe the function of ADC.

Data Format

In both SINGLE-ENDED and DIFFERENTIAL modes, the output of the ADC is an 11-bit, signed, two's complement digital value. In DIFFERENTIAL mode, the ADC output values across the entire 11-bit range, from -1024 to +1023. In SINGLE-ENDED mode, the output generally ranges from 0 to +1023, but offset errors cause small negative values.

The ADC registers return 13 bits of data, but the two LSBs are intended for compensation use only. When the compensation routine is performed on the 13-bit raw ADC value, two bits of resolution are lost because of a rounding error. As a result, the final value is an 11-bit number.

Automatic Powerdown

If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles, portions of the ADC are automatically powered down. From this Powerdown state, the ADC requires 40 system clock cycles to powerup. The ADC powers up when a conversion is requested by the ADC Control register.

Single-Shot Conversion

When configured for single-shot conversion, the ADC performs a single analog-to-digital conversion on the selected analog input channel. After completion of the conversion, the ADC shuts down. The steps for setting up the ADC and initiating a single-shot conversion are as follows:

1. Enable the acceptable analog inputs by configuring the GPIO pins for alternate function. This configuration disables the digital input and output drivers.
2. Write the [ADC High Threshold Register](#) and [ADC Low Threshold Register](#) if the alarm function is required.
3. Write the [ADC Control/Status Register 1](#) to configure the ADC as follows:
 - Write to BUFSIZE[2:0] to select SINGLE-ENDED or DIFFERENTIAL mode, as well as unbuffered, buffered, 20x buffered gain (in DIFFERENTIAL mode only), or TRANSIMPEDANCE mode.
 - If the alarm function is required, set ALMHEN and/or ALMLEN.
 - Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELH bit is contained in the [ADC Control/Status Register 1](#).
4. Write to the [ADC Control Register 0](#) to configure the ADC and begin the conversion. The bit fields in the ADC Control register is written simultaneously:
 - Write to the ANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device)

- Clear CONT to 0 to select a single-shot conversion.
- If the internal voltage reference must be output to a pin, set the REFEXT bit to 1. The internal voltage reference must be enabled in this case.
- Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELL bit is contained in the [ADC Control Register 0](#).
- Set CEN to 1 to start the conversion.

5. The bit CEN remains 1 while the conversion is in progress. A single-shot conversion requires 5129 system clock cycles to complete. If a single-shot conversion is requested from an ADC powered-down state, the ADC uses 40 additional clock cycles to power up before beginning the 5129-cycle conversion.
6. When the conversion is complete, the ADC control logic performs the following operations:
 - 11-bit two's-complement result written to {ADCD_H[7:0], ADCD_L[7:5]}.
 - The CEN bits resets to 0 to indicate the conversion is complete.
 - If the High and Low alarms are disabled, an interrupt request is sent to the Interrupt Controller denoting conversion complete.
 - If the High alarm is enabled and the ADC value is higher than the alarm threshold, an interrupt is generated.
 - If the Low alarm is enabled and the ADC value is lower than the alarm threshold, an interrupt is generated.
7. If the ADC remains idle for 160 consecutive system clock cycles, it is automatically powered down.

Continuous Conversion

When configured for continuous conversion, the ADC continuously performs an analog-to-digital conversion on the selected analog input. Each new data value over-writes the previous value stored in the ADC Data registers. An interrupt is generated after each conversion.

Caution: In CONTINUOUS mode, ADC updates are limited by the input signal bandwidth of the ADC and the latency of the ADC and its digital filter. Step changes at the input are not detected at the next output from the ADC. The response of the ADC (in all modes) is limited by the input signal bandwidth and the latency.

Follow these steps to set up the ADC and initiating continuous conversion:

1. Enable the acceptable analog input by configuring the GPIO pins for alternate function. This action disables the digital input and output driver.

2. Write the [ADC High Threshold Register](#) and [ADC Low Threshold Register](#) if the alarm function is required.
3. Write the [ADC Control/Status Register 1](#) to configure the ADC as follows:
 - Write to BUFSIZE[2:0] to select SINGLE-ENDED or DIFFERENTIAL mode, as well as unbuffered, buffered, 20x buffered gain (in DIFFERENTIAL mode only) or transimpedance mode
 - If the alarm function is required, set ALMHEN and/or ALMLEN
 - Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELH bit is contained in the [ADC Control/Status Register 1](#).
4. Write to the [ADC Control Register 0](#) to configure the ADC for continuous conversion. The bit fields in the ADC Control register can be written simultaneously:
 - Write to the ANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device).
 - Set CONT bit to 1 to select continuous conversion.
 - If the internal V_{REF} must be output to a pin, set the REFEVT bit to 1. The internal voltage reference must be enabled in this case.
 - Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELL bit is contained in [ADC Control Register 0](#).
 - Set CEN bit to 1 to start the conversions.
5. When the first conversion in continuous operation is complete (after 5129 system clock cycles, plus the 40 cycles for powerup, if necessary), the ADC control logic performs the following operations:
 - The CEN bits resets to 0 to indicate that the first conversion is complete. The CEN bit remains 0 for all subsequent conversions in continuous operation.
 - An interrupt request is sent to the Interrupt Controller to indicate the conversion is complete.
6. The ADC writes a new data result every 256 system clock cycles. For each completed conversion, the ADC control logic performs the following operations:
 - Writes the 11-bit two's complement result to {ADCD_H[7:0], ADCD_L[7:5]}.
 - If the high and low alarms are disabled, sends an interrupt request to the Interrupt Controller denoting conversion complete.
 - If the high alarm is enabled and the ADC value is higher than the alarm threshold, generates an interrupt.
 - If the low alarm is enabled and the ADC value is lower than the alarm threshold, generates an interrupt.

7. To disable continuous conversion, clear the CONT bit in the ADC Control register to 0.

Programmable Trigger Point Alarm

The ADC contains two programmable trigger values, a High and a Low. Each of these values is 8-bit and is not a two's complement number. The alarm is intended primarily for single-ended operation and so the alarm values reflect only positive numbers. Both thresholds have independent control and status bits.

When enabled and the ADC bits exceed the high threshold, an ADC interrupt is asserted and the high threshold status bit is set. When enabled and the ADC bits are less than the low threshold, an ADC interrupt is asserted and the low threshold status bit is set.

Because the alarm value is positive, it is compared to the most significant 8 data bits of the ADC values, excluding the sign bit. The ADC alarm bits are compared to $\{\text{ADCD_H}[6:0], \text{ADCD_L}[7]\}$. Alternatively, the alarm value is compared to the ADC value shifted left by one bit. Negative ADC values never trigger the high alarm and always trigger the low alarm. Because the ADC output is software compensated for offset, negative (pre-compensated) values occurs in SINGLE-ENDED mode.

The alarm is used in CONTINUOUS mode, in which it no longer is required to service an interrupt for each ADC sample. If used in SINGLE-SHOT mode, the ADC never interrupts the CPU unless the single sample triggers an alarm.

The alarm status bits are updated on each conversion, regardless of the alarm enable bit values. The alarm enable bits only determine whether or not an interrupt is generated.

Interrupts

The ADC is able to interrupt the CPU under the following three conditions:

- When a conversion has been completed.
- When the 8 most significant bits of a sample exceed the programmable high threshold $\text{ADCTHI}[7:0]$.
- When the 8 most significant bits of a sample is less than the programmable low threshold $\text{ADCTLO}[7:0]$.

The conversion interrupt occurs when the ADC is enabled and both alarms are disabled. When either or both alarms are enabled, the conversion interrupt is disabled and only the alarm interrupts occur.

When the ADC is disabled, none of the three sources cause an interrupt to be asserted; however, an interrupt pending when the ADC is disabled is not cleared.

The three interrupt events share a common CPU interrupt. The interrupt service routine must query the ADC status register to determine the cause of an ADC interrupt. The register bits denoting ADC alarm status can only be set by hardware and are cleared by writing a 1.

Calibration and Compensation

The Z8 Encore! XP® F08xA Series ADC can be factory calibrated for offset error and gain error, with the compensation data stored in Flash memory. Alternatively, user code performs its own calibration, storing the values into Flash themselves. The user code performs a manual offset calibration during DIFFERENTIAL mode operation.

Factory Calibration

Devices that have been factory calibrated contain 30 bytes of calibration data in the Flash option bit space. This data consists of three bytes for each input mode. See [ZiLOG Calibration Bits on page 155](#). There is one byte for offset and two bytes for gain correction.

User Calibration

If you have precision references available, its own external calibration can be performed using any of the three available input modes. Because the calibration data considers buffer offset and non-linearity, it is recommended to perform this calibration separately for each of the ADC input modes planned for use.

Manual Offset Calibration

When uncalibrated, the ADC has significant offset (up to 35 mV with unity gain and up to 250 mV in 20x gain mode). Subsequently, manual offset calibration capability is built into the block. When the [ADC Control Register 0](#) sets the input mode (ANAIN[2:0]) to MANUAL OFFSET CALIBRATION mode, the differential inputs to the ADC are shorted together by an internal switch. Reading the ADC value at this point produces 0 in an ideal system. The value actually read is the ADC offset. This value is stored in Flash and accessed by the user code to compensate for the input offset error.

There is no provision for manual gain calibration.

Software Compensation Procedure

The value read from the ADC high and low byte registers are uncompensated. The user mode software must apply gain and offset correction to this uncompensated value for maximum accuracy. The following formula yields the compensated value:

$$ADC_{comp} = (ADC_{uncomp} - OFFCAL) + ((ADC_{uncomp} - OFFCAL) * GAINCAL) / 2^{16}$$

where GAINCAL is the gain calibration byte, OFFCAL is the offset calibration byte and ADC_{uncomp} is the uncompensated value read from the ADC. The OFFCAL value is in two's complement format, as are the compensated and uncompensated ADC values.

► **Note:** The offset compensation is performed first, followed by the gain compensation. One bit of resolution is lost because of rounding on both the offset and gain computations. As a result the ADC registers read back 13 bits: 1 sign bit, two calibration bits lost to rounding, and 10 data bits.

Also note that in the second term, the multiplication should be performed before the division by 2^{16} . Otherwise, the second term will incorrectly evaluate to zero.

Caution: Although the ADC is used without the gain and offset compensation, it does exhibit non-unity gain. Designing the ADC with sub-unity gain reduces noise across the ADC range but requires the ADC results to be scaled by a factor of 8/7.

Input Buffer Stage

Many applications require the measurement of an input voltage source with a high output impedance. This ADC provides a buffered input for such situations. The drawback of the buffered input is a limitation of the input range. When using unity gain buffered mode, the input signal must be prevented from coming within 300 mV of V_{SS} and 400 mV of V_{DD} . Very small input voltages (less than 300 mV) cannot be measured in BUFFERED mode.

This condition applies only to the input voltage level (with respect to ground) of each differential input signal. The actual differential input voltage magnitude is less than 300 mV.

The 20x gain mode has more complicated input signal requirements. Similar to the UNITY-GAIN BUFFERED mode, both inputs must be prevented from coming within 300 mV of either supply. Because of the limitations in the output swing of the 20x gain stage, the following additional constraints apply:

$$430 \text{ mV} < 10(V_{inp} - V_{inn}) + V_{cm} < V_{DD} - 430 \text{ mV}$$

$$430 \text{ mV} < 10(V_{inn} - V_{inp}) + V_{cm} < V_{DD} - 430 \text{ mV}$$

where

$$V_{cm} = (V_{inp} - V_{inn})/2 \text{ (common mode voltage),}$$

V_{inp} is the positive ADC input voltage,

V_{inn} is the negative ADC input voltage

These DIFFERENTIAL mode limitations explain that the common mode voltage of the differential inputs must be significantly above ground and below the supply, and that the differential magnitude must exceed these limitations.

The input range of the unbuffered ADC swings from V_{SS} to V_{DD} . Input signals smaller than 300 mV must use the UNBUFFERED INPUT mode. If these signals do not contain low output impedances, they might require off-chip buffering.

Signals outside the allowable input range are used without instability or device damage. Any ADC readings made outside the input range are subject to greater inaccuracy than specified.

Transimpedance Amplifier

The transimpedance amplifier is a standard operational amplifier designed for current measurements. Each of the three ports of the amplifier is accessible from the package pins. The inverting input is commonly used to connect to the current source. The output node connects an external feedback network to the inverting input. The non-inverting output is required to apply a non-zero bias point. In a standard, single-supply system, this bias point must be substantially above ground to measure positive input currents. The non-inverting input can also be used for offset correction.

The transimpedance amplifier contains only one pin configuration: ANA0 is the output/feedback node, ANA1 is the inverting input, and ANA2 is the non-inverting input.

To use the transimpedance amplifier, it must be enabled in the [Power Control Register 0 \(PWRCTL0\)](#). The default state of the transimpedance amplifier is OFF. To use the transimpedance amplifier, the TRAM bit must be cleared, turning it ON ([Power Control Register 0 \(PWRCTL0\) on page 33](#)). When making normal ADC measurements on ANA0 (not transimpedance measurements), the TRAM bit must be OFF. Turning the TRAM bit ON interferes with normal ADC measurements. Finally, this bit enables the amplifier even in STOP mode. If the amplifier is not required in STOP mode, disable it. Failing to perform this results in STOP mode currents greater than specified.

As with other ADC measurements, any pins used for analog purposes must be configured as such in the GPIO registers (see [Port A–D Alternate Function Sub-Registers on page 45](#)).

Standard transimpedance measurements are made on ANA0, as selected by the ANAIN[3:0] bits of [ADC Control Register 0](#). It is also possible to make single-ended measurements on ANA1 and ANA2 while the amplifier is enabled, which is often useful for determining offset conditions.

The BUFFMODE[2:0] bits of [ADC Control/Status Register 1](#) must also be configured for single-ended, unity-gain buffered operation. Using the transimpedance amplifier in an UNBUFFERED or DIFFERENTIAL mode is not recommended.

When either input is overdriven, the amplifier output saturates at the positive or negative supply voltage. No instability results.

ADC Control Register Definitions

The following sections describe the ADC Control registers.

ADC Control Register 0

The ADC Control register selects the analog input channel and initiates the analog-to-digital conversion.

Table 72. ADC Control Register 0 (ADCCTL0)

BITS	7	6	5	4	3	2	1	0
FIELD	CEN	REFSELL	REFEXT	CONT	ANAIN[3:0]			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F70H							

CEN—Conversion Enable

0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears this bit to 0 when a conversion is complete.

1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already in progress, the conversion restarts. This bit remains 1 until the conversion is complete.

REFSELL—Voltage Reference Level Select Low bit; in conjunction with the High bit (REFSELH) in [ADC Control/Status Register 1](#), this determines the level of the internal voltage reference; the following details the effects of {REFSELH, REFSELL}; note that this reference is independent of the Comparator reference

00= Internal Reference Disabled, reference comes from external pin

01= Internal Reference set to 1.0 V

10= Internal Reference set to 2.0 V (default)

11= Reserved

REFEXT - External Reference Select

0 = External reference buffer is disabled; Vref pin is available for GPIO functions

1 = The internal ADC reference is buffered and connected to the Vref pin

CONT

0 = Single-shot conversion. ADC data is output once at completion of the 5129 system clock cycles

1 = Continuous conversion. ADC data updated every 256 system clock cycles

ANAIN[3:0]—Analog Input Select

These bits select the analog input for conversion. Not all Port pins in this list are available in all packages for the Z8 Encore! XP® F08xA Series. See [Pin Description on page 7](#) for information regarding the port pins available with each package style. Do not enable unavailable analog inputs. Usage of these bits changes depending on the buffer mode selected in [ADC Control/Status Register 1](#).

For the reserved values, all input switches are disabled to avoid leakage or other undesirable operation. ADC samples taken with reserved bit settings are undefined.

SINGLE-ENDED:

0000 = ANA0 (transimpedance amp output when enabled)
0001 = ANA1 (transimpedance amp inverting input)
0010 = ANA2 (transimpedance amp non-inverting input)
0011 = ANA3
0100 = ANA4
0101 = ANA5
0110 = ANA6
0111 = ANA7
1000 = Reserved
1001 = Reserved
1010 = Reserved
1011 = Reserved
1100 = Hold transimpedance input nodes (ANA1 and ANA2) to ground.
1101 = Reserved
1110 = Temperature Sensor.
1111 = MANUAL OFFSET CALIBRATION mode.

Differential (non-inverting input and inverting input respectively):

0000 = ANA0 and ANA1
0001 = ANA2 and ANA3
0010 = ANA4 and ANA5
0011 = ANA1 and ANA0
0100 = ANA3 and ANA2
0101 = ANA5 and ANA4
0110 = ANA6 and ANA5
0111 = ANA0 and ANA2
1000 = ANA0 and ANA3
1001 = ANA0 and ANA4
1010 = ANA0 and ANA5
1011 = Reserved
1100 = Reserved
1101 = Reserved
1110 = Reserved
1111 = MANUAL OFFSET CALIBRATION mode

ADC Control/Status Register 1

The second ADC Control register configures the input buffer stage, enables the threshold interrupts and contains the status of both threshold triggers.

Table 73. ADC Control/Status Register 1 (ADCCTL1)

BITS	7	6	5	4	3	2	1	0
FIELD	REFSELH	ALMHST	ALMLST	ALMHEN	ALMLEN	BUFMODE[2:0]		
RESET	1	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F71H							

REFSELH—Voltage Reference Level Select High bit; in conjunction with the Low bit (REFSELL) in [ADC Control Register 0](#), this determines the level of the internal voltage reference; the following details the effects of {REFSELH, REFSELL}; this reference is independent of the Comparator reference

00= Internal Reference Disabled, reference comes from external pin

01= Internal Reference set to 1.0 V

10= Internal Reference set to 2.0 V (default)

11= Reserved

ALMHST—Alarm High Status; this bit can only be set by hardware and must be written with a 1 to clear

0= No alarm occurred.

1= A high threshold alarm occurred.

ALMLST—Alarm Low Status; this bit can only be set by hardware and must be written with a 1 to clear

0= No alarm occurred.

1= A low threshold alarm occurred.

ALMHEN—Alarm High Enable

0= Alarm interrupt for high threshold is disabled. The alarm status bit remains set when the alarm threshold is passed.

1= High threshold alarm interrupt is enabled.

ALMLEN—Alarm Low Enable

0= Alarm interrupt for low threshold is disabled. The alarm status bit remains set when the alarm threshold is passed.

1= Low threshold alarm interrupt is enabled.

BUFMODE[2:0] - Input Buffer Mode Select

000 = Single-ended, unbuffered input

001 = Single-ended, buffered input with unity gain

010 = Reserved

011 = Reserved
 100 = Differential, unbuffered input
 101 = Differential, buffered input with unity gain
 110 = Reserved
 111 = Differential, buffered input with 20x gain

ADC Data High Byte Register

The ADC Data High Byte register contains the upper eight bits of the ADC output. The output is an 11-bit two's complement value. During a single-shot conversion, this value is invalid. Access to the ADC Data High Byte register is read-only. Reading the ADC Data High Byte register latches data in the ADC Low Bits register.

Table 74. ADC Data High Byte Register (ADCD_H)

BITS	7	6	5	4	3	2	1	0
FIELD	ADCDH							
RESET	X	X	X	X	X	X	X	X
R/W	R	R	R	R	R	R	R	R
ADDR	F72H							

ADCDH—ADC Data High Byte

This byte contains the upper eight bits of the ADC output. These bits are not valid during a single-shot conversion. During a continuous conversion, the most recent conversion output is held in this register. These bits are undefined after a Reset.

ADC Data Low Bits Register

The ADC Data Low Byte register contains the lower bits of the ADC output as well as an overflow status bit. The output is a 11-bit two's complement value. During a single-shot conversion, this value is invalid. Access to the ADC Data Low Byte register is read-only. Reading the ADC Data High Byte register latches data in the ADC Low Bits register.

Table 75. ADC Data Low Bits Register (ADCD_L)

BITS	7	6	5	4	3	2	1	0
FIELD	ADCDL			Reserved				OVF
RESET	X	X	X	X	X	X	X	X
R/W	R	R	R	R	R	R	R	R
ADDR	F73H							

ADCDL—ADC Data Low bits

These bits are the least significant three bits of the 11-bits of the ADC output. These bits are undefined after a Reset.

Reserved—Must be undefined.

OVF—Overflow Status

0= An overflow did not occur in the digital filter for the current sample.

1= An overflow did occur in the digital filter for the current sample.

ADC High Threshold Register

The ADC High Threshold register is used to set the trigger point above which an ADC sample causes a CPU interrupt.

Table 76. ADC High Threshold High Byte (ADCTH)

BITS	7	6	5	4	3	2	1	0
FIELD	ADCTH							
RESET	FF							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F74H							

ADCTH—ADC High Threshold

These bits are compared to the most significant 8 bits of the single-ended ADC value. If the ADC value exceeds this, an interrupt is asserted. The alarm function is not available in DIFFERENTIAL mode.

ADC Low Threshold Register

The ADC Low Threshold register is used to set the trigger point below which an ADC sample causes a CPU interrupt.

Table 77. ADC Low Threshold High Byte (ADCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	ADCTL							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F76H							

ADCTL—ADC Low Threshold

These bits are compared to the most significant 8 bits of the single-ended ADC value. If the ADC value drops below this value an interrupt is asserted. The alarm function is not available in DIFFERENTIAL mode.

Comparator

The Z8 Encore! XP® F08xA Series devices feature a general purpose comparator that compares two analog input signals. A GPIO (CINP) pin provides the positive comparator input. The negative input (CINN) is taken from either an external GPIO pin or an internal reference. The output is available as an interrupt source or the output is routed to an external pin using the GPIO multiplex. Features include:

- Two inputs which are connected up using the GPIO multiplex (MUX).
- One input can be connected to a programmable internal reference.
- One input can be connected to the on-chip temperature sensor.
- Output can be either an interrupt source or an output to an external pin.

Operation

One of the comparator inputs is connected to an internal reference, which is a user selectable reference, and it programmable with 200 mV resolution.

The comparator is powered down to save on supply current. See the [Power Control Register 0](#) on [page 32](#) for details.

Caution: Because of the propagation delay of the comparator, it is not recommended to enable the comparator without disabling the interrupts first and waiting for the comparator output to settle. Doing so can result in spurious interrupts after comparator enabling.

The following example shows how to enable the comparator:

```
di
ld cmp0
nop
nop      ; wait for output to settle
clr irq0 ; clear any spurious interrupts pending
ei
```

Comparator Control Register Definitions

The following sections describe the Comparator Control registers.

Comparator Control Register

The Comparator Control register (CMPCTL) configures the comparator inputs and sets the value of the internal voltage reference.

Table 78. Comparator Control Register (CMP0)

BITS	7	6	5	4	3	2	1	0
FIELD	INPSEL	INNSEL	REFLVL				Reserved	
RESET	0	0	0	1	0	1	0	0
R/W	R/W							
ADDR	F90H							

INPSEL—Signal Select for Positive Input

0 = GPIO pin used as positive comparator input

1 = Temperature sensor used as positive comparator input

INNSEL—Signal Select for Negative Input

0 = Internal reference disabled, GPIO pin used as negative comparator input

1 = Internal reference enabled as negative comparator input

REFLVL—Internal Reference Voltage Level (note that this reference is independent of the ADC voltage reference)

0000 = 0.0 V

0001 = 0.2 V

0010 = 0.4 V

0011 = 0.6 V

0100 = 0.8 V

0101 = 1.0 V (Default)

0110 = 1.2 V

0111 = 1.4 V

1000 = 1.6 V

1001 = 1.8 V

1010–1111 = Reserved

Temperature Sensor

The on-chip temperature sensor allows the user the ability to measure temperature on the die to an accuracy of roughly ± 7 °C over a range of -40 °C to +105 °C. Over a reduced range, the accuracy is significantly better. This block is a moderately accurate temperature sensor for low-power applications where high accuracy is not required. Uncalibrated accuracy is significantly worse, therefore the temperature sensor is not recommended for untrimmed use.

- On-chip temperature sensor.
- ± 7 °C full-range accuracy for calibrated version.
- ± 1.5 °C accuracy over the range of 20 °C to 30 °C.
- Flash recalibration capability.

Operation

The on-chip temperature sensor is proportional to absolute temperature (PTAT) topology which has provision for zero point calibration. A pair of Flash option bytes contain the calibration data. The temperature sensor can be disabled by a bit in the [Power Control Register 0 \(page 32\)](#) to reduce power consumption.

The temperature sensor can be directly read by the ADC to determine the absolute value of its output. The temperature sensor output is also available as an input to the comparator for threshold type measurement determination. The accuracy of the sensor when used with the comparator is substantially less than when measured by the ADC.

If the temperature sensor is routed to the ADC, the ADC must be configured in UNITY-GAIN BUFFERED mode ([See Input Buffer Stage on page 124](#).) The value read back from the ADC is a signed number, although it is always positive.

Maximum accuracy can be obtained by user re-trimming the sensor using an external reference and using a high-precision external reference in the target application.

During normal operation, the die undergoes heating that will cause a mismatch between the ambient temperature and that measured by the sensor. For best results, the Z8 Encore! XP® device must be placed in STOP mode for sufficient time such that the die and ambient temperatures converge (this time will be dependent on the thermal design of the system). The temperature sensor measurement should then be made immediately after recovery from STOP mode.

The following equation defines the transfer function between the temperature sensor output voltage and the die temperature:

$T = 100*V - 77$ (where T is the temperature in C; V is the sensor output in Volts)

Assuming a compensated ADC measurement, the following equation defines the relationship between the ADC reading and the die temperature:

$T = (25/128)*ADC - 77$ (where T is the temperature in C; ADC is the 10 bit compensated ADC value)

Calibration

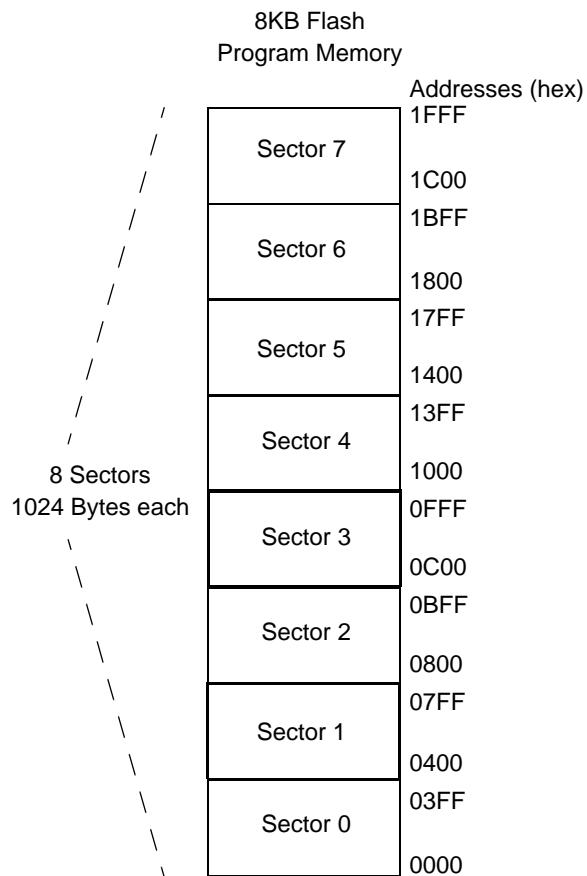
The temperature sensor undergoes calibration during the manufacturing process and is maximally accurate only at 30°C. Accuracy decreases as measured temperatures move further from the calibration point.

Because this sensor is an on-chip sensor, it is recommended that the user account for the difference between ambient and die temperature when inferring ambient temperature conditions.

Flash Memory

The products in the Z8 Encore! XP® F08xA Series features 8 KB (8192) of non-volatile Flash memory with read/write/erase capability. The Flash memory can be programmed and erased in-circuit by either user code or through the on-chip debugger.

The Flash memory array is arranged in pages with 512 bytes per page. The 512-byte page is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64 bytes.


For program/data protection, the Flash memory is also divided into sectors. In the Z8 Encore! XP® F08xA Series, these sectors are 1024 bytes in size; so the Flash memory is divided into eight sectors.

The first 2 bytes of the Flash Program memory are used as Flash Option bits. See [Flash Option Bits on page 148](#) for more information about their operation.

[Table 79](#) describes the Flash memory configuration for each device in the Z8 Encore! XP® F08xA Series. [Figure 20](#) illustrates the Flash memory arrangement.

Table 79. Z8 Encore! XP® F08xA Series Flash Memory Configurations

Part Number	Flash Size KB (Bytes)	Flash Pages	Program Memory Addresses	Flash Sector Size (bytes)
Z8 Encore! XP® F08xA Series	8 (8192)	16	0000H–1FFFH	1024

Figure 20. Flash Memory Arrangement

Flash Information Area

The Flash Information Area is separate from Program memory and is mapped to the address range `FE00H` to `FFFFH`. Not all of these addresses are user accessible. Factory trim values for the analog peripherals are stored here. Factory calibration data for the ADC is also stored here.

Operation

The Flash Controller programs and erases Flash memory. The Flash Controller provides the proper Flash controls and timing for byte programming, Page Erase, and Mass Erase of Flash memory.

The Flash Controller contains several protection mechanisms to prevent accidental programming or erasure. These mechanism operate on the page, sector, and full-memory levels.

The flowchart in [Figure 21](#) illustrates basic Flash Controller operation. The following subsections provide details about the various operations (Lock, Unlock, Byte Programming, Page Protect, Page Unprotect, Page Select Page Erase, and Mass Erase) listed in [Figure 21](#).

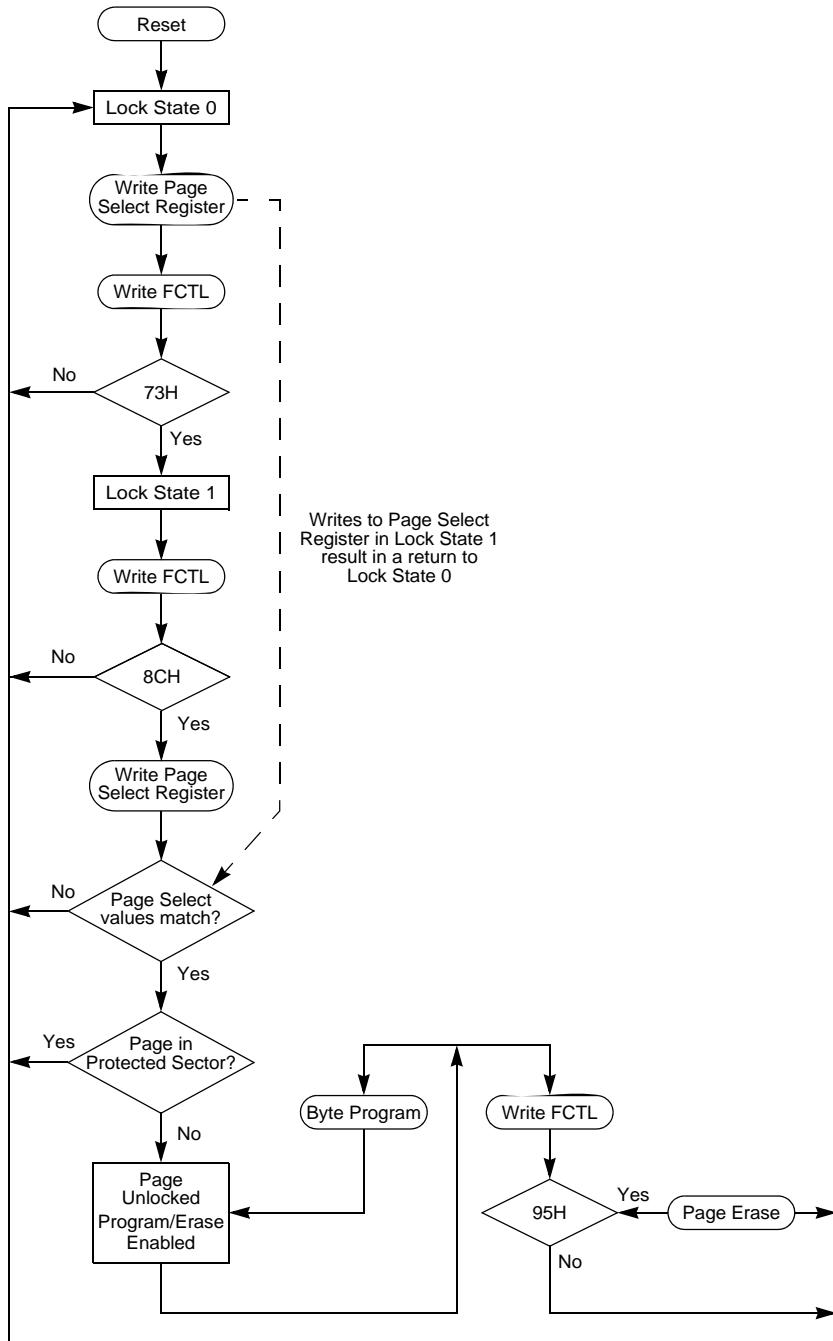


Figure 21. Flash Controller Operation Flow Chart

Flash Operation Timing Using the Flash Frequency Registers

Before performing either a program or erase operation on Flash memory, you must first configure the Flash Frequency High and Low Byte registers. The Flash Frequency registers allow programming and erasing of the Flash with system clock frequencies ranging from 32 KHz (32768 Hz) through 20 MHz.

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash Frequency value must contain the system clock frequency (in KHz). This value is calculated using the following equation:

$$\text{FFREQ[15:0]} = \frac{\text{System Clock Frequency (Hz)}}{1000}$$

Caution: Flash programming and erasure are not supported for system clock frequencies below 32 KHz (32768 Hz) or above 20 MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to ensure operation of the Z8 Encore! XP® F08xA Series devices.

Flash Code Protection Against External Access

The user code contained within the Flash memory can be protected against external access with the on-chip debugger. Programming the FRP Flash Option bit prevents reading of the user code with the on-chip debugger. See [Flash Option Bits on page 148](#) and [On-Chip Debugger on page 158](#) for more information.

Flash Code Protection Against Accidental Program and Erasure

The Z8 Encore! XP® F08xA Series provides several levels of protection against accidental program and erasure of the Flash memory contents. This protection is provided by a combination of the Flash Option bits, the register locking mechanism, the page select redundancy and the sector level protection control of the Flash Controller.

Flash Code Protection Using the Flash Option Bits

The FHSWP and FWP Flash Option bits combine to provide three levels of Flash Program Memory protection as listed in [Table 80](#). See [Flash Option Bits on page 148](#) for more information.

Table 80. Flash Code Protection Using the Flash Option Bits

FHSPW	FWP	Flash Code Protection Description
0	0	Programming and erasing disabled for all of Flash Program Memory. In user code programming, Page Erase, and Mass Erase are all disabled. Mass Erase is available through the On-Chip Debugger.
0 or 1	1	Programming, Page Erase, and Mass Erase are enabled for all of Flash Program Memory.

Flash Code Protection Using the Flash Controller

At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash memory. To program or to erase the Flash Memory, first write the Page Select register with the target page. Unlock the Flash Controller by making two consecutive writes to the Flash Control register with the values 73H and 8CH, sequentially. The Page Select register must be rewritten with the same page previously stored there. If the two Page Select writes do not match, the controller reverts to a locked state. If the two writes match, the selected page becomes active. See [Figure 21](#) for details.

After unlocking a specific page, you can enable either Page Program or Erase. Writing the value 95H causes a Page Erase only if the active page resides in a sector that is not protected. Any other value written to the Flash Control register locks the Flash Controller. Mass Erase is not allowed in the user code but only in through the Debug port.

After unlocking a specific page, the user can also write to any byte on that page. After a byte is written, the page remains unlocked, allowing for subsequent writes to other bytes on the same page. Further writes to the Flash Control register cause the active page to revert to a locked state.

Sector Based Flash Protection

The final protection mechanism is implemented on a per-sector basis. The Flash memories of Z8 Encore!® devices are divided into maximum number of 8 sectors. A sector is 1/8 of the total size of the Flash memory, unless this value is smaller than the page size, in which case the sector and page sizes are equal. On the Z8 Encore! XP® F08xA Series devices, the sector size is 1024 bytes, equal to twice the page size.

The Sector Protect register controls the protection state of each flash sector. This register is shared with the Page Select register. It is accessed by writing 73H followed by 5EH to the Flash controller. The next write to the Flash Control register targets the Sector Protect register.

The Sector Protect register is initialized to 0 on reset, putting each sector into an unprotected state. When a bit in the Sector Protect register is written to 1, the corresponding sec-

tor cannot be written or erased. After a bit of the Sector Protect register has been set, it can not be cleared except by powering down the device.

Byte Programming

The Flash Memory is enabled for byte programming after unlocking the Flash Controller and successfully enabling either Mass Erase or Page Erase. When the Flash Controller is unlocked and Mass Erase is successfully enabled, all Program Memory locations are available for byte programming. In contrast, when the Flash Controller is unlocked and Page Erase is successfully enabled, only the locations of the selected page are available for byte programming. An erased Flash byte contains all 1's (FFH). The programming operation can only be used to change bits from 1 to 0. To change a Flash bit (or multiple bits) from 0 to 1 requires execution of either the Page Erase or Mass Erase commands.

Byte Programming can be accomplished using the on-chip debugger's Write Memory command or eZ8 CPU execution of the LDC or LDCI instructions. Refer to the *eZ8 CPU User Manual (UM0128* available for download at www.zilog.com) for a description of the LDC and LDCI instructions. While the Flash Controller programs the Flash memory, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. To exit programming mode and lock the Flash, write any value to the Flash Control register, except the Mass Erase or Page Erase commands.

Caution: The byte at each address of the Flash memory cannot be programmed (any bits written to 0) more than twice before an erase cycle occurs.

Page Erase

The Flash memory can be erased one page (512 bytes) at a time. Page Erasing the Flash memory sets all bytes in that page to the value FFH. The Flash Page Select register identifies the page to be erased. Only a page residing in an unprotected sector can be erased. With the Flash Controller unlocked and the active page set, writing the value 95h to the Flash Control register initiates the Page Erase operation. While the Flash Controller executes the Page Erase operation, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. The eZ8 CPU resumes operation after the Page Erase operation completes. If the Page Erase operation is performed using the on-chip debugger, poll the Flash Status register to determine when the Page Erase operation is complete. When the Page Erase is complete, the Flash Controller returns to its locked state.

Mass Erase

The Flash memory can also be Mass Erased using the Flash Controller, but only by using the on-chip debugger. Mass Erasing the Flash memory sets all bytes to the value FFH. With the Flash Controller unlocked and the Mass Erase successfully enabled, writing the value 63H to the Flash Control register initiates the Mass Erase operation. While the Flash

Controller executes the Mass Erase operation, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. Using the on-chip debugger, poll the Flash Status register to determine when the Mass Erase operation is complete. When the Mass Erase is complete, the Flash Controller returns to its locked state.

Flash Controller Bypass

The Flash Controller is bypassed and the control signals for the Flash memory is brought out to the GPIO pins. Bypassing the Flash Controller allows faster Row programming algorithms by controlling the Flash programming signals directly.

Row programming is recommended for gang programming applications and large volume customers who do not require in-circuit initial programming of the Flash memory. Mass Erase and Page Erase operations are also supported when the Flash Controller is bypassed.

Refer to the document *Third-Party Flash Programming Support for Z8 Encore!®* for more information about bypassing the Flash Controller. This document is available for download at www.zilog.com.

Flash Controller Behavior in Debug Mode

The following changes in behavior of the Flash Controller occur when the Flash Controller is accessed using the OCD:

- The Flash Write Protect Option bit is ignored.
- The Flash Sector Protect register is ignored for programming and erase operations.
- Programming operations are not limited to the page selected in the Page Select register.
- Bits in the Flash Sector Protect register can be written to one or zero.
- The second write of the Page Select register to unlock the Flash Controller is not necessary.
- The Page Select register can be written when the Flash Controller is unlocked.
- The Mass Erase command is enabled through the Flash Control register.

Caution: For security reasons, flash controller allows only a single page to be opened for write/erase. When writing multiple flash pages, the flash controller must go through the unlock sequence again to select another page.

Flash Control Register Definitions

The following sections describe the Flash Control registers.

Flash Control Register

The Flash Controller must be unlocked using the Flash Control register before programming or erasing the Flash memory. Writing the sequence 73H 8CH, sequentially, to the Flash Control register unlocks the Flash Controller. When the Flash Controller is unlocked, the Flash memory can be enabled for Mass Erase or Page Erase by writing the appropriate enable command to the FCTL. Page Erase applies only to the active page selected in Flash Page Select register. Mass Erase is enabled only through the on-chip debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to its locked state. The write-only Flash Control register shares its Register File address with the read-only Flash Status register.

Table 81. Flash Control Register (FCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	FCMD							
RESET	0	0	0	0	0	0	0	0
R/W	W	W	W	W	W	W	W	W
ADDR	FF8H							

FCMD—Flash Command

73H = First unlock command.

8CH = Second unlock command.

95H = Page Erase command (must be third command in sequence to initiate Page Erase).

63H = Mass Erase command (must be third command in sequence to initiate Mass Erase).

5EH = Enable Flash Sector Protect Register Access

Flash Status Register

The Flash Status register indicates the current state of the Flash Controller. This register can be read at any time. The read-only Flash Status register shares its Register File address with the write-only Flash Control register.

Table 82. Flash Status Register (FSTAT)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved							
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
ADDR	FF8H							

Reserved—Must be 0.

FSTAT—Flash Controller Status

000000 = Flash Controller locked.

000001 = First unlock command received (73H written).

000010 = Second unlock command received (8CH written).

000011 = Flash Controller unlocked.

000100 = Sector protect register selected.

001xxx = Program operation in progress.

010xxx = Page erase operation in progress.

100xxx = Mass erase operation in progress

Flash Page Select Register

The Flash Page Select register shares address space with the Flash Sector Protect register. Unless the Flash controller is unlocked and written with 5EH, writes to this address target the Flash Page Select register.

The register is used to select one of the eight available Flash Memory pages to be programmed or erased. Each Flash Page contains 512 bytes of Flash memory. During a Page Erase operation, all Flash memory having addresses with the most significant 7-bits given by FPS[6:0] are chosen for program/erase operation.

Table 83. Flash Page Select Register (FPS)

BITS	7	6	5	4	3	2	1	0	
FIELD	INFO_EN	PAGE							
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR	FF9H								

INFO_EN—Information Area Enable

0 = Information Area is not selected

1 = Information Area is selected. The Information Area is mapped into the Program Memory address space at addresses FE00H through FFFFH.

PAGE—Page Select

This 7-bit field identifies the Flash memory page for Page Erase and page unlocking.

Program Memory Address[15:9] = PAGE[6:0]. For the Z8F04xx and Z8F02xx devices, the upper four bits must always be 0. For the Z8F01xx devices, the upper five bits must always be 0.

Flash Sector Protect Register

The Flash Sector Protect register is shared with the Flash Page Select Register. When the [Flash Control Register](#) is written with 73H followed by 5EH, the next write to this address targets the Flash Sector Protect register. In all other cases, it targets the Flash Page Select register.

This register selects one of the eight available Flash memory sectors to be protected. The reset state of each Sector Protect bit is an unprotected state. After a sector is protected by setting its corresponding register bit, it cannot be unprotected (the register bit cannot be cleared) without powering down the device.

Table 84. Flash Sector Protect Register (FPROT)

BITS	7	6	5	4	3	2	1	0
FIELD	SPROT7	SPROT6	SPROT5	SPROT4	SPROT3	SPROT2	SPROT1	SPROT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FF9H							

SPROT7-SPROT0—Sector Protection

Each bit corresponds to a 1024 byte Flash sector. For the Z8 Encore! XP® F08xA Series devices all bits are used.

Flash Frequency High and Low Byte Registers

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash

Frequency value must contain the system clock frequency (in KHz) and is calculated using the following equation:.

$$\text{FFREQ[15:0]} = \{\text{FFREQH[7:0]}, \text{FFREQL[7:0]}\} = \frac{\text{System Clock Frequency}}{1000}$$

Caution: Flash programming and erasure is not supported for system clock frequencies below 20 KHz or above 20 MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to ensure proper operation of the device.

Table 85. Flash Frequency High Byte Register (FFREQH)

BITS	7	6	5	4	3	2	1	0
FIELD	FFREQH							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FFAH							

FFREQH—Flash Frequency High Byte
High byte of the 16-bit Flash Frequency value.

Table 86. Flash Frequency Low Byte Register (FFREQL)

BITS	7	6	5	4	3	2	1	0
FIELD	FFREQL							
RESET	0							
R/W	R/W							
ADDR	FFBH							

FFREQL—Flash Frequency Low Byte
Low byte of the 16-bit Flash Frequency value.

Flash Option Bits

Programmable Flash Option bits allow user configuration of certain aspects of Z8 Encore! XP® F08xA Series operation. The feature configuration data is stored in the Flash Program Memory and read during Reset. The features available for control through the Flash Option bits are:

- Watchdog Timer (WDT) time-out response selection—interrupt or system reset.
- WDT enabled at Reset.
- The ability to prevent unwanted read access to user code in Program Memory.
- The ability to prevent accidental programming and erasure of all or a portion of the user code in Program Memory.
- Voltage Brownout (VBO) configuration—always enabled or disabled during STOP mode to reduce STOP mode power consumption.
- VBO response selection—interrupt or system reset.
- Oscillator mode selection—for high, medium, and low power crystal oscillators, or external RC oscillator.
- Factory trimming information for the internal precision oscillator and temperature sensor.
- Factory calibration values for ADC compensation.

Operation

The following sections describe the operation of Flash Option bits.

Option Bit Configuration By Reset

Each time the Flash Option bits are programmed or erased, the device must be Reset for the change to take effect. During any reset operation (System Reset, system reset, or Stop Mode Recovery), the Flash Option bits are automatically read from the Flash Program Memory and written to Option Configuration registers. The Option Configuration registers control operation of the devices within the Z8 Encore! XP® F08xA Series. Option Bit control is established before the device exits Reset and the eZ8 CPU begins code execution. The Option Configuration registers are not part of the Register File and are not accessible for read or write access.

Option Bit Types

The following sections describe the Flash Option bit types.

User Option Bits

The user option bits are contained in the first two bytes of program memory. User access to these bits has been provided because these locations contain application-specific device configurations. The information contained here is lost when page 0 of the program memory is erased.

Trim Option Bits

The trim option bits are contained in the Information Page of the Flash Memory. These bits are factory programmed values required to optimize the operation of onboard analog circuitry and cannot be permanently altered by the user. Program memory can be erased without endangering these values. It is possible to alter working values of these bits by accessing the Trim Bit Address and Data registers, but these working values are lost after a power loss.

There are 32 bytes of trim data. To modify one of these values the user code must first write a value between 00H and 1FH into the Trim Bit Address register. The next write to the Trim Bit Data register changes the working value of the target trim data byte.

Reading the trim data requires the user code to write a value between 00H and 1FH into the Trim Bit Address register. The next read from the Trim Bit Data register returns the working value of the target trim data byte.

► **Note:** The trim address range is from information address 20-3F only. The remainder of the information page is not accessible through the trim bit address and data registers.

Calibration Option Bits

The calibration option bits are also contained in the Information Page. These bits are factory programmed values intended for use in software correcting the device's analog performance. To read these values, the user code must employ the LDC instruction to access the information of the address space, as defined in [Flash Information Area on page 15](#).

The following code example shows how to read the calibration data from the Flash information area:

```
; get value at info address 60 (FE60h)
ldx FPS, #80 ; enable access to flash info page
ld R0, #FE
ld R1, #60
ldc R2, @RR0 ; R2 now contains the calibration value
```

Flash Option Bit Control Register Definitions

The following sections describe the Flash Option Bit Control registers.

Trim Bit Address Register

This register contains the target address for an access to the trim option bits.

Table 87. Trim Bit Address Register (TRMADR)

BITS	7	6	5	4	3	2	1	0
FIELD	TRMADR - Trim Bit Address (00H to 1FH)							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FF6H							

Trim Bit Data Register

This register contains the read or write data for access to the trim option bits.

Table 88. Trim Bit Data Register (TRMDR)

BITS	7	6	5	4	3	2	1	0
FIELD	TRMDR - Trim Bit Data							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FF7H							

Flash Option Bit Address Space

The first two bytes of Flash Program Memory at addresses 0000H and 0001H are reserved for the user-programmable Flash Option bits.

Flash Program Memory Address 0000H

Table 89. Flash Option Bits at Program Memory Address 0000H

BITS	7	6	5	4	3	2	1	0
FIELD	WDT_RES	WDT_AO	OSC_SEL[1:0]		VBO_AO	FRP	Reserved	FWP
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Program Memory 0000H							

Note: U = Unchanged by Reset. R/W = Read/Write.

WDT_RES—Watchdog Timer Reset

0 = WDT time-out generates an interrupt request. Interrupts must be globally enabled for the eZ8 CPU to acknowledge the interrupt request.

1 = WDT time-out causes a system reset. This setting is the default for unprogrammed (erased) Flash.

WDT_AO—Watchdog Timer Always On

0 = WDT is automatically enabled on application of system power. WDT cannot be disabled.

1 = WDT is enabled on execution of the WDT instruction. Once enabled, the WDT can only be disabled by a Reset or Stop Mode Recovery. This setting is the default for unprogrammed (erased) Flash.

OSC_SEL[1:0]—Oscillator Mode Selection

00 = On-chip oscillator configured for use with external RC networks (<4 MHz).

01 = Minimum power for use with very low frequency crystals (32 KHz to 1.0 MHz).

10 = Medium power for use with medium frequency crystals or ceramic resonators (0.5 MHz to 5.0 MHz).

11 = Maximum power for use with high frequency crystals (5.0 MHz to 20.0 MHz). This setting is the default for unprogrammed (erased) Flash.

VBO_AO—VBO Protection Always On

0 = VBO Protection is disabled in STOP mode to reduce total power consumption.

1 = VBO Protection is always enabled including during STOP mode. This setting is the default for unprogrammed (erased) Flash.

FRP—Flash Read Protect

0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger.

1 = User program code is accessible. All On-Chip Debugger commands are enabled. This setting is the default for unprogrammed (erased) Flash.

Reserved—Must be 1.

FWP—Flash Write Protect

This Option Bit provides Flash Program Memory protection:

0 = Programming and erasure disabled for all of Flash Program Memory. Programming, Page Erase, and Mass Erase through User Code is disabled. Mass Erase is available using the On-Chip Debugger.

1 = Programming, Page Erase, and Mass Erase are enabled for all of Flash Program Memory.

Flash Program Memory Address 0001H**Table 90. Flash Options Bits at Program Memory Address 0001H**

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved			XTLDIS	Reserved			
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Program Memory 0001H							
Note: U = Unchanged by Reset. R/W = Read/Write.								

Reserved—Must be 1.

XTLDIS—State of Crystal Oscillator at Reset

► **Note:** This bit only enables the crystal oscillator, its selection as system clock must be done manually.
0 = Crystal oscillator is enabled during reset, resulting in longer reset timing
1 = Crystal oscillator is disabled during reset, resulting in shorter reset timing

Trim Bit Address Space**Trim Bit Address 0000H****Table 91. Trim Options Bits at Address 0000H (TTEMP0)**

BITS	7	6	5	4	3	2	1	0	
FIELD	TS_FINE				Reserved	TS_ULTRAFINE			
RESET	U	U	U	U	U	U	U	U	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR	Information Page Memory 0020H								
Note: U = Unchanged by Reset. R/W = Read/Write.									

TS_FINE—Temperature Sensor Fine Control Trim bits
Contains fine control offset trimming bits for Temperature Sensor.

Reserved—Must be 1.

TS_ULTRAFINE—Temperature Sensor Ultra Fine Control Trim bits
Contains ultra fine control offset trimming bits for temperature sensor.

Trim Bit Address 0001H

Table 92. Trim Option Bits at 0001H (TTEMP1)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved			TS_COARSE				
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Information Page Memory 0021H							

Note: U = Unchanged by Reset. R/W = Read/Write.

Reserved—Must be 1.

TS_COARSE—Temperature Sensor Coarse Control Trim bits
Contains coarse control offset trimming bits for temperature sensor.

Trim Bit Address 0002H

Table 93. Trim Option Bits at 0002H (TIPO)

BITS	7	6	5	4	3	2	1	0
FIELD	IPO_TRIM							
RESET	U							
R/W	R/W							
ADDR	Information Page Memory 0022H							

Note: U = Unchanged by Reset. R/W = Read/Write.

IPO_TRIM—Internal Precision Oscillator Trim byte
Contains trimming bits for internal precision oscillator.

Trim Bit Address 0003H**Table 94. Trim Option Bits at Address 0003H (TLVD)**

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved			LVD_TRIM				
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Information Page Memory 0023H							

Note: U = Unchanged by Reset. R/W = Read/Write.

Reserved—Must be 1.

LVD_TRIM—Low Voltage Detect Trim

This trimming affects the low voltage detection threshold. Each LSB represents a 50 mV change in the threshold level. Alternatively, the low voltage threshold can be computed from the options bit value by the following equation:

$$\text{LVD_LVL} = 3.2\text{V} - \text{LVD_TRIM} * 0.05 \text{ V}$$

LVD Threshold (V)

LVD_TRIM	Minimum	Typical	Maximum	Description
00000	TBD	3.20	TBD	Maximum LVD threshold
00001	TBD	3.15	TBD	
00010	TBD	3.10	TBD	
00011	TBD	3.05	TBD	
00100 to 01010	TBD	3.00 to 2.79	TBD	Default on Reset and to be programmed into Flash before customer delivery to ensure 2.7 V operation.
01010 to 11111	TBD	2.70 to 1.65	TBD	Minimum LVD threshold

Trim Bit Address 0004H

Table 95. Trim Option Bits at 0004H (TBG)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved							
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Information Page Memory 0024H							

Note: U = Unchanged by Reset. R/W = Read/Write.

Reserved—Must be 1.

BG_TRIM—Band Gap Trim Values

Contains factory trimmed values for the band gap output voltage adjustment.

ZiLOG Calibration Bits

ADC Calibration Bits

Table 96. ADC Calibration Bits at 0060H-007DH

BITS	7	6	5	4	3	2	1	0
FIELD	ADC_CAL							
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Information Page Memory 0060H-007DH							

Note: U = Unchanged by Reset. R/W = Read/Write.

ADC_CAL—Analog-to-digital converter calibration values

Contains factory calibrated values for ADC gain and offset compensation. Each of the ten supported modes has one byte of offset calibration and two bytes of gain calibration.

These values are read by user software to compensate ADC measurements as detailed in [Software Compensation Procedure on page 123](#). The location of each calibration byte is provided in [Table 97](#).

Table 97. ADC Calibration Data Location

Info Page Address	Memory Address	Compensation Usage	ADC Mode	Reference Type
60	FE60	Offset	Single-Ended Unbuffered	Internal 2.0 V
08	FE08	Gain High Byte	Single-Ended Unbuffered	Internal 2.0 V
09	FE09	Gain Low Byte	Single-Ended Unbuffered	Internal 2.0 V
63	FE63	Offset	Single-Ended Unbuffered	Internal 1.0 V
0A	FE0A	Gain High Byte	Single-Ended Unbuffered	Internal 1.0 V
0B	FE0B	Gain Low Byte	Single-Ended Unbuffered	Internal 1.0 V
66	FE66	Offset	Single-Ended Unbuffered	External 2.0 V
0C	FE0C	Gain High Byte	Single-Ended Unbuffered	External 2.0 V
0D	FE0D	Gain Low Byte	Single-Ended Unbuffered	External 2.0 V
69	FE69	Offset	Single Ended 1x Buffered	Internal 2.0 V
0E	FE0E	Gain High Byte	Single Ended 1x Buffered	Internal 2.0 V
0F	FE0F	Gain Low Byte	Single Ended 1x Buffered	Internal 2.0 V
6C	FE6C	Offset	Single Ended 1x Buffered	External 2.0 V
10	FE10	Gain High Byte	Single Ended 1x Buffered	External 2.0 V
11	FE11	Gain Low Byte	Single Ended 1x Buffered	External 2.0 V
6F	FE6F	Offset	Differential Unbuffered	Internal 2.0 V
12	FE12	Gain High Byte	Differential Unbuffered	Internal 2.0 V
13	FE13	Gain Low Byte	Differential Unbuffered	Internal 2.0 V
72	FE72	Offset	Differential Unbuffered	Internal 1.0 V
14	FE14	Gain High Byte	Differential Unbuffered	Internal 1.0 V
15	FE15	Gain Low Byte	Differential Unbuffered	Internal 1.0 V
75	FE75	Offset	Differential Unbuffered	External 2.0 V
16	FE16	Gain High Byte	Differential Unbuffered	External 2.0 V
17	FE17	Gain Low Byte	Differential Unbuffered	External 2.0 V
78	FE78	Offset	Differential 1x Buffered	Internal 2.0 V
18	FE18	Gain High Byte	Differential 1x Buffered	Internal 2.0 V
19	FE19	Gain Low Byte	Differential 1x Buffered	Internal 2.0 V
7B	FE7B	Offset	Differential 1x Buffered	External 2.0 V

Table 97. ADC Calibration Data Location (Continued)

Info Page Address	Memory Address	Compensation Usage	ADC Mode	Reference Type
1A	FE1A	Gain High Byte	Differential 1x Buffered	External 2.0 V
1B	FE1B	Gain Low Byte	Differential 1x Buffered	External 2.0 V

Watchdog Timer Calibration Bits

Table 98. Watchdog Calibration High Byte at 007EH (WDTCALH)

BITS	7	6	5	4	3	2	1	0
FIELD	WDTCALH							
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Information Page Memory 007EH							

Note: U = Unchanged by Reset. R/W = Read/Write.

WDTCALH—Watchdog Timer Calibration High Byte

The WDTCALH and WDTCALL bytes, when loaded into the watchdog timer reload registers result in a one second timeout at room temperature and 3.3V supply voltage. To use the Watchdog Timer calibration, user code must load WDTU with 0x00, WDTH with WDTCALH and WDTL with WDTCALL.

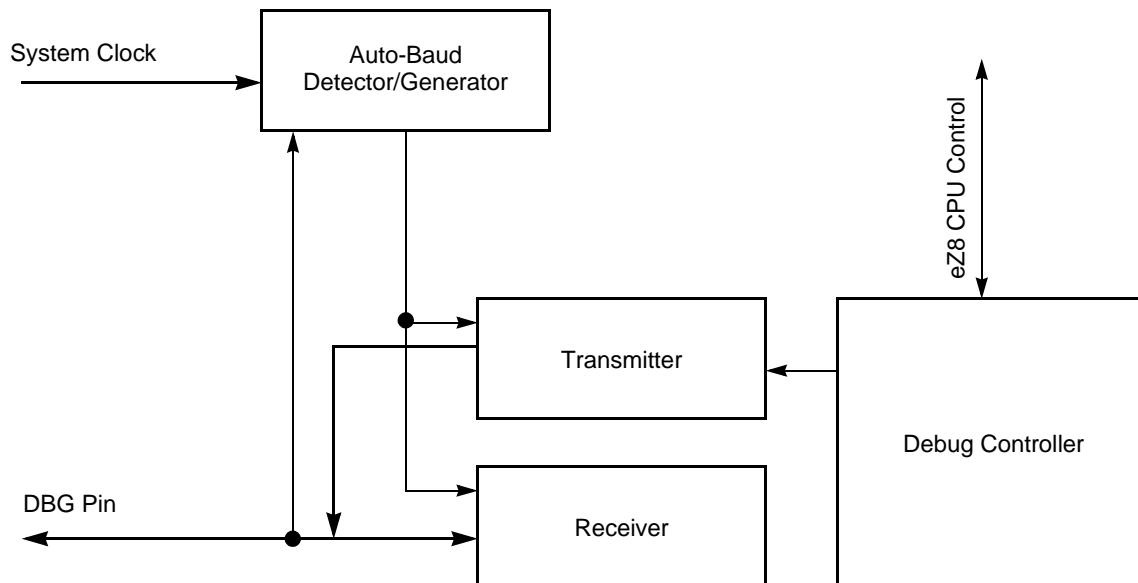
Table 99. Watchdog Calibration Low Byte at 007FH (WDTCALL)

BITS	7	6	5	4	3	2	1	0
FIELD	WDTCALL							
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Information Page Memory 007FH							

Note: U = Unchanged by Reset. R/W = Read/Write.

WDTCALL—WDT Calibration Low byte

The WDTCALH and WDTCALL bytes, when loaded into the Watchdog Timer Reload registers result in a one second time-out at room temperature and 3.3 V supply voltage. To use the watchdog timer calibration, user code must load WDTU with 0x00, WDTH with WDTCALH and WDTL with WDTCALL.


On-Chip Debugger

The Z8 Encore! XP® devices contain an integrated On-Chip Debugger (OCD) that provides advanced debugging features including:

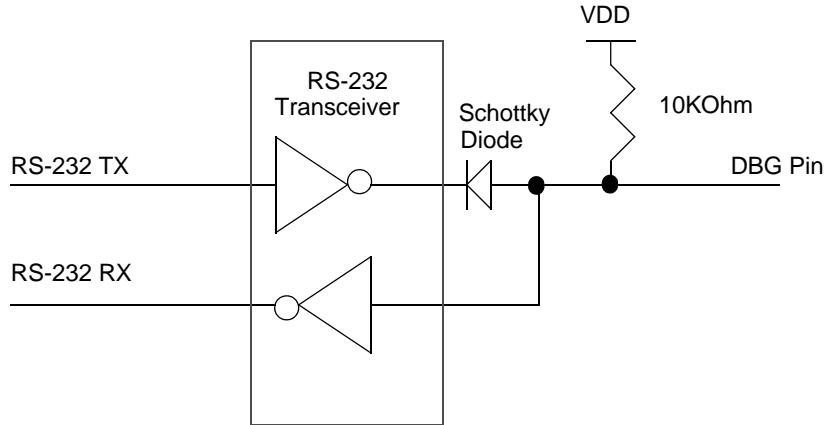
- Reading and writing of the Register File.
- Reading and writing of Program Memory and Data Memory.
- Setting of breakpoints and watchpoints.
- Executing eZ8 CPU instructions.

Architecture

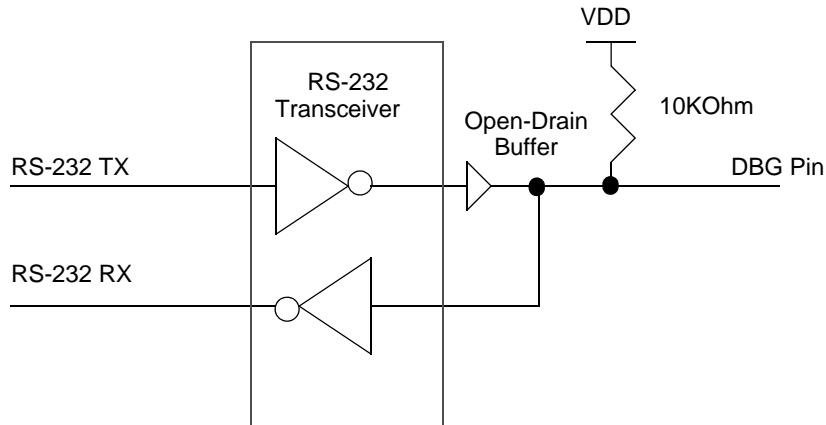
The OCD consists of four primary functional blocks: transmitter, receiver, auto-baud detector/generator, and debug controller. [Figure 22](#) illustrates the architecture of the OCD.

Figure 22. On-Chip Debugger Block Diagram

Operation


OCD Interface

The OCD uses the DBG pin for communication with an external host. This one-pin interface is a bi-directional open-drain interface that transmits and receives data. Data transmission is half-duplex, in that transmit and receive cannot occur simultaneously. The serial data on the DBG pin is sent using the standard asynchronous data format defined in RS-232. This pin creates an interface from the Z8 Encore! XP® F08xA Series products to the serial port of a host PC using minimal external hardware. Two different methods for connecting the DBG pin to an RS-232 interface are depicted in Figures 23 and 24. The recommended method is the buffered implementation depicted in Figure 24. The DBG pin must always be connected to V_{DD} through an external pull-up resistor.



Caution: For operation of the OCD, all power pins (V_{DD} and AV_{DD}) must be supplied with power, and all ground pins (V_{SS} and AV_{SS}) must be properly grounded.

The DBG pin is open-drain and must always be connected to V_{DD} through an external pull-up resistor to insure proper operation.

Figure 23. Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface (1)

Figure 24. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface (2)

DEBUG Mode

The operating characteristics of the devices in DEBUG mode are:

- The eZ8 CPU fetch unit stops, idling the eZ8 CPU, unless directed by the OCD to execute specific instructions.
- The system clock operates unless in STOP mode.
- All enabled on-chip peripherals operate unless in STOP mode.
- Automatically exits HALT mode.
- Constantly refreshes the WDT, if enabled.

Entering DEBUG Mode

The device enters DEBUG mode after the following operations:

- The device enters DEBUG mode after the eZ8 CPU executes a BRK (breakpoint) instruction.
- If the DBG pin is held Low during the most recent clock cycle of system reset, the part enters DEBUG mode on exiting system reset.
- If the PA2/RESET pin is held Low while a 32-bit key sequence is issued to the PA0/DBG pin, the DBG feature is unlocked. After releasing PA2/RESET, it is pulled high. At this point, the PA0/DBG pin can be used to autobaud and cause the device to enter DEBUG mode. For more details, see [OCD Unlock Sequence \(8-Pin Devices Only\) on page 162](#).

Exiting DEBUG Mode

The device exits DEBUG mode following any of these operations:

- Clearing the DBGMODE bit in the OCD Control Register to 0.
- Power-on reset
- VBO reset
- WDT reset
- Asserting the RESET pin Low to initiate a Reset.
- Driving the DBG pin Low while the device is in STOP mode initiates a System Reset.

OCD Data Format

The OCD interface uses the asynchronous data format defined for RS-232. Each character is transmitted as 1 Start bit, 8 data bits (least-significant bit first), and 1.5 Stop bits (Figure 25)

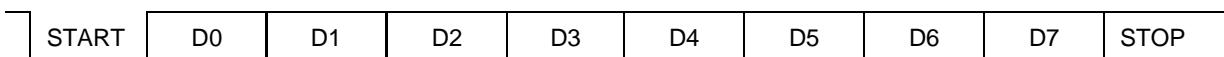


Figure 25. OCD Data Format

OCD Auto-Baud Detector/Generator

To run over a range of baud rates (data bits per second) with various system clock frequencies, the OCD contains an Auto-Baud Detector/Generator. After a reset, the OCD is idle until it receives data. The OCD requires that the first character sent from the host is the character 80H. The character 80H has eight continuous bits Low (one Start bit plus 7 data bits), framed between High bits. The Auto-Baud Detector measures this period and sets the OCD Baud Rate Generator accordingly.

The auto-baud detector/generator is clocked by the system clock. The minimum baud rate is the system clock frequency divided by 512. For optimal operation with asynchronous data streams, the maximum recommended baud rate is the system clock frequency divided by eight. The maximum possible baud rate for asynchronous data streams is the system clock frequency divided by four, but this theoretical maximum is possible only for low noise designs with clean signals. Table 100 lists minimum and recommended maximum baud rates for sample crystal frequencies.

Table 100. OCD Baud-Rate Limits

System Clock Frequency (MHz)	Recommended Maximum Baud Rate (Kbps)	Recommended Standard PC Baud Rate (bps)	Recommended Minimum Baud Rate (Kbps)
20.0	2500.0	1,843,200	39
1.0	125.0	115,200	1.95
0.032768 (32 KHz)	4.096	2400	0.064

If the OCD receives a Serial Break (nine or more continuous bits Low) the auto-baud detector/generator resets. Reconfigure the auto-baud detector/generator by sending 80H.

OCD Serial Errors

The OCD can detect any of the following error conditions on the DBG pin:

- Serial Break (a minimum of nine continuous bits Low)
- Framing Error (received Stop bit is Low)
- Transmit Collision (OCD and host simultaneous transmission detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, transmits a four character long Serial Break back to the host, and resets the Auto-Baud Detector/Generator. A Framing Error or Transmit Collision can be caused by the host sending a Serial Break to the OCD. Because of the open-drain nature of the interface, returning a Serial Break back to the host only extends the length of the Serial Break if the host releases the Serial Break early.

The host transmits a Serial Break on the DBG pin when first connecting to the Z8 Encore! XP® F08xA Series devices or when recovering from an error. A Serial Break from the host resets the Auto-Baud Generator/Detector but does not reset the OCD Control register. A Serial Break leaves the device in DEBUG mode if that is the current mode. The OCD is held in Reset until the end of the Serial Break when the DBG pin returns High. Because of the open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if the OCD is transmitting a character.

OCD Unlock Sequence (8-Pin Devices Only)

Because of pin-sharing on the 8-pin device, an unlock sequence must be performed to access the DBG pin. If this sequence is not completed during a system reset, then the PA0/DBG pin functions only as a GPIO pin.

The following sequence unlocks the DBG pin:

1. Hold PA2/RESET Low.
2. Wait 5 ms for the internal reset sequence to complete.
3. Send the following bytes serially to the debug pin:

```
DBG ← 80H (autobaud)
DBG ← EBH
DBG ← 5AH
DBG ← 70H
DBG ← CDH (32-bit unlock key)
```

4. Release PA2/RESET. The PA0/DBG pin is now identical in function to that of the DBG pin on the 20- or 28-pin device. To enter DEBUG mode, re-autobaud and write 80H to the OCD control register (see [On-Chip Debugger Commands on page 163](#)).

Breakpoints

Execution breakpoints are generated using the BRK instruction (opcode 00H). When the eZ8 CPU decodes a BRK instruction, it signals the OCD. If breakpoints are enabled, the OCD enters DEBUG mode and idles the eZ8 CPU. If breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP instruction.

Breakpoints in Flash Memory

The BRK instruction is opcode 00H, which corresponds to the fully programmed state of a byte in Flash memory. To implement a breakpoint, write 00H to the required break address, overwriting the current instruction. To remove a breakpoint, the corresponding page of Flash memory must be erased and reprogrammed with the original data.

Runtime Counter

The OCD contains a 16-bit Runtime Counter. It counts system clock cycles between breakpoints. The counter starts counting when the OCD leaves DEBUG mode and stops counting when it enters DEBUG mode again or when it reaches the maximum count of FFFFH.

On-Chip Debugger Commands

The host communicates to the OCD by sending OCD commands using the DBG interface. During normal operation, only a subset of the OCD commands are available. In DEBUG mode, all OCD commands become available unless the user code and control registers are protected by programming the Flash Read Protect Option bit (F_{RP}). The Flash Read Pro-

tect Option bit prevents the code in memory from being read out of the Z8 Encore! XP® F08xA Series products. When this option is enabled, several of the OCD commands are disabled. [Table 101 on page 169](#) is a summary of the OCD commands. Each OCD command is described in further detail in the bulleted list following this table. [Table 101](#) also indicates those commands that operate when the device is not in DEBUG mode (normal operation) and those commands that are disabled by programming the Flash Read Protect Option bit.

Debug Command	Command Byte	Enabled when NOT in DEBUG mode?	Disabled by Flash Read Protect Option Bit
Read OCD Revision	00H	Yes	—
Reserved	01H	—	—
Read OCD Status Register	02H	Yes	—
Read Runtime Counter	03H	—	—
Write OCD Control Register	04H	Yes	Cannot clear DBGMODE bit
Read OCD Control Register	05H	Yes	—
Write Program Counter	06H	—	Disabled
Read Program Counter	07H	—	Disabled
Write Register	08H	—	Only writes of the Flash Memory Control registers are allowed. Additionally, only the Mass Erase command is allowed to be written to the Flash Control register.
Read Register	09H	—	Disabled
Write Program Memory	0AH	—	Disabled
Read Program Memory	0BH	—	Disabled
Write Data Memory	0CH	—	Yes
Read Data Memory	0DH	—	—
Read Program Memory CRC	0EH	—	—
Reserved	0FH	—	—
Step Instruction	10H	—	Disabled
Stuff Instruction	11H	—	Disabled
Execute Instruction	12H	—	Disabled
Reserved	13H–FFH	—	—

In the following bulleted list of OCD Commands, data and commands sent from the host to the OCD are identified by 'DBG \leftarrow Command/Data'. Data sent from the OCD back to the host is identified by 'DBG \rightarrow Data'

- **Read OCD Revision (00H)**—The Read OCD Revision command determines the version of the OCD. If OCD commands are added, removed, or changed, this revision number changes.

DBG \leftarrow 00H
DBG \rightarrow OCDRev[15:8] (Major revision number)
DBG \rightarrow OCDRev[7:0] (Minor revision number)

- **Read OCD Status Register (02H)**—The Read OCD Status register command reads the OCDSTAT register.

DBG \leftarrow 02H
DBG \rightarrow OCDSTAT[7:0]

- **Read Runtime Counter (03H)**—The Runtime Counter counts system clock cycles in between breakpoints. The 16-bit Runtime Counter counts up from 0000H and stops at the maximum count of FFFFH. The Runtime Counter is overwritten during the Write Memory, Read Memory, Write Register, Read Register, Read Memory CRC, Step Instruction, Stuff Instruction, and Execute Instruction commands.

DBG \leftarrow 03H
DBG \rightarrow RuntimeCounter[15:8]
DBG \rightarrow RuntimeCounter[7:0]

- **Write OCD Control Register (04H)**—The Write OCD Control register command writes the data that follows to the OCDCTL register. When the Flash Read Protect Option bit is enabled, the DBGMODE bit (OCDCTL[7]) can only be set to 1, it cannot be cleared to 0 and the only method of returning the device to normal operating mode is to reset the device.

DBG \leftarrow 04H
DBG \leftarrow OCDCTL[7:0]

- **Read OCD Control Register (05H)**—The Read OCD Control Register command reads the value of the OCDCTL register.

DBG \leftarrow 05H
DBG \rightarrow OCDCTL[7:0]

- **Write Program Counter (06H)**—The Write Program Counter command writes the data that follows to the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the Program Counter (PC) values are discarded.

```
DBG ← 06H
DBG ← ProgramCounter[15:8]
DBG ← ProgramCounter[7:0]
```

- **Read Program Counter (07H)**—The Read Program Counter command reads the value in the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFFFH.

```
DBG ← 07H
DBG → ProgramCounter[15:8]
DBG → ProgramCounter[7:0]
```

- **Write Register (08H)**—The Write Register command writes data to the Register File. Data can be written 1–256 bytes at a time (256 bytes can be written by setting size to 0). If the device is not in DEBUG mode, the address and data values are discarded. If the Flash Read Protect Option bit is enabled, only writes to the Flash Control registers are allowed and all other register write data values are discarded.

```
DBG ← 08H
DBG ← {4'h0, Register Address[11:8]}
DBG ← Register Address[7:0]
DBG ← Size[7:0]
DBG ← 1–256 data bytes
```

- **Read Register (09H)**—The Read Register command reads data from the Register File. Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for all the data values.

```
DBG ← 09H
DBG ← {4'h0, Register Address[11:8]}
DBG ← Register Address[7:0]
DBG ← Size[7:0]
DBG → 1–256 data bytes
```

- **Write Program Memory (0AH)**—The Write Program Memory command writes data to Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is discarded.

```
DBG ← 0AH
DBG ← Program Memory Address[15:8]
DBG ← Program Memory Address[7:0]
DBG ← Size[15:8]
```

```
DBG ← Size[7:0]
DBG ← 1-65536 data bytes
```

- **Read Program Memory (0BH)**—The Read Program Memory command reads data from Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for the data.

```
DBG ← 0BH
DBG ← Program Memory Address[15:8]
DBG ← Program Memory Address[7:0]
DBG ← Size[15:8]
DBG ← Size[7:0]
DBG → 1-65536 data bytes
```

- **Write Data Memory (0CH)**—The Write Data Memory command writes data to Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is discarded.

```
DBG ← 0CH
DBG ← Data Memory Address[15:8]
DBG ← Data Memory Address[7:0]
DBG ← Size[15:8]
DBG ← Size[7:0]
DBG ← 1-65536 data bytes
```

- **Read Data Memory (0DH)**—The Read Data Memory command reads from Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be read 1 to 65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG mode, this command returns FFH for the data.

```
DBG ← 0DH
DBG ← Data Memory Address[15:8]
DBG ← Data Memory Address[7:0]
DBG ← Size[15:8]
DBG ← Size[7:0]
DBG → 1-65536 data bytes
```

- **Read Program Memory CRC (0EH)**—The Read Program Memory CRC command computes and returns the Cyclic Redundancy Check (CRC) of Program Memory using the 16-bit CRC-CCITT polynomial. If the device is not in DEBUG mode, this command returns FFFFH for the CRC value. Unlike most other OCD Read commands, there is a delay from issuing of the command until the OCD returns the data. The OCD reads the Program Memory, calculates the CRC value, and returns the re-

sult. The delay is a function of the Program Memory size and is approximately equal to the system clock period multiplied by the number of bytes in the Program Memory.

```
DBG ← 0EH  
DBG → CRC[15:8]  
DBG → CRC[7:0]
```

- **Step Instruction (10H)**—The Step Instruction command steps one assembly instruction at the current Program Counter (PC) location. If the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, the OCD ignores this command.

```
DBG ← 10H
```

- **Stuff Instruction (11H)**—The Stuff Instruction command steps one assembly instruction and allows specification of the first byte of the instruction. The remaining 0-4 bytes of the instruction are read from Program Memory. This command is useful for stepping over instructions where the first byte of the instruction has been overwritten by a breakpoint. If the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, the OCD ignores this command.

```
DBG ← 11H  
DBG ← opcode[7:0]
```

- **Execute Instruction (12H)**—The Execute Instruction command allows sending an entire instruction to be executed to the eZ8 CPU. This command can also step over breakpoints. The number of bytes to send for the instruction depends on the opcode. If the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, this command reads and discards one byte.

```
DBG ← 12H  
DBG ← 1-5 byte opcode
```

On-Chip Debugger Control Register Definitions

The following sections describe the OCD Control registers.

OCD Control Register

The OCD Control register controls the state of the on-chip debugger. This register is used to enter or exit DEBUG mode and to enable the BRK instruction. It can also reset the Z8 Encore! XP® F08xA Series device.

A reset and stop function can be achieved by writing 81H to this register. A reset and go function can be achieved by writing 41H to this register. If the device is in DEBUG mode, a run function can be implemented by writing 40H to this register.

Table 101. OCD Control Register (OCDCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	DBGMODE	BRKEN	DBGACK	Reserved				RST
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R	R	R	R	R/W

DBGMODE—Debug Mode

The device enters DEBUG mode when this bit is 1. When in DEBUG mode, the eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is automatically set when a BRK instruction is decoded and breakpoints are enabled. If the Flash Read Protect Option Bit is enabled, this bit can only be cleared by resetting the device. It cannot be written to 0.

0 = The Z8 Encore! XP® F08xA Series device is operating in NORMAL mode.

1 = The Z8 Encore! XP® F08xA Series device is in DEBUG mode.

BRKEN—Breakpoint Enable

This bit controls the behavior of the BRK instruction (opcode 00H). By default, breakpoints are disabled and the BRK instruction behaves similar to an NOP instruction. If this bit is 1, when a BRK instruction is decoded, the DBGMODE bit of the OCDCTL register is automatically set to 1.

0 = Breakpoints are disabled.

1 = Breakpoints are enabled.

DBGACK—Debug Acknowledge

This bit enables the debug acknowledge feature. If this bit is set to 1, the OCD sends a Debug Acknowledge character (FFH) to the host when a breakpoint occurs.

0 = Debug Acknowledge is disabled.

1 = Debug Acknowledge is enabled.

Reserved—Must be 0.

RST—Reset

Setting this bit to 1 resets the Z8 Encore! XP® F08xA Series device. The device goes through a normal POR sequence with the exception that the OCD is not reset. This bit is automatically cleared to 0 at the end of reset.

0 = No effect.

1 = Reset the Flash Read Protect Option Bit device.

OCD Status Register

The OCD Status register reports status information about the current state of the debugger and the system.

Table 102. OCD Status Register (OCDSTAT)

BITS	7	6	5	4	3	2	1	0
FIELD	DBG	HALT	FRPENB	Reserved				
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R

DBG—Debug Status

0 = NORMAL mode

1 = DEBUG mode

HALT—HALT Mode

0 = Not in HALT mode

1 = In HALT mode

FRPENB—Flash Read Protect Option Bit Enable

0 = FRP bit enabled, that allows disabling of many OCD commands

1 = FRP bit has no effect

Reserved—Must be 0.

Oscillator Control

The Z8 Encore! XP® F08xA Series devices uses five possible clocking schemes, each user-selectable:

- On-chip precision trimmed RC oscillator.
- On-chip oscillator using off-chip crystal or resonator.
- On-chip oscillator using external RC network.
- External clock drive.
- On-chip low precision Watchdog Timer oscillator.

In addition, Z8 Encore! XP® F08xA Series devices contain clock failure detection and recovery circuitry, allowing continued operation despite a failure of the primary oscillator.

Operation

This chapter discusses the logic used to select the system clock and handle primary oscillator failures. A description of the specific operation of each oscillator is outlined elsewhere in this document. The detailed description of the Watchdog Timer Oscillator starts on [page 86](#), the Internal Precision Oscillator description begins on [page 182](#), and the chapter outlining the Crystal Oscillator begins on [page 177](#) of this document.

System Clock Selection

The oscillator control block selects from the available clocks. [Table 103](#) details each clock source and its usage.

Table 103. Oscillator Configuration and Selection

Clock Source	Characteristics	Required Setup
Internal Precision RC Oscillator	<ul style="list-style-type: none"> • 32.8 KHz or 5.53 MHz • $\pm 4\%$ accuracy when trimmed • No external components required 	<ul style="list-style-type: none"> • Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator at either 5.53MHz or 32.8 KHz.
External Crystal/Resonator	<ul style="list-style-type: none"> • 32 KHz to 20 MHz • Very high accuracy (dependent on crystal or resonator used) • Requires external components 	<ul style="list-style-type: none"> • Configure Flash option bits for correct external oscillator mode. • Unlock and write OSCCTL to enable crystal oscillator, wait for it to stabilize and select as system clock (if the XTLDIS option bit has been de-asserted, no waiting is required).
External RC Oscillator	<ul style="list-style-type: none"> • 32 KHz to 4 MHz • Accuracy dependent on external components 	<ul style="list-style-type: none"> • Configure Flash option bits for correct external oscillator mode. • Unlock and write OSCCTL to enable crystal oscillator and select as system clock.
External Clock Drive	<ul style="list-style-type: none"> • 0 to 20 MHz • Accuracy dependent on external clock source 	<ul style="list-style-type: none"> • Write GPIO registers to configure PB3 pin for external clock function. • Unlock and write OSCCTL to select external system clock. • Apply external clock signal to GPIO.
Internal Watchdog Timer Oscillator	<ul style="list-style-type: none"> • 10 KHz nominal • $\pm 40\%$ accuracy; no external components required • Low power consumption 	<ul style="list-style-type: none"> • Enable WDT if not enabled and wait until WDT Oscillator is operating. • Unlock and write Oscillator Control register (OSCCTL) to enable and select oscillator.

Caution: Unintentional accesses to the oscillator control register can actually stop the chip by switching to a non-functioning oscillator. To prevent this condition, the oscillator control block employs a register unlocking/locking scheme.

OSC Control Register Unlocking/Locking

To write the oscillator control register, unlock it by making two writes to the OSCCTL register with the values `E7H` followed by `18H`. A third write to the OSCCTL register changes the value of the actual register and returns the register to a locked state. Any other sequence of oscillator control register writes has no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation.

When selecting a new clock source, the primary oscillator failure detection circuitry and the Watchdog Timer oscillator failure circuitry must be disabled. If POFEN and WOFEN are not disabled prior to a clock switch-over, it is possible to generate an interrupt for a failure of either oscillator. The Failure detection circuitry can be enabled anytime after a successful write of OSCSEL in the oscillator control register.

The internal precision oscillator is enabled by default. If the user code changes to a different oscillator, it is appropriate to disable the IPO for power savings. Disabling the IPO does not occur automatically.

Clock Failure Detection and Recovery

Primary Oscillator Failure

The Z8 Encore! XP® F08xA Series devices can generate non-maskable interrupt-like events when the primary oscillator fails. To maintain system function in this situation, the clock failure recovery circuitry automatically forces the Watchdog Timer oscillator to drive the system clock. The Watchdog Timer oscillator must be enabled to allow the recovery. Although this oscillator runs at a much slower speed than the original system clock, the CPU continues to operate, allowing execution of a clock failure vector and software routines that either remedy the oscillator failure or issue a failure alert. This automatic switch-over is not available if the Watchdog Timer is the primary oscillator. It is also unavailable if the Watchdog Timer oscillator is disabled, though it is not necessary to enable the Watchdog Timer reset function outlined in the Watchdog Timer chapter of this document on [page 86](#).

The primary oscillator failure detection circuitry asserts if the system clock frequency drops below 1KHz $\pm 50\%$. If an external signal is selected as the system oscillator, it is possible that a very slow but non-failing clock can generate a failure condition. Under these conditions, do not enable the clock failure circuitry (POFEN must be deasserted in the OSCCTL register).

Watchdog Timer Failure

In the event of a Watchdog Timer oscillator failure, a similar non-maskable interrupt-like event is issued. This event does not trigger an attendant clock switch-over, but alerts the CPU of the failure. After a Watchdog Timer failure, it is no longer possible to detect a primary oscillator failure. The failure detection circuitry does not function if the Watchdog Timer is used as the primary oscillator or if the Watchdog Timer oscillator has been disabled. For either of these cases, it is necessary to disable the detection circuitry by deasserting the WDFEN bit of the OSCCTL register.

The Watchdog Timer oscillator failure detection circuit counts system clocks while looking for a Watchdog Timer clock. The logic counts 8004 system clock cycles before determining that a failure has occurred. The system clock rate determines the speed at which

the Watchdog Timer failure can be detected. A very slow system clock results in very slow detection times.

Caution: It is possible to disable the clock failure detection circuitry as well as all functioning clock sources. In this case, the Z8 Encore! XP® F08xA Series device ceases functioning and can only be recovered by Power-on reset.

Oscillator Control Register Definitions

The following sections describe Oscillator Control registers.

Oscillator Control Register

The Oscillator Control register (OSCCTL) enables/disables the various oscillator circuits, enables/disables the failure detection/recovery circuitry and selects the primary oscillator, which becomes the system clock.

The Oscillator Control Register must be unlocked before writing. Writing the two step sequence **E7H** followed by **18H** to the Oscillator Control register unlocks it. The register is locked at successful completion of a register write to the OSCCTL.

Table 104. Oscillator Control Register (OSCCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	INTEN	XTLEN	WDTEN	POFEN	WDFEN	SCKSEL		
RESET	1	0	1	0	0	0	0	0
R/W	R/W	R/W						
ADDR	F86H							

INTEN—Internal Precision Oscillator Enable

1 = Internal precision oscillator is enabled

0 = Internal precision oscillator is disabled

XTLEN—Crystal Oscillator Enable; this setting overrides the GPIO register control for PA0 and PA1

1 = Crystal oscillator is enabled

0 = Crystal oscillator is disabled

WDTEN—Watchdog Timer Oscillator Enable

1 = Watchdog Timer oscillator is enabled

0 = Watchdog Timer oscillator is disabled

POFEN—Primary Oscillator Failure Detection Enable

1 = Failure detection and recovery of primary oscillator is enabled

0 = Failure detection and recovery of primary oscillator is disabled

WDFEN—Watchdog Timer Oscillator Failure Detection Enable

1 = Failure detection of Watchdog Timer oscillator is enabled

0 = Failure detection of Watchdog Timer oscillator is disabled

SCKSEL—System Clock Oscillator Select

000 = Internal precision oscillator functions as system clock at 5.53MHz

001 = Internal precision oscillator functions as system clock at 32KHz

010 = Crystal oscillator or external RC oscillator functions as system clock

011 = Watchdog Timer oscillator functions as system

100 = External clock signal on PB3 functions as system clock

101 = Reserved

110 = Reserved

111 = Reserved

Crystal Oscillator

The products in the Z8 Encore! XP® F08xA Series contain an on-chip crystal oscillator for use with external crystals with 32 KHz to 20 MHz frequencies. In addition, the oscillator supports external RC networks with oscillation frequencies up to 4 MHz or ceramic resonators with frequencies up to 8 MHz. The on-chip crystal oscillator can be used to generate the primary system clock for the internal eZ8 CPU and the majority of the on-chip peripherals. Alternatively, the X_{IN} input pin can also accept a CMOS-level clock input signal (32 KHz–20 MHz). If an external clock generator is used, the X_{OUT} pin must be left unconnected. The Z8 Encore! XP® F08xA Series products do not contain an internal clock divider. The frequency of the signal on the X_{IN} input pin determines the frequency of the system clock.

► **Note:** Although the X_{IN} pin can be used as an input for an external clock generator, the CLK_{IN} pin is better suited for such use (see [System Clock Selection on page 172](#).)

Operating Modes

The Z8 Encore! XP® F08xA Series products support four oscillator modes:

- Minimum power for use with very low frequency crystals (32 KHz–1 MHz)
- Medium power for use with medium frequency crystals or ceramic resonators (0.5 MHz to 8 MHz)
- Maximum power for use with high frequency crystals (8 MHz to 20 MHz)
- On-chip oscillator configured for use with external RC networks (<4 MHz)

The oscillator mode is selected using user-programmable Flash Option bits. See [Flash Option Bits on page 148](#) for information.

Crystal Oscillator Operation

The Flash Option bit XTLDIS controls whether the crystal oscillator is enabled during reset. The crystal can later be disabled after reset if a new oscillator has been selected as the system clock. If the crystal is manually enabled after reset through the OSCCTL register, the user code must wait at least 1000 crystal oscillator cycles for the crystal to stabilize. After this, the crystal oscillator is selected as the system clock.

[Figure 26](#) illustrates a recommended configuration for connection with an external fundamental-mode, parallel-resonant crystal operating at 20 MHz. Recommended 20 MHz crystal specifications are provided in [Table 105](#). Resistor R_1 is optional and limits total power dissipation by the crystal. Printed circuit board layout must add no more than 4 pF of stray

capacitance to either the X_{IN} or X_{OUT} pins. If oscillation does not occur, reduce the values of capacitors C_1 and C_2 to decrease loading.

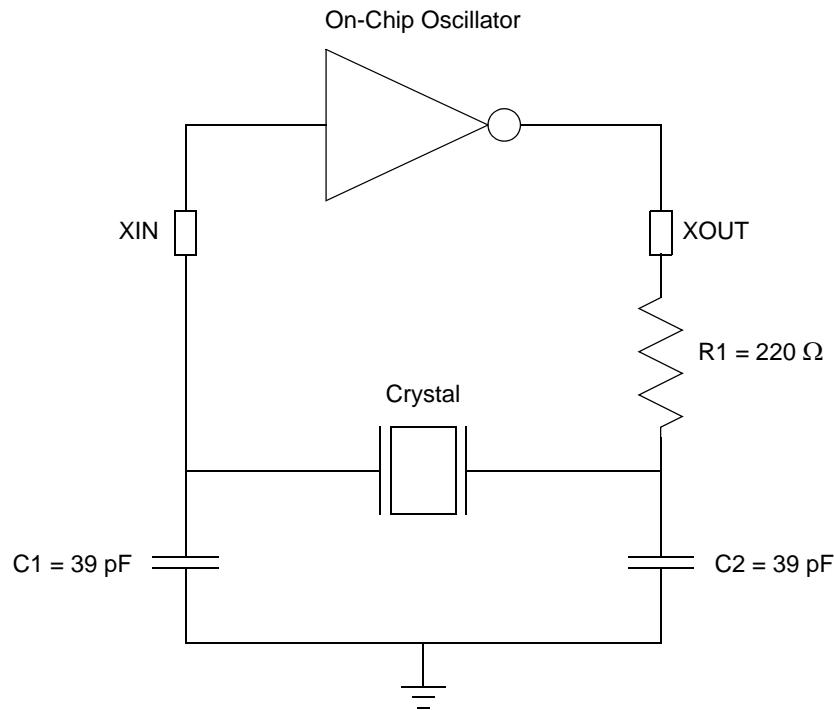


Figure 26. Recommended 20 MHz Crystal Oscillator Configuration

Table 105. Recommended Crystal Oscillator Specifications

Parameter	Value	Units	Comments
Frequency	20	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (R_S)	60	W	Maximum
Load Capacitance (C_L)	30	pF	Maximum
Shunt Capacitance (C_0)	7	pF	Maximum
Drive Level	1	mW	Maximum

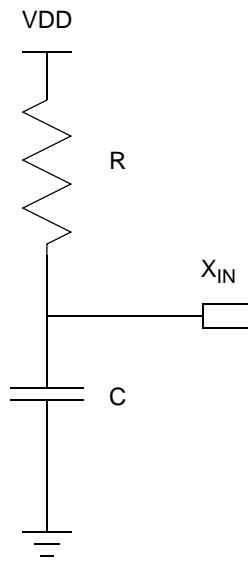

Table 106 describes the transconductance values for various operating modes.

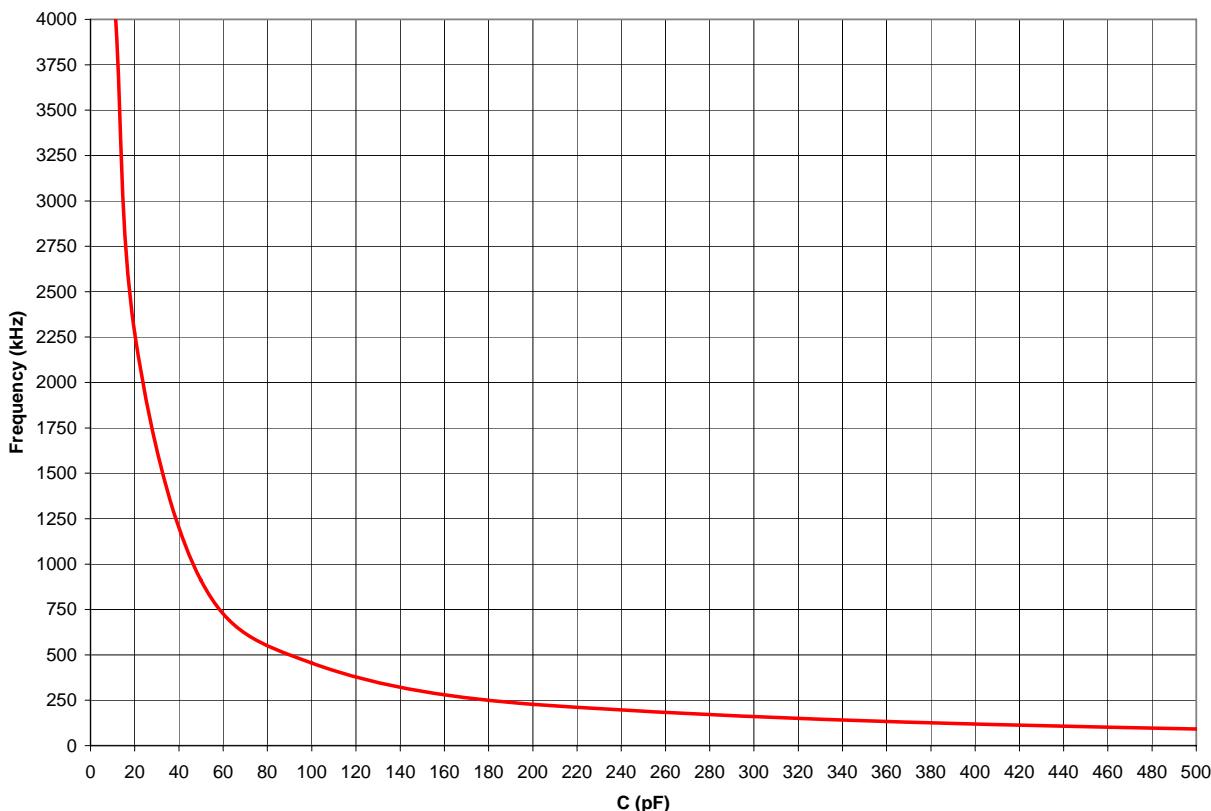
Table 106. Transconductance Values for Low, Medium, and High Gain Operating Modes

Mode	Crystal Frequency Range	Function	Transconductance (mA/V) Use this range for calculations		
			0.02	0.04	0.09
Low Gain (see Note)	32 KHz - 1 MHz	Low Power/Frequency Applications	0.02	0.04	0.09
Medium Gain (see Note)	0.5 MHz - 10 MHz	Medium Power/Frequency Applications	0.84	1.7	3.1
High Gain (see Note)	8 MHz - 20 MHz	High Power/Frequency Applications	1.1	2.3	4.2

Oscillator Operation with an External RC Network

Figure 27 illustrates a recommended configuration for connection with an external resistor-capacitor (RC) network.

Figure 27. Connecting the On-Chip Oscillator to an External RC Network


An external resistance value of 45 KΩ is recommended for oscillator operation with an external RC network. The minimum resistance value to ensure operation is 40 KΩ. The

typical oscillator frequency can be estimated from the values of the resistor (R in $\text{K}\Omega$) and capacitor (C in pF) elements using the following equation:

$$\text{Oscillator Frequency (KHz)} = \frac{1 \times 10^6}{(0.4 \times R \times C) + (4 \times C)}$$

Figure 28 illustrates the typical (3.3 V and 25 °C) oscillator frequency as a function of the capacitor (C in pF) employed in the RC network assuming a 45 $\text{K}\Omega$ external resistor. For very small values of C , the parasitic capacitance of the oscillator XIN pin and the printed circuit board should be included in the estimation of the oscillator frequency.

It is possible to operate the RC oscillator using only the parasitic capacitance of the package and printed circuit board. To minimize sensitivity to external parasitics, external capacitance values in excess of 20 pF are recommended.

Figure 28. Typical RC Oscillator Frequency as a Function of the External Capacitance with a 45 KOhm Resistor

Caution:

When using the external RC oscillator mode, the oscillator can stop oscillating if the power supply drops below 2.7 V, but before the power supply drops to the voltage brown-out threshold. The oscillator resumes oscillation when the supply voltage exceeds 2.7 V.

Internal Precision Oscillator

The internal precision oscillator (IPO) is designed for use without external components. You can either manually trim the oscillator for a non-standard frequency or use the automatic factory-trimmed version to achieve a 5.53 MHz frequency. IPO features include:

- On-chip RC oscillator that does not require external components.
- Output frequency of either 5.53 MHz or 32.8 KHz (contains both a fast and a slow mode).
- Trimming possible through Flash option bits with user override.
- Elimination of crystals or ceramic resonators in applications where high timing accuracy is not required.

Operation

The internal oscillator is an RC relaxation oscillator that has had its sensitivity to power supply variation minimized. By using ratio tracking thresholds, the effect of power supply voltage is cancelled out. The dominant source of oscillator error is the absolute variance of chip level fabricated components, such as capacitors. An 8-bit trimming register, incorporated into the design, compensates for absolute variation of oscillator frequency. Once trimmed, the oscillator frequency is stable and does not require subsequent calibration. Trimming was performed during manufacturing and is not necessary for you to repeat unless a frequency other than 5.53 MHz (fast mode) or 32.8 KHz (slow mode) is required. Power down this block for minimum system power.

By default, the oscillator is configured through the Flash Option bits. However, the user code can override these trim values as described in [Trim Bit Address Space on page 152](#).

Select one of two frequencies for the oscillator: 5.53 MHz and 32.8 KHz, using the OSCSEL bits in the [Oscillator Control on page 172](#).

eZ8 CPU Instruction Set

Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program without concern for actual memory addresses or machine instruction formats. A program written in assembly language is called a source program. Assembly language allows the use of symbolic addresses to identify memory locations. It also allows mnemonic codes (opcodes and operands) to represent the instructions themselves. The opcodes identify the instruction while the operands represent memory locations, registers, or immediate data values.

Each assembly language program consists of a series of symbolic commands called statements. Each statement can contain labels, operations, operands, and comments.

Labels can be assigned to a particular instruction step in a source program. The label identifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine instruction. The assembler directives, or pseudo-ops, are not translated into a machine instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the assembly process.

The source program is processed (assembled) by the assembler to obtain a machine language program called the object code. The object code is executed by the eZ8 CPU. An example segment of an assembly language program is detailed in the following example.

Assembly Language Source Program Example

JP START	; Everything after the semicolon is a comment.
START:	; A label called “START”. The first instruction (JP START) in this ; example causes program execution to jump to the point within the ; program where the START label occurs.
LD R4, R7	; A Load (LD) instruction with two operands. The first operand, ; Working Register R4, is the destination. The second operand, ; Working Register R7, is the source. The contents of R7 is ; written into R4.
LD 234H, #01	; Another Load (LD) instruction with two operands. ; The first operand, Extended Mode Register Address 234H, ; identifies the destination. The second operand, Immediate Data ; value 01H, is the source. The value 01H is written into the ; Register at address 234H.

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the operands be written as ‘destination, source’. After assembly, the object code usually has the operands in the order ‘source, destination’, but ordering is opcode-dependent. The following instruction examples illustrate the format of some basic assembly instructions and the resulting object code produced by the assembler. This binary format must be followed by users that prefer manual program coding or intend to implement their own assembler.

Example 1: If the contents of Registers 43H and 08H are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 107. Assembly Language Syntax Example 1

Assembly Language Code	ADD	43H,	08H	(ADD dst, src)
Object Code	04	08	43	(OPC src, dst)

Example 2: In general, when an instruction format requires an 8-bit register address, that address can specify any register location in the range 0–255 or, using Escaped Mode Addressing, a Working register R0–R15. If the contents of Register 43H and Working Register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 108. Assembly Language Syntax Example 2

Assembly Language Code	ADD	43H,	R8	(ADD dst, src)
Object Code	04	E8	43	(OPC src, dst)

See the device-specific Product Specification to determine the exact register file range available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the operands, condition codes, status flags, and address modes are represented by a notational shorthand that is described in [Table 109](#).

Table 109. Notational Shorthand

Notation	Description	Operand Range	
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
cc	Condition Code	—	See Condition Codes overview in the eZ8 CPU User Manual.
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFFH
IM	Immediate Data	#Data	Data is a number between 00H to FFH
Ir	Indirect Working Register	@Rn	n = 0 – 15
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH
p	Polarity	p	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0 – 15
R	Register	Reg	Reg. represents a number in the range of 00H to FFH
RA	Relative Address	X	X represents an index in the range of +127 to – 128 which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH
X	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.

Table 110 contains additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

Table 110. Additional Symbols

Symbol	Definition
dst	Destination Operand
src	Source Operand
@	Indirect Address Prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flags Register
RP	Register Pointer
#	Immediate Operand Prefix
B	Binary Number Suffix
%	Hexadecimal Number Prefix
H	Hexadecimal Number Suffix

Assignment of a value is indicated by an arrow. For example,

`dst ← dst + src`

indicates the source data is added to the destination data and the result is stored in the destination location.

eZ8 CPU Instruction Classes

eZ8 CPU instructions can be divided functionally into the following groups:

- Arithmetic
- Bit Manipulation
- Block Transfer
- CPU Control
- Load
- Logical
- Program Control

- Rotate and Shift

Tables 111 through 118 contain the instructions belonging to each group and the number of operands required for each instruction. Some instructions appear in more than one table as these instruction can be considered as a subset of more than one category. Within these tables, the source operand is identified as 'src', the destination operand is 'dst' and a condition code is 'cc'.

Table 111. Arithmetic Instructions

Mnemonic	Operands	Instruction
ADC	dst, src	Add with Carry
ADCX	dst, src	Add with Carry using Extended Addressing
ADD	dst, src	Add
ADDX	dst, src	Add using Extended Addressing
CP	dst, src	Compare
CPC	dst, src	Compare with Carry
CPCX	dst, src	Compare with Carry using Extended Addressing
CPX	dst, src	Compare using Extended Addressing
DA	dst	Decimal Adjust
DEC	dst	Decrement
DECW	dst	Decrement Word
INC	dst	Increment
INCW	dst	Increment Word
MULT	dst	Multiply
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 112. Bit Manipulation Instructions

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	—	Complement Carry Flag
RCF	—	Reset Carry Flag
SCF	—	Set Carry Flag
TCM	dst, src	Test Complement Under Mask
TCMX	dst, src	Test Complement Under Mask using Extended Addressing
TM	dst, src	Test Under Mask
TMX	dst, src	Test Under Mask using Extended Addressing

Table 113. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses

Table 114. CPU Control Instructions

Mnemonic	Operands	Instruction
ATM	—	Atomic Execution
CCF	—	Complement Carry Flag
DI	—	Disable Interrupts
EI	—	Enable Interrupts
HALT	—	Halt Mode
NOP	—	No Operation
RCF	—	Reset Carry Flag

Table 114. CPU Control Instructions

Mnemonic	Operands	Instruction
SCF	—	Set Carry Flag
SRP	src	Set Register Pointer
STOP	—	STOP Mode
WDT	—	Watchdog Timer Refresh

Table 115. Load Instructions

Mnemonic	Operands	Instruction
c	s	
CLR	dst	Clear
LD	dst, src	Load
LDC	dst, src	Load Constant to/from Program Memory
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDE	dst, src	Load External Data to/from Data Memory
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses
LDWX	dst, src	Load Word using Extended Addressing
LDX	dst, src	Load using Extended Addressing
LEA	dst, X(src)	Load Effective Address
POP	dst	Pop
POPX	dst	Pop using Extended Addressing
PUSH	src	Push
PUSHX	src	Push using Extended Addressing

Table 116. Logical Instructions

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
COM	dst	Complement

Table 116. Logical Instructions

Mnemonic	Operands	Instruction
OR	dst, src	Logical OR
ORX	dst, src	Logical OR using Extended Addressing
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using Extended Addressing

Table 117. Program Control Instructions

Mnemonic	Operands	Instruction
BRK	—	On-Chip Debugger Break
BTJ	p, bit, src, DA	Bit Test and Jump
BTJNZ	bit, src, DA	Bit Test and Jump if Non-Zero
BTJZ	bit, src, DA	Bit Test and Jump if Zero
CALL	dst	Call Procedure
DJNZ	dst, src, RA	Decrement and Jump Non-Zero
IRET	—	Interrupt Return
JP	dst	Jump
JP cc	dst	Jump Conditional
JR	DA	Jump Relative
JR cc	DA	Jump Relative Conditional
RET	—	Return
TRAP	vector	Software Trap

Table 118. Rotate and Shift Instructions

Mnemonic	Operands	Instruction
BSWAP	dst	Bit Swap
RL	dst	Rotate Left
RLC	dst	Rotate Left through Carry
RR	dst	Rotate Right

Table 118. Rotate and Shift Instructions

Mnemonic	Operands	Instruction
RRC	dst	Rotate Right through Carry
SRA	dst	Shift Right Arithmetic
SRL	dst	Shift Right Logical
SWAP	dst	Swap Nibbles

eZ8 CPU Instruction Summary

Table 119 summarizes the eZ8 CPU instructions. The table identifies the addressing modes employed by the instruction, the effect on the Flags register, the number of CPU clock cycles required for the instruction fetch, and the number of CPU clock cycles required to execute the instruction.

Table 119. eZ8 CPU Instruction Summary

Assembly Mnemonic	Symbolic Operation	Address Mode		Opcode(s) (Hex)	Flags						Fetch Cycles	Instr. Cycles
		dst	src		C	Z	S	V	D	H		
ADC dst, src	dst \leftarrow dst + src + C	r	r	12	*	*	*	*	0	*	2	3
		r	Ir	13							2	4
		R	R	14							3	3
		R	IR	15							3	4
		R	IM	16							3	3
		IR	IM	17							3	4
ADCX dst, src	dst \leftarrow dst + src + C	ER	ER	18	*	*	*	*	0	*	4	3
		ER	IM	19							4	3
ADD dst, src	dst \leftarrow dst + src	r	r	02	*	*	*	*	0	*	2	3
		r	Ir	03							2	4
		R	R	04							3	3
		R	IR	05							3	4
		R	IM	06							3	3
		IR	IM	07							3	4

Flags Notation: * = Value is a function of the result of the operation.
- = Unaffected
X = Undefined

Table 119. eZ8 CPU Instruction Summary (Continued)

Assembly Mnemonic	Symbolic Operation	Address Mode		Opcode(s) (Hex)	Flags						Fetch Cycles	Instr. Cycles
		dst	src		C	Z	S	V	D	H		
ADDX dst, src	dst \leftarrow dst + src	ER	ER	08	*	*	*	*	0	*	4	3
		ER	IM	09							4	3
AND dst, src	dst \leftarrow dst AND src	r	r	52	-	*	*	0	-	-	2	3
		r	Ir	53							2	4
		R	R	54							3	3
		R	IR	55							3	4
		R	IM	56							3	3
		IR	IM	57							3	4
ANDX dst, src	dst \leftarrow dst AND src	ER	ER	58	-	*	*	0	-	-	4	3
		ER	IM	59							4	3
ATM	Block all interrupt and DMA requests during execution of the next 3 instructions			2F	-	-	-	-	-	-	1	2
BCLR bit, dst	dst[bit] \leftarrow 0	r		E2	-	*	*	0	-	-	2	2
BIT p, bit, dst	dst[bit] \leftarrow p	r		E2	-	*	*	0	-	-	2	2
BRK	Debugger Break			00	-	-	-	-	-	-	1	1
BSET bit, dst	dst[bit] \leftarrow 1	r		E2	-	*	*	0	-	-	2	2
BSWAP dst	dst[7:0] \leftarrow dst[0:7]	R		D5	X	*	*	0	-	-	2	2
BTJ p, bit, src, dst	if src[bit] = p PC \leftarrow PC + X	r		F6	-	-	-	-	-	-	3	3
		Ir		F7							3	4
BTJNZ bit, src, dst	if src[bit] = 1 PC \leftarrow PC + X	r		F6	-	-	-	-	-	-	3	3
		Ir		F7							3	4
BTJZ bit, src, dst	if src[bit] = 0 PC \leftarrow PC + X	r		F6	-	-	-	-	-	-	3	3
		Ir		F7							3	4
CALL dst	SP \leftarrow SP -2 @SP \leftarrow PC PC \leftarrow dst	IRR		D4	-	-	-	-	-	-	2	6
		DA		D6							3	3
CCF	C \leftarrow ~C			EF	*	-	-	-	-	-	1	2
Flags Notation:	* = Value is a function of the result of the operation. - = Unaffected X = Undefined						0 = Reset to 0 1 = Set to 1					

Table 119. eZ8 CPU Instruction Summary (Continued)

Assembly Mnemonic	Symbolic Operation	Address Mode		Opcode(s) (Hex)	Flags						Fetch Cycles	Instr. Cycles	
		dst	src		C	Z	S	V	D	H			
CLR dst	dst ← 00H	R		B0	—	—	—	—	—	—	2	2	
				IR	B1						2	3	
COM dst	dst ← ~dst	R		60	—	*	*	0	—	—	2	2	
				IR	61						2	3	
CP dst, src	dst - src	r	r	A2	*	*	*	*	*	—	—	2	3
		r	Ir	A3								2	4
		R	R	A4								3	3
		R	IR	A5								3	4
		R	IM	A6								3	3
		IR	IM	A7								3	4
CPC dst, src	dst - src - C	r	r	1FA2	*	*	*	*	*	—	—	3	3
		r	Ir	1FA3								3	4
		R	R	1FA4								4	3
		R	IR	1FA5								4	4
		R	IM	1FA6								4	3
		IR	IM	1FA7								4	4
CPCX dst, src	dst - src - C	ER	ER	1FA8	*	*	*	*	*	—	—	5	3
		ER	IM	1FA9								5	3
CPX dst, src	dst - src	ER	ER	A8	*	*	*	*	*	—	—	4	3
		ER	IM	A9								4	3
DA dst	dst ← DA(dst)	R		40	*	*	*	X	—	—	2	2	
				IR	41							2	3
DEC dst	dst ← dst - 1	R		30	—	*	*	*	*	—	—	2	2
				IR	31							2	3
DECW dst	dst ← dst - 1	RR		80	—	*	*	*	*	—	—	2	5
				IRR	81							2	6
DI	IRQCTL[7] ← 0			8F	—	—	—	—	—	—	—	1	2
Flags Notation:	* = Value is a function of the result of the operation.						0	= Reset to 0					
	— = Unaffected						1	= Set to 1					
	X = Undefined												

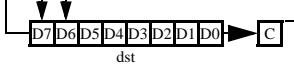
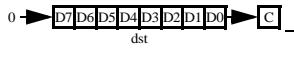
Table 119. eZ8 CPU Instruction Summary (Continued)

Assembly Mnemonic	Symbolic Operation	Address Mode		Opcode(s) (Hex)	Flags						Fetch Cycles	Instr. Cycles
		dst	src		C	Z	S	V	D	H		
DJNZ dst, RA	dst ← dst – 1 if dst ≠ 0 PC ← PC + X	r		0A-FA	–	–	–	–	–	–	2	3
EI	IRQCTL[7] ← 1			9F	–	–	–	–	–	–	1	2
HALT	Halt Mode			7F	–	–	–	–	–	–	1	2
INC dst	dst ← dst + 1	R		20	–	*	*	–	–	–	2	2
		IR		21							2	3
		r		0E-FE							1	2
INCW dst	dst ← dst + 1	RR		A0	–	*	*	*	–	–	2	5
		IRR		A1							2	6
IRET	FLAGS ← @SP SP ← SP + 1 PC ← @SP SP ← SP + 2 IRQCTL[7] ← 1			BF	*	*	*	*	*	*	1	5
JP dst	PC ← dst	DA		8D	–	–	–	–	–	–	3	2
		IRR		C4							2	3
JP cc, dst	if cc is true PC ← dst	DA		0D-FD	–	–	–	–	–	–	3	2
JR dst	PC ← PC + X	DA		8B	–	–	–	–	–	–	2	2
JR cc, dst	if cc is true PC ← PC + X	DA		0B-FB	–	–	–	–	–	–	2	2
Flags Notation:	* = Value is a function of the result of the operation. – = Unaffected X = Undefined				0 = Reset to 0 1 = Set to 1							

Table 119. eZ8 CPU Instruction Summary (Continued)

Assembly Mnemonic	Symbolic Operation	Address Mode		Opcode(s) (Hex)	Flags						Fetch Cycles	Instr. Cycles
		dst	src		C	Z	S	V	D	H		
LD dst, rc	dst ← src	r	IM	0C-FC	—	—	—	—	—	—	2	2
		r	X(r)	C7							3	3
		X(r)	r	D7							3	4
		r	Ir	E3							2	3
		R	R	E4							3	2
		R	IR	E5							3	4
		R	IM	E6							3	2
		IR	IM	E7							3	3
		Ir	r	F3							2	3
		IR	R	F5							3	3
LDC dst, src	dst ← src	r	Irr	C2	—	—	—	—	—	—	2	5
		Ir	Irr	C5							2	9
		Irr	r	D2							2	5
LDCI dst, src	dst ← src r ← r + 1 rr ← rr + 1	Ir	Irr	C3	—	—	—	—	—	—	2	9
		Irr	Ir	D3							2	9
		r	Irr	82	—	—	—	—	—	—	2	5
LDE dst, src			r	92							2	5
LDEI dst, src	dst ← src r ← r + 1 rr ← rr + 1	Ir	Irr	83	—	—	—	—	—	—	2	9
		Irr	Ir	93							2	9
LDWX dst, src	dst ← src	ER	ER	1FE8	—	—	—	—	—	—	5	4

Flags Notation: * = Value is a function of the result of the operation. 0 = Reset to 0
 — = Unaffected 1 = Set to 1
 X = Undefined



Table 119. eZ8 CPU Instruction Summary (Continued)

Assembly Mnemonic	Symbolic Operation	Address Mode		Opcode(s) (Hex)	Flags						Fetch Cycles	Instr. Cycles
		dst	src		C	Z	S	V	D	H		
LDX dst, src	dst ← src	r	ER	84	—	—	—	—	—	—	3	2
		Ir	ER	85							3	3
		R	IRR	86							3	4
		IR	IRR	87							3	5
		r	X(rr)	88							3	4
		X(rr)	r	89							3	4
		ER	r	94							3	2
		ER	Ir	95							3	3
		IRR	R	96							3	4
		IRR	IR	97							3	5
LEA dst, X(src)	dst ← src + X	r	X(r)	98	—	—	—	—	—	—	3	3
		rr	X(rr)	99							3	5
MULT dst	dst[15:0] ← dst[15:8] * dst[7:0]	RR		F4	—	—	—	—	—	—	2	8
NOP	No operation			0F	—	—	—	—	—	—	1	2
OR dst, src	dst ← dst OR src	r	r	42	—	*	*	0	—	—	2	3
		r	Ir	43							2	4
		R	R	44							3	3
		R	IR	45							3	4
		R	IM	46							3	3
		IR	IM	47							3	4
ORX dst, src	dst ← dst OR src	ER	ER	48	—	*	*	0	—	—	4	3
		ER	IM	49							4	3
POP dst	dst ← @SP	R		50	—	—	—	—	—	—	2	2
	SP ← SP + 1	IR		51							2	3
POPX dst	dst ← @SP	ER		D8	—	—	—	—	—	—	3	2
Flags Notation:		* = Value is a function of the result of the operation. — = Unaffected X = Undefined						0	= Reset to 0 1	= Set to 1		

Table 119. eZ8 CPU Instruction Summary (Continued)

Assembly Mnemonic	Symbolic Operation	Address Mode		Opcode(s) (Hex)	Flags						Fetch Cycles	Instr. Cycles		
		dst	src		C	Z	S	V	D	H				
PUSH src	SP ← SP – 1 @SP ← src	R IR IM	70 71 IF70	—	—	—	—	—	—	—	2	2		
				—	—	—	—	—	—	—	2	3		
				—	—	—	—	—	—	—	3	2		
PUSHX src	SP ← SP – 1 @SP ← src	ER	C8	—	—	—	—	—	—	—	3	2		
RCF	C ← 0	CF	0	—	—	—	—	—	—	—	1	2		
RET	PC ← @SP SP ← SP + 2			—	—	—	—	—	—	—	1	4		
RL dst		R IR	90 91	—	*	*	*	*	—	—	2	2		
				—	—	—	—	—	—	—	2	3		
RLC dst		R IR	10 11	—	*	*	*	*	—	—	2	2		
				—	—	—	—	—	—	—	2	3		
RR dst		R IR	E0 E1	—	*	*	*	*	—	—	2	2		
				—	—	—	—	—	—	—	2	3		
RRC dst		R IR	C0 C1	—	*	*	*	*	—	—	2	2		
				—	—	—	—	—	—	—	2	3		
SBC dst, src	dst ← dst – src - C	r r R R R IR	32 33 34 35 36 37	—	*	*	*	*	1	*	2	3		
				—	—	—	—	—	—	—	2	4		
				—	—	—	—	—	—	—	3	3		
				—	—	—	—	—	—	—	3	4		
				—	—	—	—	—	—	—	3	3		
				—	—	—	—	—	—	—	3	4		
SBCX dst, src	dst ← dst – src - C	ER ER	38 39	—	*	*	*	*	1	*	4	3		
				—	—	—	—	—	—	—	4	3		
SCF	C ← 1	DF	1	—	—	—	—	—	—	—	1	2		
Flags Notation:				—	Value is a function of the result of the operation.	—	0 = Reset to 0	—	1	—	—	—		
				—	Unaffected	—	1 = Set to 1	—	—	—	—	—		
				—	Undefined	—	—	—	—	—	—	—		

Table 119. eZ8 CPU Instruction Summary (Continued)

Assembly Mnemonic	Symbolic Operation	Address Mode		Opcode(s) (Hex)	Flags						Fetch Cycles	Instr. Cycles
		dst	src		C	Z	S	V	D	H		
SRA dst		R		D0	*	*	*	0	—	—	2	2
		IR		D1							2	3
SRL dst		R		1F C0	*	*	0	*	—	—	3	2
		IR		1F C1							3	3
SRP src	RP ← src		IM	01	—	—	—	—	—	—	2	2
STOP	STOP Mode			6F	—	—	—	—	—	—	1	2
SUB dst, src	dst ← dst – src	r	r	22	*	*	*	*	1	*	2	3
		r	Ir	23							2	4
		R	R	24							3	3
		R	IR	25							3	4
		R	IM	26							3	3
		IR	IM	27							3	4
SUBX dst, src	dst ← dst – src	ER	ER	28	*	*	*	*	1	*	4	3
		ER	IM	29							4	3
SWAP dst	dst[7:4] ↔ dst[3:0]	R		F0	X	*	*	X	—	—	2	2
		IR		F1							2	3
TCM dst, src	(NOT dst) AND src	r	r	62	—	*	*	0	—	—	2	3
		r	Ir	63							2	4
		R	R	64							3	3
		R	IR	65							3	4
		R	IM	66							3	3
		IR	IM	67							3	4
TCMX dst, src	(NOT dst) AND src	ER	ER	68	—	*	*	0	—	—	4	3
		ER	IM	69							4	3

Flags Notation:

* = Value is a function of the result of the operation.

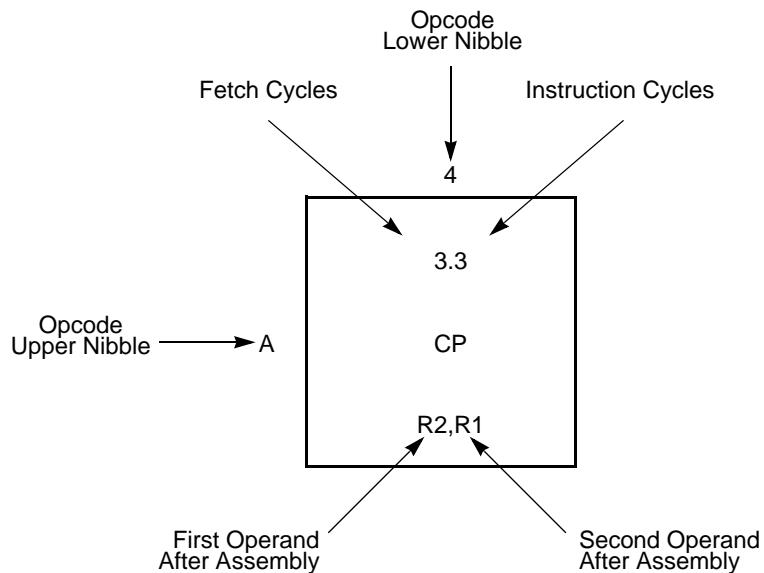
0 = Reset to 0

— = Unaffected

1 = Set to 1

X = Undefined

Table 119. eZ8 CPU Instruction Summary (Continued)


Assembly Mnemonic	Symbolic Operation	Address Mode		Opcode(s) (Hex)	Flags						Fetch Cycles	Instr. Cycles
		dst	src		C	Z	S	V	D	H		
TM dst, src	dst AND src	r	r	72	—	*	*	0	—	—	2	3
		r	Ir	73							2	4
		R	R	74							3	3
		R	IR	75							3	4
		R	IM	76							3	3
		IR	IM	77							3	4
TMX dst, src	dst AND src	ER	ER	78	—	*	*	0	—	—	4	3
		ER	IM	79							4	3
TRAP Vector	SP ← SP – 2 @SP ← PC SP ← SP – 1 @SP ← FLAGS PC ← @Vector	Vector		F2	—	—	—	—	—	—	2	6
WDT				5F	—	—	—	—	—	—	1	2
XOR dst, src	dst ← dst XOR src	r	r	B2	—	*	*	0	—	—	2	3
		r	Ir	B3							2	4
		R	R	B4							3	3
		R	IR	B5							3	4
		R	IM	B6							3	3
		IR	IM	B7							3	4
XORX dst, src	dst ← dst XOR src	ER	ER	B8	—	*	*	0	—	—	4	3
		ER	IM	B9							4	3

Flags Notation: * = Value is a function of the result of the operation.
 — = Unaffected
 X = Undefined

0 = Reset to 0
 1 = Set to 1

Opcode Maps

A description of the opcode map data and the abbreviations are provided in [Figure 29](#). [Figures 30 and 31](#) provide information about each of the eZ8 CPU instructions. [Table 120](#) lists opcode map abbreviations.

Figure 29. Opcode Map Cell Description

Table 120. Opcode Map Abbreviations

Abbreviation	Description	Abbreviation	Description
b	Bit position	IRR	Indirect Register Pair
cc	Condition code	p	Polarity (0 or 1)
X	8-bit signed index or displacement	r	4-bit Working Register
DA	Destination address	R	8-bit register
ER	Extended Addressing register	r1, R1, Ir1, Irr1, IR1, rr1, RR1, IRR1, ER1	Destination address
IM	Immediate data value	r2, R2, Ir2, Irr2, IR2, rr2, RR2, IRR2, ER2	Source address
Ir	Indirect Working Register	RA	Relative
IR	Indirect register	rr	Working Register Pair
Irr	Indirect Working Register Pair	RR	Register Pair

Lower Nibble (Hex)																	
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
		1.1	2.2	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3	2.3	2.2	2.2	3.2	1.2	1.2
Upper Nibble (Hex)		BRK	SRP	ADD	ADD	ADD	ADD	ADD	ADD	ADDX	ADDX	DJNZ	JR	LD	JP	INC	NOP
		IM	r1,r2	r1,lr2	R2,R1	IR2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1	r1,X	cc,X	r1,IM	cc,DA	r1	See 2nd Opcode Map
		2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						1, 2 ATM
		RLC	RLC	ADC	ADC	ADC	ADC	ADC	ADC	ADCX	ADCX						
		R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
		2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						1.2 WDT
		INC	INC	SUB	SUB	SUB	SUB	SUB	SUB	SUBX	SUBX						1.2 STOP
		R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						1.2 HALT
		2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						1.2 DI
		DEC	DEC	SBC	SBC	SBC	SBC	SBC	SBC	SBCX	SBCX						1.2 EI
		R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						1.4 RET
		2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						1.5 IRET
		DA	DA	OR	OR	OR	OR	OR	OR	ORX	ORX						1.2 RCF
		R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						1.2 SCF
		2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						1.2 CCF
		POP	POP	AND	AND	AND	AND	AND	AND	ANDX	ANDX						
		R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
		2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						
		COM	COM	TCM	TCM	TCM	TCM	TCM	TCM	TCMX	TCMX						
		R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
		2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						
		PUSH	PUSH	TM	TM	TM	TM	TM	TM	TMX	TMX						
		R2	IR2	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
		2.5	2.6	2.5	2.9	3.2	3.3	3.4	3.5	3.4	3.4						
		DECW	DECW	LDE	LDEI	LDX	LDX	LDX	LDX	LDX	LDX						
		RR1	IRR1	r1,lr2	lr1,rr2	r1,ER2	IR1,ER2	IR2,R1	IRR2,R1	IRR2,IR1	r1,rr2,X						
		2.2	2.3	2.5	2.9	3.2	3.3	3.4	3.5	3.3	3.5						
		RL	RL	LDE	LDEI	LDX	LDX	LDX	LDX	LEA	LEA						
		R1	IR1	r2,IRR1	lr2,rr1	r2,ER1	IR2,ER1	IR2,R1	IRR2,IR1	IR2,IRR1	r1,r2,X						
		2.5	2.6	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						
		INCW	INCW	CP	CP	CP	CP	CP	CP	CPX	CPX						
		RR1	IRR1	r1,r2	r1,lr2	R2,R1	IR2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1					
		2.2	2.3	2.3	2.4	3.3	3.4	3.3	3.4	4.3	4.3						
		CLR	CLR	XOR	XOR	XOR	XOR	XOR	XOR	XORX	XORX						
		R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
		2.2	2.3	2.5	2.9	2.3	2.9	LD	LD	LD	PUSHX						
		RRC	RRC	LDC	LDCI	JP	LDC			r1,r2,X	ER2						
		R1	IR1	r1,lr2	lr1,rr2	IRR1	IR2,IR2										
		2.2	2.3	2.5	2.9	2.6	2.2	BSWAP	CALL	LD	POPX						
		SRA	SRA	LDC	LDCI	CALL	R1	DA	DA	r2,r1,X	ER1						
		R1	IR1	r2,IRR1	lr2,rr1	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
		2.2	2.3	2.2	2.3	3.2	3.3	LD	LD	LD	LDX						
		RR	RR	BIT	LD	LD	LD	LD	LD	LD	LDX						
		R1	IR1	p,b,r1	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
		2.2	2.3	2.3	2.3	2.8	3.3	BTJ	BTJ	BTJ							
		SWAP	SWAP	TRAP	LD	MULT	LD	BTJ	BTJ								
		R1	IR1	Vector	Ir1,r2	RR1	R2,IR1	p,b,r1,X	p,b,lr1,X								

Figure 30. First Opcode Map

		Lower Nibble (Hex)															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Upper Nibble (Hex)	0																
	1																
	2																
	3																
	4																
	5																
	6																
	7	3,2 PUSH IM															
	8																
	9																
	A			3.3 CPC r1,r2	3.4 CPC r1,lr2	4.3 CPC R2,R1	4.4 CPC IR2,R1	4.3 CPC R1,IM	4.4 CPC IR1,IM	5.3 CPCX ER2,ER1	5.3 CPCX IM,ER1						
	B																
	C	3.2 SRL R1	3.3 SRL IR1														
	D																
	E										5,4 LDWX ER2,ER1						
	F																

Figure 31. Second Opcode Map after 1FH

Electrical Characteristics

The data in this chapter is pre-qualification and pre-characterization and is subject to change. Additional electrical characteristics can be found in the individual chapters.

Absolute Maximum Ratings

Stresses greater than those listed in [Table 121](#) can cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods affects device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Table 121. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	0	+105	°C	1
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V_{SS}	-0.3	+5.5	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	µA	
Maximum output current from active output pin	-25	+25	mA	

8-pin Packages Maximum Ratings at 0°C to 70°C

Total power dissipation	220	mW
Maximum current into V_{DD} or out of V_{SS}	60	mA

20-pin Packages Maximum Ratings at 0°C to 70°C

Total power dissipation	430	mW
Maximum current into V_{DD} or out of V_{SS}	120	mA

28-pin Packages Maximum Ratings at 0°C to 70°C

Total power dissipation	450	mW
Maximum current into V_{DD} or out of V_{SS}	125	mA

Operating temperature is specified in DC Characteristics

1. This voltage applies to all pins except the following: V_{DD} , AV_{DD} , pins supporting analog input (Port B[5:0], Port C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1). On the 8-pin packages, this applies to all pins but V_{DD} .

DC Characteristics

Table 122 lists the DC characteristics of the Z8 Encore! XP® F08xA Series products. All voltages are referenced to V_{SS} , the primary system ground.

Table 122. DC Characteristics

Symbol	Parameter	$T_A = -40^\circ\text{C}$ to $+105^\circ\text{C}$			Units	Conditions
		Minimum	Typical	Maximum		
V_{DD}	Supply Voltage	2.7	—	3.6	V	
V_{IL1}	Low Level Input Voltage	-0.3	—	0.3^*V_{DD}	V	For all input pins except <u>RESET</u> .
V_{IL2}	Low Level Input Voltage	-0.3	—	0.8	V	For <u>RESET</u> .
V_{IH1}	High Level Input Voltage	2.0	—	5.5	V	For all input pins without analog or oscillator function. For all signal pins on 8-pin devices.
V_{IH2}	High Level Input Voltage	2.0	—	$V_{DD}+0.3$	V	For those pins with analog or oscillator function.
V_{OL1}	Low Level Output Voltage	—	—	0.4	V	$I_{OL} = 2\text{ mA}$; $V_{DD} = 3.0\text{ V}$ High Output Drive disabled.
V_{OH1}	High Level Output Voltage	2.4	—	—	V	$I_{OH} = -2\text{ mA}$; $V_{DD} = 3.0\text{ V}$ High Output Drive disabled.
V_{OL2}	Low Level Output Voltage	—	—	0.6	V	$I_{OL} = 20\text{ mA}$; $V_{DD} = 3.3\text{ V}$ High Output Drive enabled.
V_{OH2}	High Level Output Voltage	2.4	—	—	V	$I_{OH} = -20\text{ mA}$; $V_{DD} = 3.3\text{ V}$ High Output Drive enabled.
I_{IL}	Input Leakage Current	-5	—	+5	μA	$V_{DD} = 3.6\text{ V}$; $V_{IN} = V_{DD}$ or V_{SS}^1
I_{TL}	Tristate Leakage Current	-5	—	+5	μA	$V_{DD} = 3.6\text{ V}$
I_{LED}	Controlled Current Drive	1.8	3	4.5	mA	$\{AFS2,AFS1\} = \{0,0\}$
		2.8	7	10.5	mA	$\{AFS2,AFS1\} = \{0,1\}$
		7.8	13	19.5	mA	$\{AFS2,AFS1\} = \{1,0\}$
		12	20	30	mA	$\{AFS2,AFS1\} = \{1,1\}$
C_{PAD}	GPIO Port Pad Capacitance	—	8.0^2	—	pF	TBD

Table 122. DC Characteristics (Continued)

Symbol	Parameter	TA = -40 °C to +105 °C			Units	Conditions
		Minimum	Typical	Maximum		
C _{XIN}	XIN Pad Capacitance	–	8.0 ²	–	pF	TBD
C _{XOUT}	XOUT Pad Capacitance	–	9.5 ²	–	pF	TBD
I _{PU}	Weak Pull-up Current	30	100	350	µA	V _{DD} = 3.0 V–3.6 V
ICCH	Supply Current in Halt Mode		TBD		mA	TBD
ICCS	Supply Current in STOP Mode		2		µA	With watchdog timer running
ICC	Supply Current in Active Mode (with all peripherals disabled)		4.2		mA	5.5MHz, V _{DD} = 3.3 V, +30 °C
			4.9		mA	10MHz, V _{DD} = 3.3 V, +30 °C
			6.5		mA	20MHz, V _{DD} = 3.3 V, +30 °C
ICC _{IPO}	Supply Current Consumed by Internal Precision Oscillator		1.5		mA	V _{DD} = 3.3 V, +30 °C
ICC _{XTAL}	Supply Current Consumed by Crystal Oscillator		300		µA	V _{DD} = 3.3 V, +30 °C

¹ This condition excludes all pins that have on-chip pull-ups, when driven Low.

² These values are provided for design guidance only and are not tested in production.

Figure 32 illustrates the typical current consumption while operating at 25°C, 3.3V, versus the system clock frequency.

Typical Supply Current - Active Mode

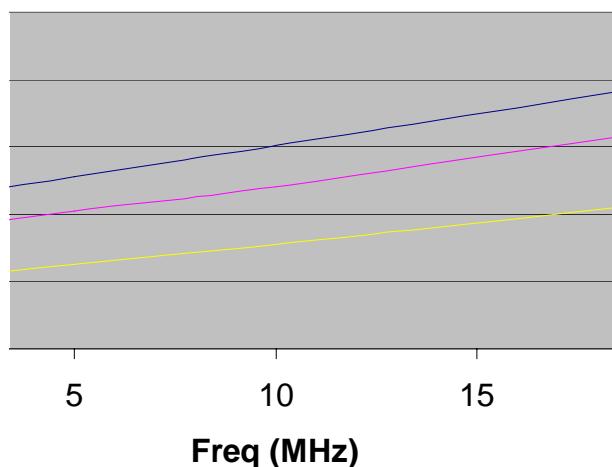


Figure 32. ICC Versus System Clock Frequency

AC Characteristics

The section provides information about the AC characteristics and timing. All AC timing information assumes a standard load of 50 pF on all outputs.

Table 123. AC Characteristics

Symbol	Parameter	$V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ $T_A = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C}$		Units	Conditions
		Minimum	Maximum		
F_{SYSCLK}	System Clock Frequency	—	20.0	MHz	Read-only from Flash memory.
		0.032768	20.0	MHz	Program or erasure of the Flash memory.
F_{XTAL}	Crystal Oscillator Frequency	1.0	20.0	MHz	System clock frequencies below the crystal oscillator minimum require an external clock driver.

Table 123. AC Characteristics (Continued)

Symbol	Parameter	$V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ $T_A = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C}$		Units	Conditions
		Minimum	Maximum		
F_{IPO}	Internal Precision Oscillator Frequency	0.032768	5.5296	MHz	Oscillator is not adjustable over the entire range. You can select Min or Max value only.
F_{IPO}	Internal Precision Oscillator Frequency	5.31	5.75	MHz	High speed with trimming.
F_{IPO}	Internal Precision Oscillator Frequency	4.15	6.91	MHz	High speed without trimming.
F_{IPO}	Internal Precision Oscillator Frequency	30.7	33.3	KHz	Low speed with trimming.
F_{IPO}	Internal Precision Oscillator Frequency	24	40	KHz	Low speed without trimming.
T_{XIN}	System Clock Period	50	—	ns	$T_{CLK} = 1/F_{sysclk}$
T_{XINH}	System Clock High Time	20	30	ns	$T_{CLK} = 50 \text{ ns}$
T_{XINL}	System Clock Low Time	20	30	ns	$T_{CLK} = 50 \text{ ns}$
T_{XINR}	System Clock Rise Time	—	3	ns	$T_{CLK} = 50 \text{ ns}$
T_{XINF}	System Clock Fall Time	—	3	ns	$T_{CLK} = 50 \text{ ns}$

On-Chip Peripheral AC and DC Electrical Characteristics

This section provides information about on-chip peripheral AC and DC electrical characteristics and timing. [Table 124](#) lists the Power-on reset (POR) and Voltage Brownout (VBO) electrical characteristics. [Table 125 on page 210](#) lists the electrical characteristics and timing of Flash Memory. [Table 126 on page 210](#) lists the electrical characteristics and timing of Watchdog Timer (WDT). [Table 127 on page 211](#) lists the electrical characteristics and timing of analog-to-digital converter (ADC). [Table 128 on page 213](#) lists the elec-

trical characteristics of comparator. [Table 129 on page 213](#) lists the electrical characteristics of temperature sensor

Table 124. Power-On Reset and Voltage Brownout Electrical Characteristics and Timing

Symbol	Parameter	TA = -40°C to +105°C			Units	Conditions
		Minimum	Typical ¹	Maximum		
V _{POR}	Power-on reset Voltage Threshold	2.20	2.45	2.70	V	V _{DD} = V _{POR} (default VBO trim)
V _{VBO}	Voltage Brownout Reset Voltage Threshold	2.15	2.40	2.65	V	V _{DD} = V _{VBO} (default VBO trim)
	V _{POR} to V _{VBO} hysteresis		50	75	mV	
	Starting V _{DD} voltage to ensure valid Power-On Reset.	–	V _{SS}	–	V	
T _{ANA}	Power-On Reset Analog Delay	–	50	–	μs	V _{DD} > V _{POR} ; T _{POR} Digital Reset delay follows T _{ANA}
T _{POR}	Power-On Reset Digital Delay	TBD	16	TBD	μs	66 Internal Precision Oscillator cycles
T _{POR}	Power-On Reset Digital Delay	TBD	1	TBD	ms	5000 Internal Precision Oscillator cycles
T _{SMR}	Stop Mode Recovery with crystal oscillator disabled	TBD	16	TBD	μs	66 Internal Precision Oscillator cycles
T _{SMR}	Stop Mode Recovery with crystal oscillator enabled	TBD	1	TBD	ms	5000 Internal Precision Oscillator cycles
T _{VBO}	Voltage Brownout Pulse Rejection Period	–	10	–	μs	V _{DD} < V _{VBO} to generate a Reset.
T _{RAMP}	Time for V _{DD} to transition from V _{SS} to V _{POR} to ensure valid Reset	0.10	–	100	ms	

1 Data in the typical column is from characterization at 3.3V and 0°C. These values are provided for design guidance only and are not tested in production.

Table 125. Flash Memory Electrical Characteristics and Timing

Parameter	$V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ $T_A = -40 \text{ }^\circ\text{C to } +105 \text{ }^\circ\text{C}$			Units	Notes
	Minimum	Typical	Maximum		
Flash Byte Read Time	100	—	—	ns	
Flash Byte Program Time	20	—	40	μs	
Flash Page Erase Time	10	—	—	ms	
Flash Mass Erase Time	200	—	—	ms	
Writes to Single Address Before Next Erase	—	—	2		
Flash Row Program Time	—	—	8	ms	Cumulative program time for single row cannot exceed limit before next erase. This parameter is only an issue when bypassing the Flash Controller.
Data Retention	100	—	—	years	25 °C
Endurance	10,000	—	—	cycles	Program / erase cycles

Table 126. Watchdog Timer Electrical Characteristics and Timing

Symbol	Parameter	$V_{DD} = 2.7 \text{ V- } 3.6 \text{ V}$ $T_A = -40 \text{ }^\circ\text{C to } +105 \text{ }^\circ\text{C}$			Units	Conditions
		Minimum	Typical	Maximum		
F_{WDT}	WDT Oscillator Frequency		10		KHz	

Table 127. Analog-to-Digital Converter Electrical Characteristics and Timing

Symbol	Parameter	$V_{DD} = 2.7 \text{ V to } 3.6\text{V}$ $T_A = -40 \text{ }^\circ\text{C to } +105 \text{ }^\circ\text{C}$			Units	Conditions
		Minimum	Typical	Maximum		
	Resolution	–	10	–	bits	External $V_{REF} = 3.0 \text{ V}$; $R_S \leftarrow 3.0 \text{ K}\Omega$
	Differential Nonlinearity (DNL)	-1.0	–	1.0	LSB	External $V_{REF} = 3.0 \text{ V}$; $R_S \leftarrow 3.0 \text{ K}\Omega$
	Integral Nonlinearity (INL)	-3.0	–	3.0	LSB	External $V_{REF} = 3.0 \text{ V}$; $R_S \leftarrow 3.0 \text{ K}\Omega$
	Uncalibrated DC Offset Error (single-ended)	-100 TBD -250	–	80 TBD 250	mV	Unbuffered Mode Unity Gain Buffered 20x Gain Buffered Note: All values are uncompensated; manual offset compensation is available
	Uncalibrated DC Offset Error (differential)	-100 TBD	–	80 TBD	mV	Unbuffered Mode Unity Gain Buffered Note: All values are uncompensated; manual offset compensation is available
V_{REF}	Internal Reference Voltage	0.9 1.8	1.0 2.0	1.1 2.2	V	REFSEL=00 REFSEL=01
	Single-Shot Conversion Time	–	5129	–	cycles	System clock cycles
	Continuous Conversion Time	–	256	–	cycles	System clock cycles
	Sampling Rate	System Clock /256			Hz	
	Signal Input Bandwidth	–	10	–	KHz	As defined by -3 dB point
R_S	Analog Source Impedance	–	–	10 500	$\text{K}\Omega$	In unbuffered mode In buffered modes
Z_{in}	Input Impedance	TBD 10	150 TBD	–	$\text{K}\Omega$ $\text{M}\Omega$	In unbuffered mode In buffered modes

¹ Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling time.

Table 127. Analog-to-Digital Converter Electrical Characteristics and Timing (Continued)

Symbol	Parameter	$V_{DD} = 2.7 \text{ V to } 3.6\text{V}$ $T_A = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C}$			Units	Conditions
		Minimum	Typical	Maximum		
Vin	Input Voltage Range	0 300mV		V_{DD} $V_{DD}-400\text{mV}$	V	Unbuffered Mode Buffered Modes Note: these values define the range over which the ADC performs within spec; exceeding these values does not cause damage or instability; see DC Characteristics on page 205 for absolute pin voltage limits
Av	Transimpedance Amplifier, Open loop voltage gain		80		dB	
GBW	Transimpedance Amplifier, Gain/Bandwidth product		1		MHz	
PM	Phase Margin		53		deg	Assuming 13 pF pin capacitance
V_{osTA}	Transimpedance Amplifier Input Offset Voltage	-4		4	mV	
V_{osTA}	Transimpedance Amplifier Input Offset Voltage (Temperature Drift)		1	10	$\mu\text{V/C}$	Over the range of -10 °C to +40 °C
I_{outTA}	Transimpedance Amplifier Output Drive Current			50	μA	Amplifier output voltage $V_{out} \leftarrow 1.5 \text{ V}$; above this output voltage, maximum output current drops off
I_{CC}	STOP Mode Current with Transimpedance Amplifier Active		10		μA	No other peripherals are enabled

¹ Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling time.

Table 128. Comparator Electrical Characteristics

Symbol	Parameter	$V_{DD} = 2.7 \text{ V to } 3.6\text{V}$ $T_A = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C}$			Units	Conditions
		Minimum	Typical	Maximum		
V_{OS}	Input DC Offset		5		mV	
V_{CREF}	Programmable Internal Reference Voltage Range	0		1.8	V	User-programmable in 200 mV step
V_{CREF}	Programmable Internal Reference Voltage	0.92	1.0	1.08	V	Default (CMPO[REFLVL]=5H)
T_{PROP}	Propagation Delay		100		ns	
V_{HYS}	Input Hysteresis		4		mV	

Table 129. Temperature Sensor Electrical Characteristics

Symbol	Parameter	$V_{DD} = 2.7 \text{ V to } 3.6\text{V}$ $T_A = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C}$			Units	Conditions
		Minimum	Typical	Maximum		
T_{AERR}	Temperature Error	-7		+7	°C	Over the range -40 °C to +105 °C (as measured by ADC)
T_{AERR}	Temperature Error	-1.5		+1.5	°C	Over the range +20 °C to +30 °C (as measured by ADC)
T_{AERR}	Temperature Error	TBD		TBD	°C	Over the range -40 °C to +105 °C (as measured by comparator)
t_{WAKE}	Wakeup Time		80	100	us	Time required for Temperature Sensor to stabilize after enabling

General Purpose I/O Port Input Data Sample Timing

Figure 33 illustrates timing of the GPIO Port input sampling. The input value on a GPIO Port pin is sampled on the rising edge of the system clock. The Port value is available to the eZ8 CPU on the second rising clock edge following the change of the Port value.

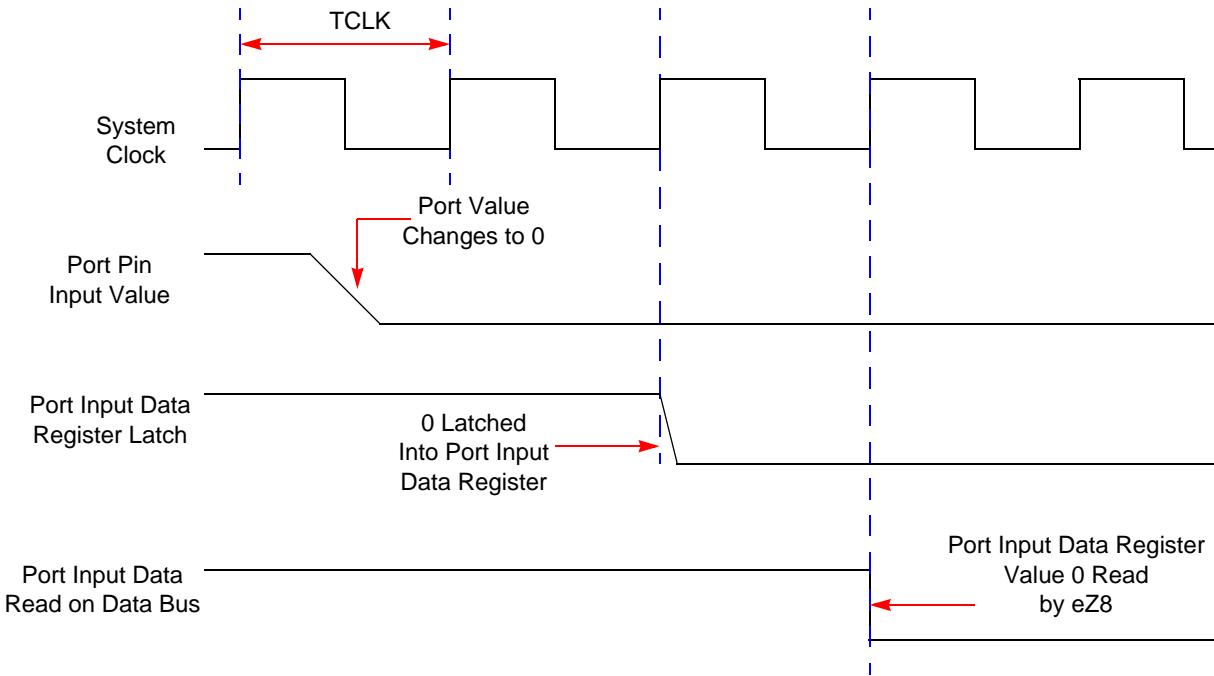


Figure 33. Port Input Sample Timing

Table 130. GPIO Port Input Timing

Parameter	Abbreviation	Delay (ns)	
		Minimum	Maximum
T_{S_PORT}	Port Input Transition to XIN Rise Setup Time (Not pictured)	5	–
T_{H_PORT}	XIN Rise to Port Input Transition Hold Time (Not pictured)	0	–
T_{SMR}	GPIO Port Pin Pulse Width to ensure Stop Mode Recovery (for GPIO Port Pins enabled as SMR sources)	1 μ s	–

General Purpose I/O Port Output Timing

Figure 34 and Table 131 provide timing information for GPIO Port pins.

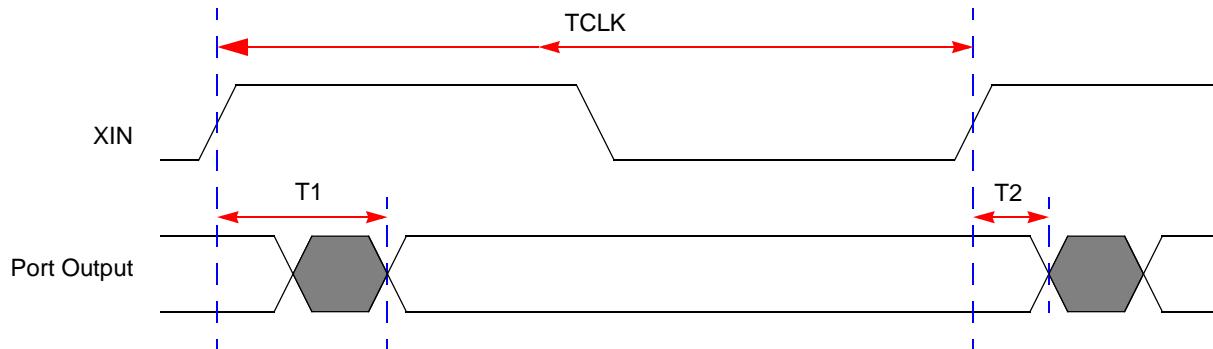


Figure 34. GPIO Port Output Timing

Table 131. GPIO Port Output Timing

Parameter	Abbreviation	Delay (ns)	
		Minimum	Maximum
GPIO Port pins			
T ₁	XIN Rise to Port Output Valid Delay	–	15
T ₂	XIN Rise to Port Output Hold Time	2	–

On-Chip Debugger Timing

Figure 35 and Table 132 provide timing information for the DBG pin. The DBG pin timing specifications assume a 4 ns maximum rise and fall time.

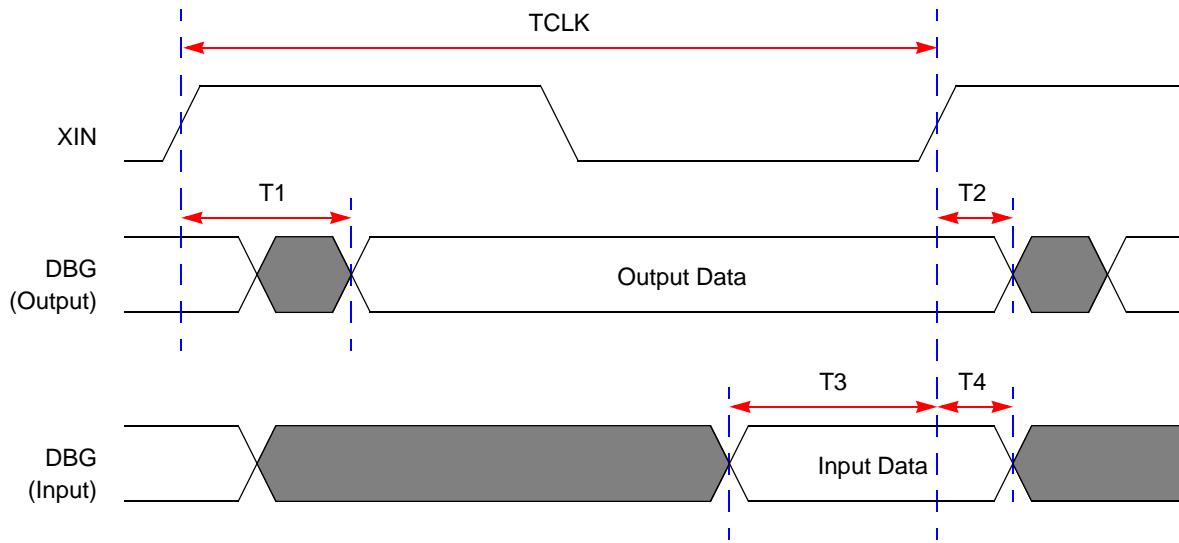


Figure 35. On-Chip Debugger Timing

Table 132. On-Chip Debugger Timing

Parameter Abbreviation		Delay (ns)	
		Minimum	Maximum
DBG			
T ₁	XIN Rise to DBG Valid Delay	—	15
T ₂	XIN Rise to DBG Output Hold Time	2	—
T ₃	DBG to XIN Rise Input Setup Time	5	—
T ₄	DBG to XIN Rise Input Hold Time	5	—

UART Timing

Figure 36 and Table 133 provide timing information for UART pins for the case where CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the transmit data register has been loaded with data prior to CTS assertion.

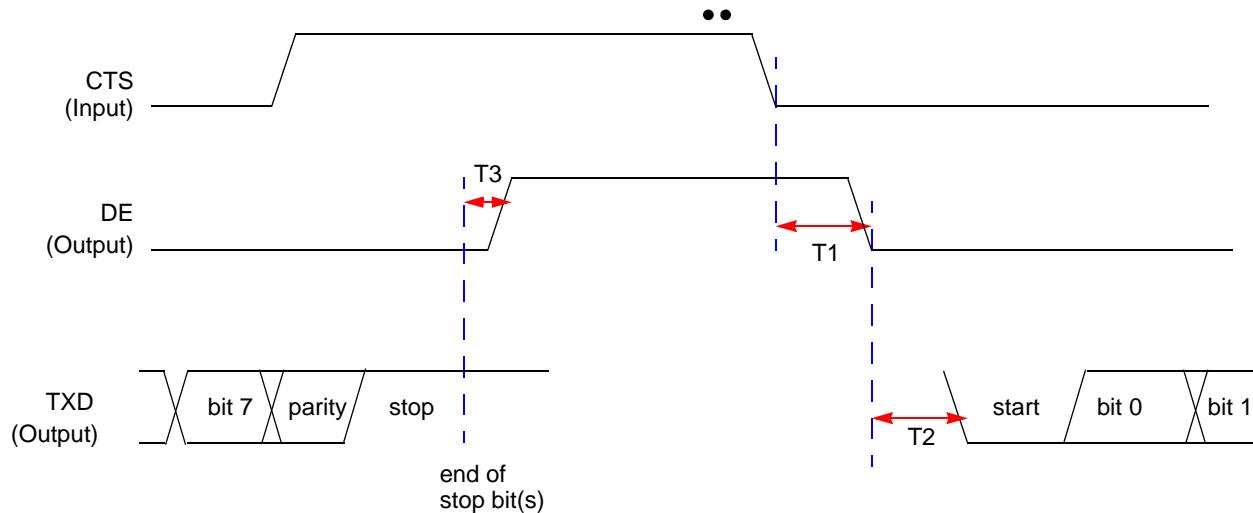
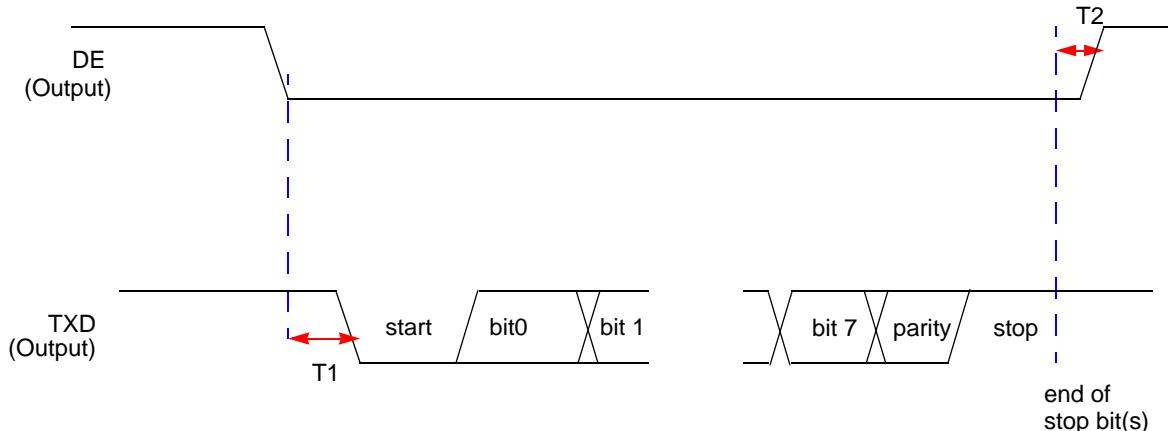


Figure 36. UART Timing With CTS

Table 133. UART Timing With CTS

Parameter Abbreviation	Delay (ns)		
	Minimum	Maximum	
UART			
T ₁	CTS Fall to DE output delay	2 * XIN period	2 * XIN period + 1 bit time
T ₂	DE assertion to TXD falling edge (start bit) delay	± 5	
T ₃	End of Stop Bit(s) to DE deassertion delay	± 5	

Figure 37 and Table 134 provide timing information for UART pins for the case where CTS is not used for flow control. DE asserts after the transmit data register has been written. DE remains asserted for multiple characters as long as the transmit data register is written with the next character before the current character has completed.



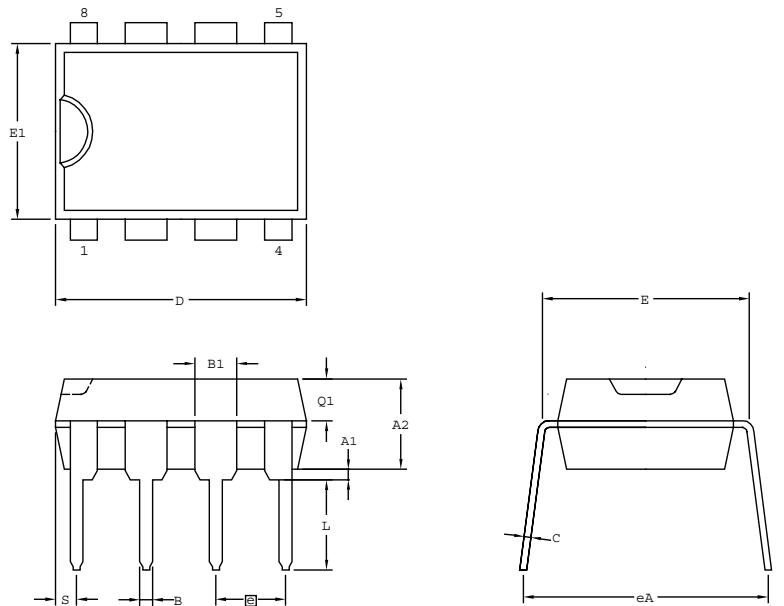

Figure 37. UART Timing Without CTS

Table 134. UART Timing Without CTS

Parameter	Abbreviation	Delay (ns)	
		Minimum	Maximum
UART			
T ₁	DE assertion to TXD falling edge (start bit) delay	1 * XIN period	1 bit time
T ₂	End of Stop Bit(s) to DE deassertion delay (Tx data register is empty)	± 5	

Packaging

Figure 38 illustrates the 8-pin Plastic Dual Inline Package (PDIP) available for the Z8 Encore! XP® F08xA Series devices.

SYMBOL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A1	0.38	0.81	0.015	0.032
A2	3.25	3.81	0.128	0.150
B	0.38	0.53	0.015	0.021
B1	1.40	1.85	0.055	0.065
C	0.20	0.30	0.008	0.012
D	9.02	9.78	0.355	0.385
E	7.62	8.26	0.300	0.325
E1	6.10	6.60	0.240	0.260
e	2.54 BSC		0.100 BSC	
eA	7.87	8.14	0.310	0.360
L	3.18	3.43	0.125	0.135
Q1	1.40	1.85	0.055	0.065
S	0.84	0.89	0.025	0.035

CONTROLLING DIMENSIONS : MM.

Figure 38. 8-Pin Plastic Dual Inline Package (PDIP)

Figure 39 illustrates the 8-pin Small Outline Integrated Circuit package (SOIC) available for the Z8 Encore! XP® F08xA Series devices.

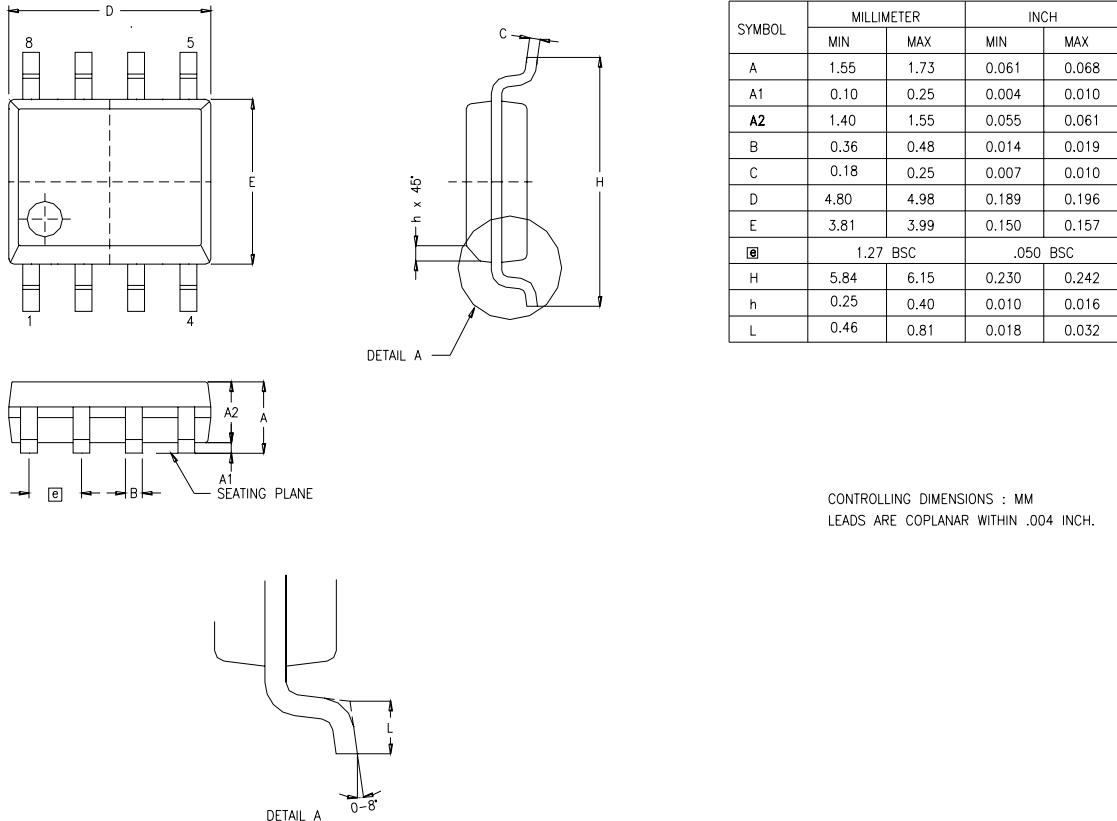


Figure 39. 8-Pin Small Outline Integrated Circuit Package (SOIC)

Figure 40 illustrates the 8-pin Quad Flat No-Lead package (QFN) available for the Z8 Encore! XP® 8K Series devices. This package has a footprint identical to that of the 8-pin SOIC, but with a lower profile.

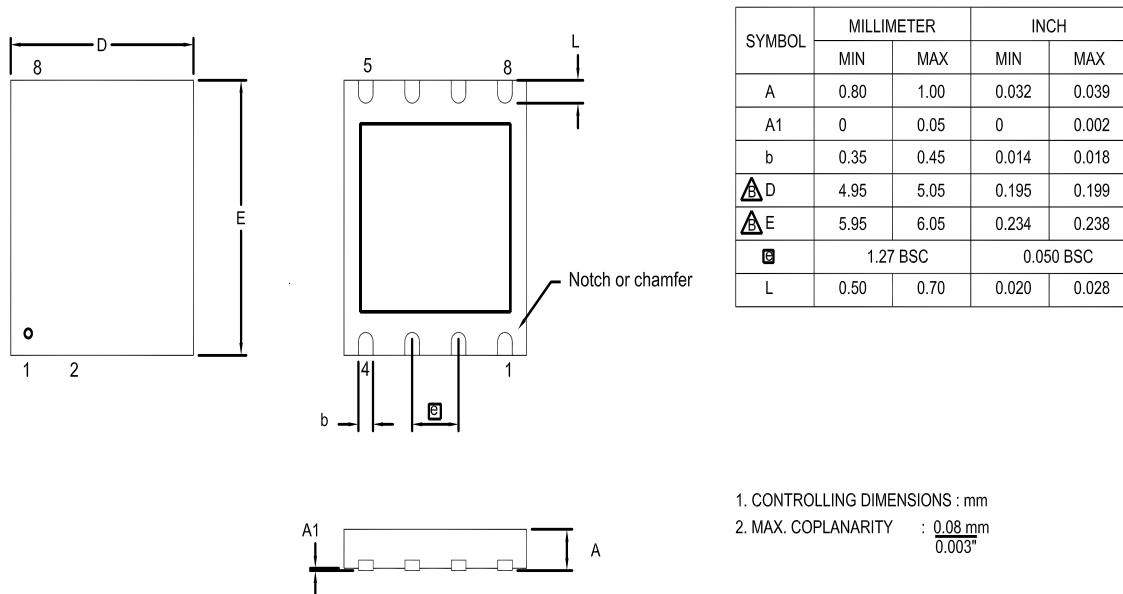
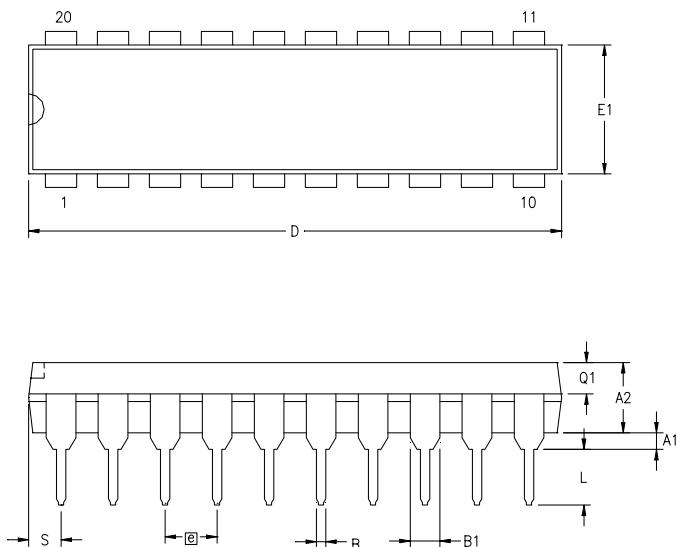



Figure 40. 8-Pin Quad Flat No-Lead Package (QFN)/ MLF-S

Figure 41 illustrates the 20-pin Plastic Dual Inline Package (PDIP) available for the Z8 Encore! XP® 8K Series devices.

SYMBOL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A1	0.38	0.81	.015	.032
A2	3.25	3.68	.128	.145
B	0.41	0.51	.016	.020
B1	1.47	1.57	.058	.062
C	0.20	0.30	.008	.012
D	25.65	26.16	1.010	1.030
E	7.49	8.26	.295	.325
E1	6.10	6.65	.240	.262
¶	2.54	BSC	.100	BSC
eA	7.87	9.14	.310	.360
L	3.18	3.43	.125	.135
Q1	1.42	1.65	.056	.065
S	1.52	1.65	.060	.065

Figure 41. 20-Pin Plastic Dual Inline Package (PDIP)

Figure 42 illustrates the 20-pin Small Outline Integrated Circuit Package (SOIC) available for the Z8 Encore! XP® 8K Series devices.

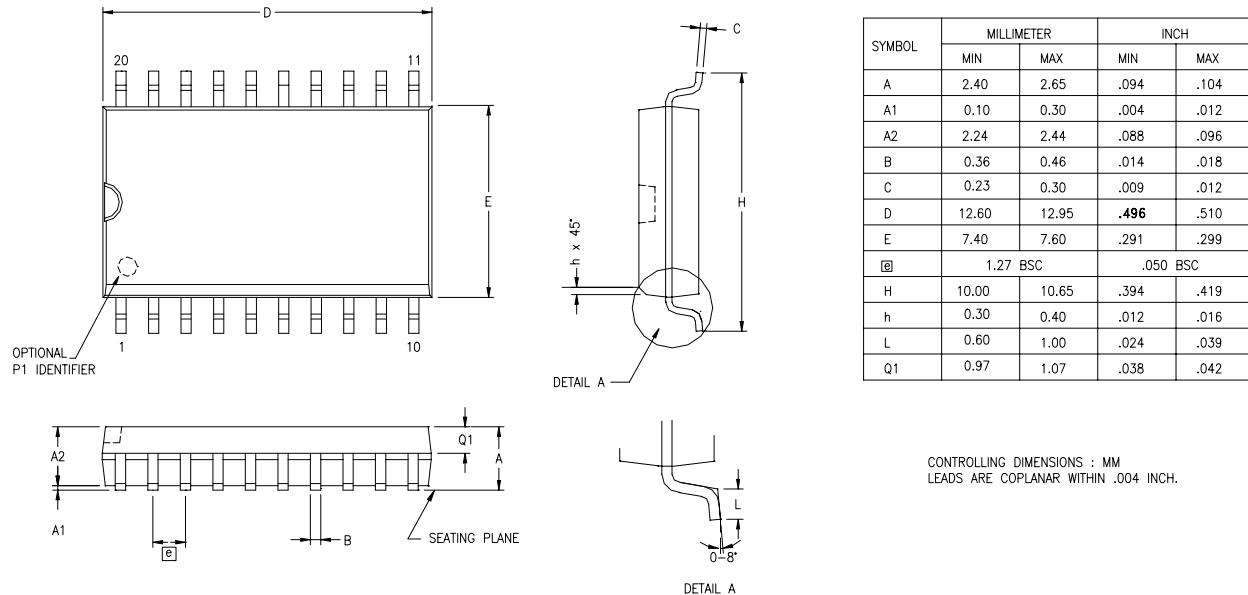


Figure 42. 20-Pin Small Outline Integrated Circuit Package (SOIC)

Figure 43 illustrates the 20-pin Small Shrink Outline Package (SSOP) available for the Z8 Encore! XP® 8K Series devices.

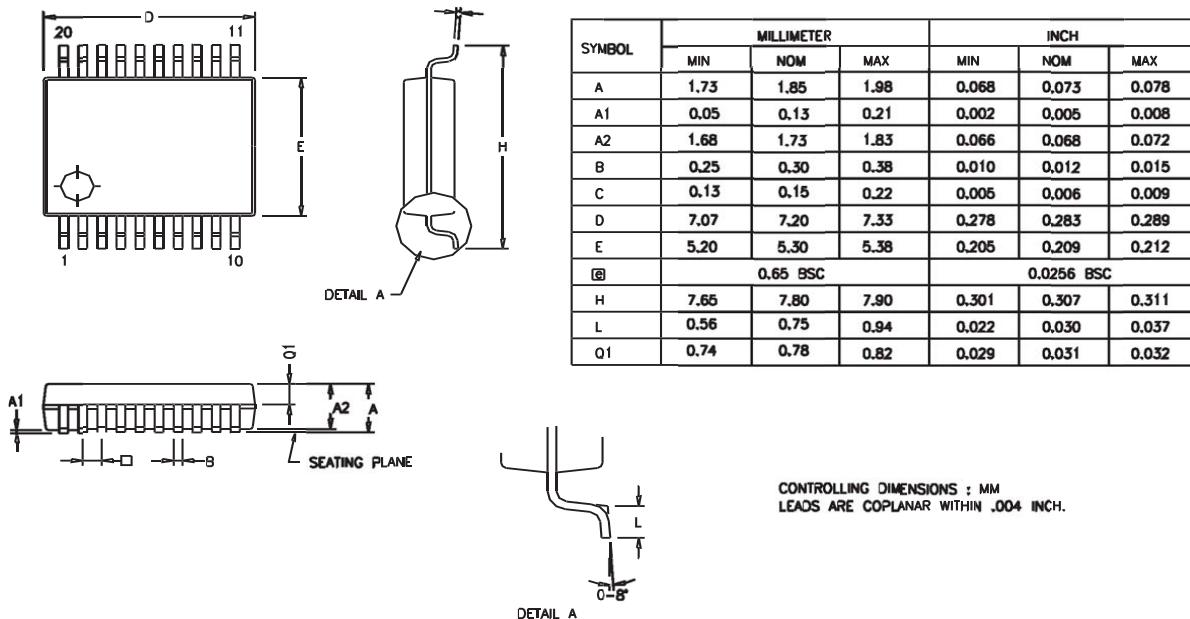
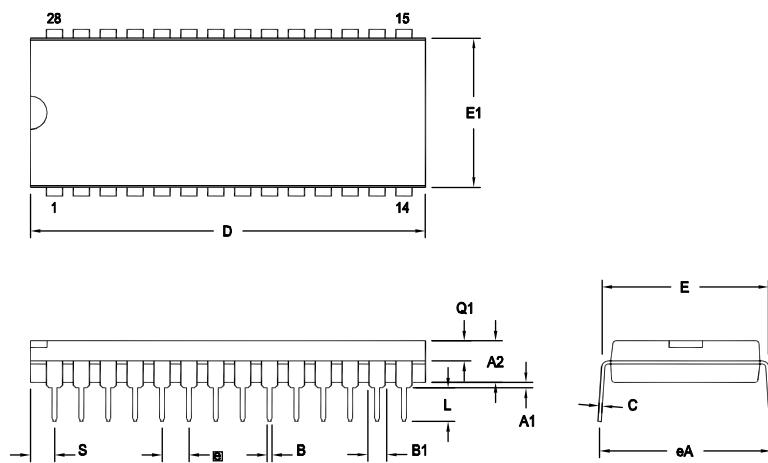
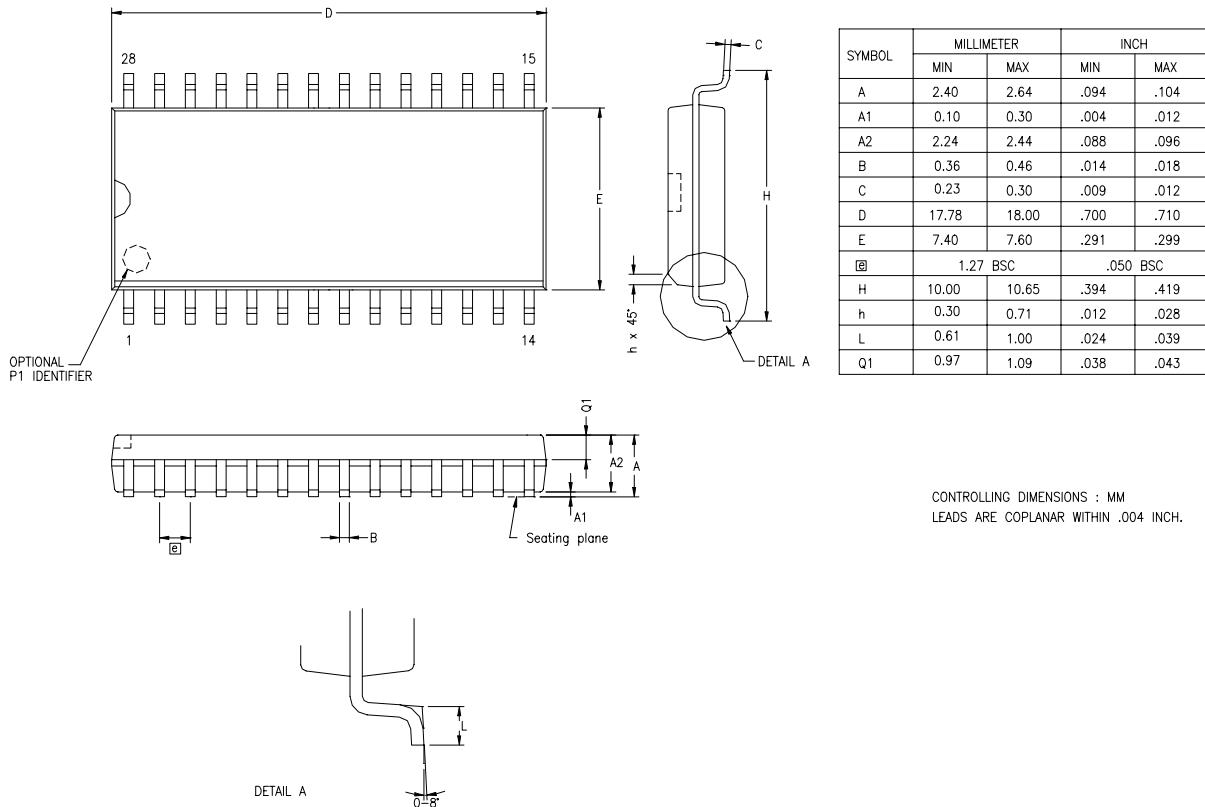



Figure 43. 20-Pin Small Shrink Outline Package (SSOP)

Figure 44 illustrates the 28-pin Plastic Dual Inline Package (PDIP) available for the Z8 Encore! XP® 8K Series devices.

SYMBOL	OPT #	MILLIMETER		INCH	
		MIN	MAX	MIN	MAX
A1		.38	1.02	.015	.040
A2		3.18	4.19	.125	.165
B		.38	0.53	.015	.021
B1	01	1.40	1.65	.055	.065
	02	1.14	1.40	.045	.055
C		.23	0.38	.009	.015
D	01	36.58	37.34	1.440	1.470
	02	35.31	35.94	1.390	1.415
E		15.24	15.75	.600	.620
E1	01	13.59	14.10	.535	.555
	02	12.83	13.08	.505	.515
e		2.54 TYP		.100 BSC	
	eA	15.49	16.76	.610	.660
L		3.05	3.81	.120	.160
Q1	01	1.40	1.91	.055	.075
	02	1.40	1.78	.055	.070
S	01	1.52	2.29	.060	.090
	02	1.02	1.52	.040	.060


CONTROLLING DIMENSIONS : INCH

OPTION TABLE	
OPTION #	PACKAGE
01	STANDARD
02	IDF

Note: ZILOG supplies both options for production. Component layout
PCB design should cover bigger option 01.

Figure 44. 28-Pin Plastic Dual Inline Package (PDIP)

Figure 45 illustrates the 28-pin Small Outline Integrated Circuit package (SOIC) available in the Z8 Encore! XP® 8K Series devices.

Figure 45. 28-Pin Small Outline Integrated Circuit Package (SOIC)

Figure 46 illustrates the 28-pin Small Shrink Outline Package (SSOP) available for the Z8 Encore! XP® 8K Series devices.

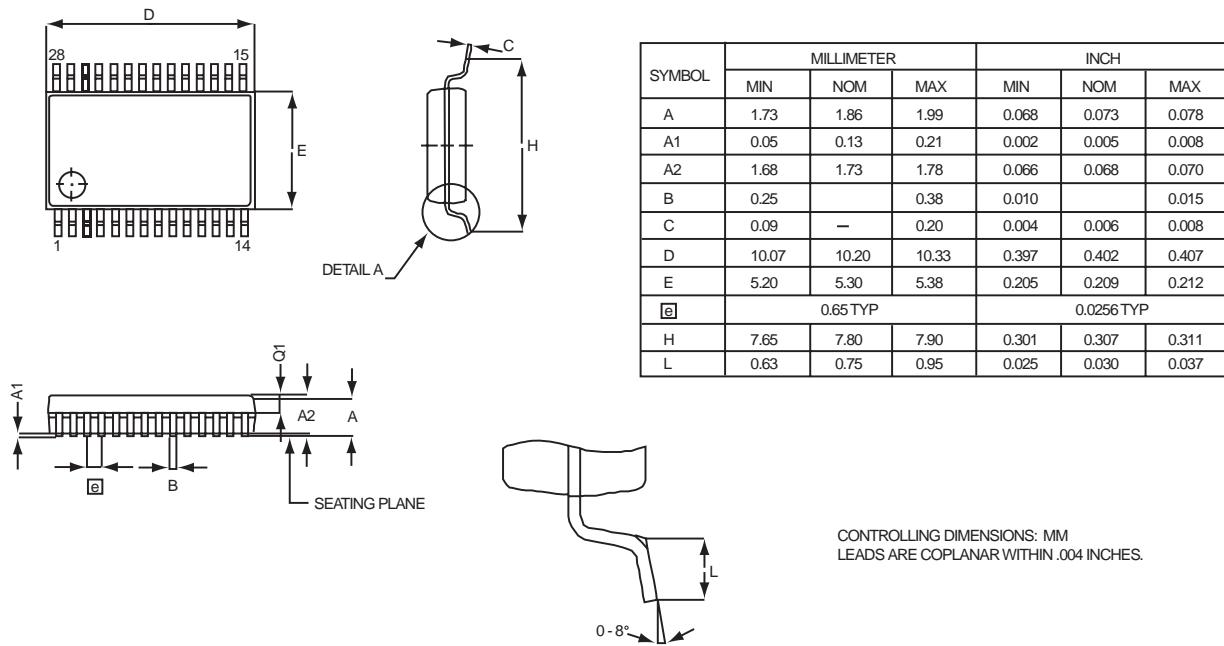


Figure 46. 28-Pin Small Shrink Outline Package (SSOP)

Ordering Information

Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP® F08xA with 8 KB Flash, 10-Bit Analog-to-Digital Converter										
Standard Temperature: 0 °C to 70 °C										
Z8F082APB020SC	8 KB	1 KB	6	18	2	4	1	1	1	PDIP 8-pin package
Z8F082AQB020SC	8 KB	1 KB	6	18	2	4	1	1	1	QFN 8-pin package
Z8F082ASB020SC	8 KB	1 KB	6	18	2	4	1	1	1	SOIC 8-pin package
Z8F082ASH020SC	8 KB	1 KB	17	18	2	7	1	1	1	SOIC 20-pin package
Z8F082AHH020SC	8 KB	1 KB	17	18	2	7	1	1	1	SSOP 20-pin package
Z8F082APH020SC	8 KB	1 KB	17	18	2	7	1	1	1	PDIP 20-pin package
Z8F082ASJ020SC	8 KB	1 KB	23	18	2	8	1	1	1	SOIC 28-pin package
Z8F082AHJ020SC	8 KB	1 KB	23	18	2	8	1	1	1	SSOP 28-pin package
Z8F082APJ020SC	8 KB	1 KB	23	18	2	8	1	1	1	PDIP 28-pin package
Extended Temperature: -40 °C to 105°C										
Z8F082APB020EC	8 KB	1 KB	6	18	2	4	1	1	1	PDIP 8-pin package
Z8F082AQB020EC	8 KB	1 KB	6	18	2	4	1	1	1	QFN 8-pin package
Z8F082ASB020EC	8 KB	1 KB	6	18	2	4	1	1	1	SOIC 8-pin package
Z8F082ASH020EC	8 KB	1 KB	17	18	2	7	1	1	1	SOIC 20-pin package
Z8F082AHH020EC	8 KB	1 KB	17	18	2	7	1	1	1	SSOP 20-pin package
Z8F082APH020EC	8 KB	1 KB	17	18	2	7	1	1	1	PDIP 20-pin package
Z8F082ASJ020EC	8 KB	1 KB	23	18	2	8	1	1	1	SOIC 28-pin package
Z8F082AHJ020EC	8 KB	1 KB	23	18	2	8	1	1	1	SSOP 28-pin package
Z8F082APJ020EC	8 KB	1 KB	23	18	2	8	1	1	1	PDIP 28-pin package

Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP® F08xA with 8 KB Flash										
Standard Temperature: 0 °C to 70 °C										
Z8F081APB020SC	8 KB	1 KB	6	18	2	0	1	1	1	PDIP 8-pin package
Z8F081AQB020SC	8 KB	1 KB	6	18	2	0	1	1	1	QFN 8-pin package
Z8F081ASB020SC	8 KB	1 KB	6	18	2	0	1	1	1	SOIC 8-pin package
Z8F081ASH020SC	8 KB	1 KB	17	18	2	0	1	1	1	SOIC 20-pin package
Z8F081AHH020SC	8 KB	1 KB	17	18	2	0	1	1	1	SSOP 20-pin package
Z8F081APH020SC	8 KB	1 KB	17	18	2	0	1	1	1	PDIP 20-pin package
Z8F081ASJ020SC	8 KB	1 KB	25	18	2	0	1	1	1	SOIC 28-pin package
Z8F081AHJ020SC	8 KB	1 KB	25	18	2	0	1	1	1	SSOP 28-pin package
Z8F081APJ020SC	8 KB	1 KB	25	18	2	0	1	1	1	PDIP 28-pin package
Extended Temperature: -40 °C to 105 °C										
Z8F081APB020EC	8 KB	1 KB	6	18	2	0	1	1	1	PDIP 8-pin package
Z8F081AQB020EC	8 KB	1 KB	6	18	2	0	1	1	1	QFN 8-pin package
Z8F081ASB020EC	8 KB	1 KB	6	18	2	0	1	1	1	SOIC 8-pin package
Z8F081ASH020EC	8 KB	1 KB	17	18	2	0	1	1	1	SOIC 20-pin package
Z8F081AHH020EC	8 KB	1 KB	17	18	2	0	1	1	1	SSOP 20-pin package
Z8F081APH020EC	8 KB	1 KB	17	18	2	0	1	1	1	PDIP 20-pin package
Z8F081ASJ020EC	8 KB	1 KB	25	18	2	0	1	1	1	SOIC 28-pin package
Z8F081AHJ020EC	8 KB	1 KB	25	18	2	0	1	1	1	SSOP 28-pin package
Z8F081APJ020EC	8 KB	1 KB	25	18	2	0	1	1	1	PDIP 28-pin package
Replace C with G for Lead-Free Packaging										
Z8F08A28100KIT										
20- and 28-pin Development Kit										

Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8F04A08100KIT										8-Pin Development Kit
ZUSBSC0100ZAC										USB Smart Cable Accessory Kit

Part Number Suffix Designations

Z8 F 08 2A S H 020 S C

Environmental Flow

C = Plastic Standard

Temperature Range

S = Standard, 0 °C to 70 °C

E = Extended, -40 °C to +105 °C

Speed

020 = 20 MHz

Pin Count

H = 20

J = 28

Package

H = SSOP

P = PDIP

S = SOIC

Device Type

Memory Size

08 = 8 KB Flash, 1 KB RAM

Memory Type

F = Flash

Device Family

Precharacterization Product

The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or nonconformance with some aspects of the document might be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery might be uncertain at times, because of start-up yield issues.

ZiLOG, Inc.
532 Race Street
San Jose, CA 95126
Telephone (408) 558-8500
FAX 408 558-8300
Internet: www.zilog.com

Customer Support

For valuable information about downloading other relevant documents or for hardware and software development tools, visit the ZiLOG web site at www.zilog.com.

Customer Support

If you experience any problems while operating this product, please check the ZiLOG Knowledge Base:

<http://kb.zilog.com/kb/oKBmain.asp>

If you cannot find an answer or have further questions, please see the ZiLOG Technical Support web page:

<http://support.zilog.com>

Index

Symbols

186
% 186
@ 186

Numerics

10-bit ADC 4
40-lead plastic dual-inline package 226, 227

A

absolute maximum ratings 204
AC characteristics 207
ADC 187
 architecture 117
 automatic power-down 119
 block diagram 118
 continuous conversion 120
 control register 126, 128
 control register definitions 125
 data high byte register 129
 data low bits register 129
 electrical characteristics and timing 211
 operation 118
 single-shot conversion 119
ADCCTL register 126, 128
ADCDH register 129
ADCDL register 129
ADCX 187
ADD 187
add - extended addressing 187
add with carry 187
add with carry - extended addressing 187
additional symbols 186
address space 14
ADDX 187
analog signals 10
analog-to-digital converter (ADC) 117
AND 189

ANDX 189
arithmetic instructions 187
assembly language programming 183
assembly language syntax 184

B

B 186
b 185
baud rate generator, UART 102
BCLR 188
binary number suffix 186
BIT 188
bit 185
 clear 188
 manipulation instructions 188
 set 188
 set or clear 188
 swap 188
 test and jump 190
 test and jump if non-zero 190
 test and jump if zero 190
bit jump and test if non-zero 190
bit swap 190
block diagram 2
block transfer instructions 188
BRK 190
BSET 188
BSWAP 188, 190
BTJ 190
BTJNZ 190
BTJZ 190

C

CALL procedure 190
capture mode 83, 84
capture/compare mode 83
cc 185
CCF 188
characteristics, electrical 204
clear 189
CLR 189
COM 189

compare 83
compare - extended addressing 187
compare mode 83
compare with carry 187
compare with carry - extended addressing 187
complement 189
complement carry flag 188
condition code 185
continuous conversion (ADC) 120
continuous mode 83
control register definition, UART 103
Control Registers 14, 17
counter modes 83
CP 187
CPC 187
CPCX 187
CPU and peripheral overview 4
CPU control instructions 188
CPX 187
Customer Feedback Form 233
Customer Information 233

D

DA 185, 187
data memory 15
DC characteristics 205
debugger, on-chip 158
DEC 187
decimal adjust 187
decrement 187
decrement and jump non-zero 190
decrement word 187
DECW 187
destination operand 186
device, port availability 34
DI 188
direct address 185
disable interrupts 188
DJNZ 190
dst 186

E

EI 188
electrical characteristics 204
ADC 211
flash memory and timing 210
GPIO input data sample timing 213
watch-dog timer 210, 213
enable interrupt 188
ER 185
extended addressing register 185
external pin reset 25
eZ8 CPU features 4
eZ8 CPU instruction classes 186
eZ8 CPU instruction notation 184
eZ8 CPU instruction set 183
eZ8 CPU instruction summary 191

F

FCTL register 144, 150
features, Z8 Encore! 1
first opcode map 202
FLAGS 186
flags register 186
flash
 controller 4
 option bit address space 150
 option bit configuration - reset 148
 program memory address 0000H 151
 program memory address 0001H 152
flash memory 136
 arrangement 137
 byte programming 142
 code protection 140
 configurations 136
 control register definitions 144, 150
 controller bypass 143
 electrical characteristics and timing 210
 flash control register 144, 150
 flash option bits 141
 flash status register 144
 flow chart 139
 frequency high and low byte registers 146
 mass erase 142

operation 138
operation timing 140
page erase 142
page select register 145, 146
FPS register 145, 146
FSTAT register 144

G

gated mode 83
general-purpose I/O 34
GPIO 4, 34
 alternate functions 35
 architecture 34
 control register definitions 42
 input data sample timing 213
 interrupts 42
 port A-C pull-up enable sub-registers 47, 48
 port A-H address registers 43
 port A-H alternate function sub-registers 45
 port A-H control registers 44
 port A-H data direction sub-registers 44
 port A-H high drive enable sub-registers 46
 port A-H input data registers 49
 port A-H output control sub-registers 45
 port A-H output data registers 49, 50
 port A-H stop mode recovery sub-registers 46
port availability by device 34
port input timing 214
port output timing 215

H

H 186
HALT 188
halt mode 32, 188
hexadecimal number prefix/suffix 186

I

I2C 4
IM 185

immediate data 185
immediate operand prefix 186
INC 187
increment 187
increment word 187
INCW 187
indexed 185
indirect address prefix 186
indirect register 185
indirect register pair 185
indirect working register 185
indirect working register pair 185
infrared encoder/decoder (IrDA) 113
Instruction Set 183
instruction set, ez8 CPU 183
instructions
 ADC 187
 ADCX 187
 ADD 187
 ADDX 187
 AND 189
 ANDX 189
 arithmetic 187
 BCLR 188
 BIT 188
 bit manipulation 188
 block transfer 188
 BRK 190
 BSET 188
 BSWAP 188, 190
 BTJ 190
 BTJNZ 190
 BTJZ 190
 CALL 190
 CCF 188
 CLR 189
 COM 189
 CP 187
 CPC 187
 CPCX 187
 CPU control 188
 CPX 187
 DA 187
 DEC 187

- DECW 187
- DI 188
- DJNZ 190
- EI 188
- HALT 188
- INC 187
- INCW 187
- IRET 190
- JP 190
- LD 189
- LDC 189
- LDCI 188, 189
- LDE 189
- LDEI 188
- LDX 189
- LEA 189
- load 189
- logical 189
- MULT 187
- NOP 188
- OR 190
- ORX 190
- POP 189
- POPX 189
- program control 190
- PUSH 189
- PUSHX 189
- RCF 188
- RET 190
- RL 190
- RLC 190
- rotate and shift 190
- RR 190
- RRC 191
- SBC 187
- SCF 188, 189
- SRA 191
- SRL 191
- SRP 189
- STOP 189
- SUB 187
- SUBX 187
- SWAP 191
- TCM 188
- TCMX 188
- TM 188
- TMX 188
- TRAP 190
- watch-dog timer refresh 189
- XOR 190
- XORX 190
- instructions, eZ8 classes of 186
- interrupt control register 63
- interrupt controller 52
 - architecture 52
 - interrupt assertion types 56
 - interrupt vectors and priority 55
 - operation 54
 - register definitions 57
 - software interrupt assertion 56
- interrupt edge select register 62
- interrupt request 0 register 57
- interrupt request 1 register 58
- interrupt request 2 register 58
- interrupt return 190
- interrupt vector listing 52
- interrupts
 - UART 100
- IR 185
- Ir 185
- IrDA
 - architecture 113
 - block diagram 113
 - control register definitions 116
 - operation 113
 - receiving data 115
 - transmitting data 114
- IRET 190
- IRQ0 enable high and low bit registers 59
- IRQ1 enable high and low bit registers 60
- IRQ2 enable high and low bit registers 61
- IRR 185
- Irr 185

J

- JP 190
- jump, conditional, relative, and relative condi-

tional 190

L

LD 189
LDC 189
LDCI 188, 189
LDE 189
LDEI 188, 189
LDX 189
LEA 189
load 189
load constant 188
load constant to/from program memory 189
load constant with auto-increment addresses 189
load effective address 189
load external data 189
load external data to/from data memory and auto-increment addresses 188
load external to/from data memory and auto-increment addresses 189
load instructions 189
load using extended addressing 189
logical AND 189
logical AND/extended addressing 189
logical exclusive OR 190
logical exclusive OR/extended addressing 190
logical instructions 189
logical OR 190
logical OR/extended addressing 190
low power modes 31

M

master interrupt enable 55
memory
 data 15
 program 14
mode
 capture 83, 84
 capture/compare 83
 continuous 83
 counter 83

gated 83
one-shot 83
PWM 83
modes 83
MULT 187
multiply 187
multiprocessor mode, UART 98

N

NOP (no operation) 188
notation
 b 185
 cc 185
 DA 185
 ER 185
 IM 185
 IR 185
 Ir 185
 IRR 185
 Irr 185
 p 185
 R 185
 r 185
 RA 185
 RR 185
 rr 185
 vector 185
 X 185
notational shorthand 185

O

OCD
 architecture 158
 auto-baud detector/generator 161
 baud rate limits 162
 block diagram 158
 breakpoints 163
 commands 163
 control register 168
 data format 161
 DBG pin to RS-232 Interface 159
 debug mode 160

debugger break 190
interface 159
serial errors 162
status register 169
timing 216

OCD commands
 execute instruction (12H) 168
 read data memory (0DH) 167
 read OCD control register (05H) 165
 read OCD revision (00H) 165
 read OCD status register (02H) 165
 read program counter (07H) 166
 read program memory (0BH) 167
 read program memory CRC (0EH) 167
 read register (09H) 166
 read runtime counter (03H) 165
 step instruction (10H) 168
 stuff instruction (11H) 168
 write data memory (0CH) 167
 write OCD control register (04H) 165
 write program counter (06H) 165
 write program memory (0AH) 166
 write register (08H) 166

on-chip debugger (OCD) 158
on-chip debugger signals 10
on-chip oscillator 177
one-shot mode 83
opcode map
 abbreviations 201
 cell description 200
 first 202
 second after 1FH 203

Operational Description 21, 31, 34, 52, 65, 86, 92, 113, 117, 132, 134, 136, 148, 158, 172, 177, 182

OR 190
ordering information 228
ORX 190
oscillator signals 10

P
p 185
packaging

20-pin PDIP 222, 223
20-pin SSOP 224, 227
28-pin PDIP 225
28-pin SOIC 226
8-pin PDIP 219
8-pin SOIC 220
PDIP 226, 227

part selection guide 2
PC 186
PDIP 226, 227
peripheral AC and DC electrical characteristics 208
pin characteristics 11
Pin Descriptions 7
polarity 185
POP 189
pop using extended addressing 189
POPX 189
port availability, device 34
port input timing (GPIO) 214
port output timing, GPIO 215
power supply signals 11
power-down, automatic (ADC) 119
power-on and voltage brown-out electrical characteristics and timing 209
power-on reset (POR) 23
program control instructions 190
program counter 186
program memory 14
PUSH 189
push using extended addressing 189
PUSHX 189
PWM mode 83
PxADDR register 43
PxCTL register 44

R

R 185
r 185
RA
 register address 185
RCF 188
receive

- IrDA data 115
- receiving UART data-interrupt-driven method 97
- receiving UART data-polled method 96
- register 185
 - ADC control (ADCCTL) 126, 128
 - ADC data high byte (ADCDH) 129
 - ADC data low bits (ADCDL) 129
 - flash control (FCTL) 144, 150
 - flash high and low byte (FFREQH and FREEQL) 146
 - flash page select (FPS) 145, 146
 - flash status (FSTAT) 144
 - GPIO port A-H address (PxADDR) 43
 - GPIO port A-H alternate function sub-registers 45
 - GPIO port A-H control address (PxCTL) 44
 - GPIO port A-H data direction sub-registers 44
 - OCD control 168
 - OCD status 169
 - UARTx baud rate high byte (UxBRH) 109
 - UARTx baud rate low byte (UxBRL) 109
 - UARTx Control 0 (UxCTL0) 106, 109
 - UARTx control 1 (UxCTL1) 107
 - UARTx receive data (UxRXD) 104
 - UARTx status 0 (UxSTAT0) 104
 - UARTx status 1 (UxSTAT1) 105
 - UARTx transmit data (UxTXD) 103
 - watch-dog timer control (WDTCTL) 28, 89, 133, 175
 - watch-dog timer reload high byte (WDTH) 90
 - watch-dog timer reload low byte (WDTL) 90
 - watch-dog timer reload upper byte (WDTU) 90
 - register file 14
 - register pair 185
 - register pointer 186
 - reset
 - and stop mode characteristics 22
 - and stop mode recovery 21
 - carry flag 188
 - sources 23
 - RET 190
 - return 190
 - RL 190
 - RLC 190
 - rotate and shift instructions 190
 - rotate left 190
 - rotate left through carry 190
 - rotate right 190
 - rotate right through carry 191
 - RP 186
 - RR 185, 190
 - rr 185
 - RRC 191
- S**
 - SBC 187
 - SCF 188, 189
 - second opcode map after 1FH 203
 - set carry flag 188, 189
 - set register pointer 189
 - shift right arithmetic 191
 - shift right logical 191
 - signal descriptions 9
 - single-sho conversion (ADC) 119
 - software trap 190
 - source operand 186
 - SP 186
 - SRA 191
 - src 186
 - SRL 191
 - SRP 189
 - stack pointer 186
 - STOP 189
 - stop mode 31, 189
 - stop mode recovery
 - sources 26, 28
 - using a GPIO port pin transition 27
 - using watch-dog timer time-out 27
 - SUB 187
 - subtract 187
 - subtract - extended addressing 187
 - subtract with carry 187

subtract with carry - extended addressing 187
SUBX 187
SWAP 191
swap nibbles 191
symbols, additional 186

T

TCM 188
TCMX 188
test complement under mask 188
test complement under mask - extended addressing 188
test under mask 188
test under mask - extended addressing 188
timer signals 9
timers 65
 architecture 65
 block diagram 66
 capture mode 73, 74, 83, 84
 capture/compare mode 77, 83
 compare mode 75, 83
 continuous mode 67, 83
 counter mode 68, 69
 counter modes 83
 gated mode 76, 83
 one-shot mode 66, 83
 operating mode 66
 PWM mode 70, 71, 83
 reading the timer count values 78
 reload high and low byte registers 79
 timer control register definitions 79
 timer output signal operation 78
timers 0-3
 control registers 81, 82
 high and low byte registers 79, 80
TM 188
TMX 188
tools, hardware and software 232
transmit
 IrDA data 114
transmitting UART data-polled method 94
transmitting UART dat-interrupt-driven method 95

TRAP 190

U

UART 4
 architecture 92
 baud rate generator 102
 baud rates table 110
 control register definitions 103
 controller signals 9
 data format 93
 interrupts 100
 multiprocessor mode 98
 receiving data using interrupt-driven method 97
 receiving data using the polled method 96
 transmitting data usin the interrupt-driven method 95
 transmitting data using the polled method 94
 x baud rate high and low registers 109
 x control 0 and control 1 registers 106
 x status 0 and status 1 registers 104, 105
UxBRH register 109
UxBRL register 109
UxCTL0 register 106, 109
UxCTL1 register 107
UxRXD register 104
UxSTAT0 register 104
UxSTAT1 register 105
UxTXD register 103

V

vector 185
voltage brown-out reset (VBR) 24

W

watch-dog timer
 approximate time-out delay 87
 approximate time-out delays 86, 172
 CNTL 24
 control register 89, 133, 175

electrical characteristics and timing 210, 213
interrupt in noromal operation 87
interrupt in stop mode 88
operation 86, 172
refresh 87, 189
reload unlock sequence 88
reload upper, high and low registers 89
reset 25
reset in normal operation 88
reset in Stop mode 88
time-out response 87
WDTCTL register 28, 89, 133, 175
WDTH register 90
WDTL register 90
working register 185
working register pair 185
WTDU register 90

X

X 185
XOR 190
XORX 190

Z

Z8 Encore!
block diagram 2
features 1
part selection guide 2