‘,—l UM2719
life.augmented

User manual

AVAS architecture based on AutoDevKit

Introduction

The AutoDevKit Acoustic Vehicle Alerting System (AVAS) consists of an AEK-MCU-C1MLIT1 Discovery board, an AEK-AUD-
D903V1 evaluation board, and appropriate speakers. The AEK-MCU-C1MLIT1 board MCU monitors and controls the FDA903D
power amplifier on the AEK-AUD-D903V1 board via I?°C and I?S serial interfaces and GPIOs.

The MCU board and the audio board can be wired together directly or via a connector board designed to simplify the process.

The AEK-MCU-C1MLIT1 board is supplied 5 V through its mini-USB connector, while the AEK-AUD-D903V1 can either be
supplied low voltage (from 3.3 V to 18 V) or standard voltage (from 5V to 18 V).

Figure 1. AVAS system AutoDevKit control board and audio board

A—_.
o

12C SCL
12C SDA |1
128 sCL
128 WS
128 SDA
I2ZSCR |
“ENABLE
ENABLEZ
ENABLE3
ENABLEL
MUTE

\1 2V

The hardware is fully supported by a software ecosystem, which includes SPC5-STUDIO development environment, SPC5-
UDESTK-SW software for debugging and STSW-AUTODEVKIT Eclipse plugin containing AEK-AUD-D903V1 driver and sample
application codes.

UM2719 - Rev 3 - April 2021

Downloaded from Arrow.com. g/ cctronics sales office.

https://www.st.com/autodevkit
https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-udestk-sw?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-udestk-sw?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/autodevkitsw
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

<72 UM2719
,l AVAS system hardware

1 AVAS system hardware

Figure 2. AVAS demo hardware and connections

128 SCL 2sscL 4
125 WS 2sws 4
125 SDA 125 DATA 4
RSCR
GND GHND
BC sCL izcscL ¥
12C sCL @ 12C SDA 12cspa @
12C SDA @
GHND
I25SCL b ENABLE 14
2scr 4 ENABLE 2 4
125 DATA b ENABLE 3 4
125Ws ENABLE 4 4
ENABLE 1) HW MUTE 4
ENABLE 2}
ENABLE 3p
ENABLE 4p
HW MUTE)

Analog pin SARADC
Ve

page 2/60

UM2719 - Rev 3
Downloaded from Arrow.com.

http://www.arrow.com

‘,_l UM2719

AEK-MCU-C1MLIT1 Discovery board audio support

2 AEK-MCU-C1MLIT1 Discovery board audio support

The AEK-MCU-C1MLIT1 Discovery evaluation board features the SPC582B60E1 automotive microcontroller with
high performance €200z2 single core 32-bit CPU with 80MHz clock, 1088 KB Flash and 96 KB SRAM in an
eTQFP64 package. The I?S (simulated by an SPI port), I*C port and GPIOs provide the necessary signal and
communication lines to control a class D power amplifier.

The board also integrates a programmer/debugger interface based on the UDE PLS software, allowing the user
to program the microcontroller and debug software applications. The integrated debugger software is available
through ST's free integrated development environment, SPC5-STUDIO. To download the debugger software and
to activate the license, refer to the PLS website.

Note: Arduino connectors are not mounted on this board and are not required for the audio application.

Figure 3. AEK-MCU-C1MLIT1 Discovery board components

. PLS programmer/debugger

. USB power connector to supply 5V and load firmware

. User interface with three LEDs and two buttons

. 32-bit SPC582B60E1 MCU

. CN10 19x2 connector for access to I?C and I2S ports and GPIOs

. CN7 11x2 connector for access to I2S ports and GPIOs

. CN6 connector allows supplying the board with different external voltage (3.3 V, 5V or 12 V)

NOoO g~ WN -

- |

i
1
i
e
104
1
d
i
L
gl
L]

The SPC582B60E1 microcontroller includes the following additional features:

. 1088 KB (1024 KB code flash + 64 KB data flash) on-chip flash memory: supports read during program and
erase operations, and multiple blocks allowing EEPROM emulation

. Comprehensive new generation ASIL-B safety concept:
— ASIL-B of ISO 26262 — FCCU for collection and reaction to failure notifications
— Memory Error Management Unit (MEMU) for collection and reporting of error events in memories.
. 1 enhanced 12-bit SAR analog-to-digital converter:
- Up to 27 channels (two channels are used in the AVAS application for sound volume and acceleration)
— enhanced diagnostic feature.

UM2719 - Rev 3 page 3/60
Downloaded from Arrow.com.

https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

m UM2719

IS bus interface on the SPC582B60E1 microcontroller

. I12C interface

. 4 serial peripheral interface (DSPI) modules (a DSPI is used in the AVAS Demo to simulate the I°S bus
interface).

2.1 I2S bus interface on the SPC582B60E1 microcontroller

The FDA903D audio amp receives the audio signal from the flash blocks of the SPC582B60E1 via the I?S bus.
This interface can transmit two different audio channels on the same data line. As SPC5 microcontrollers do not
have a native I?S interface, an emulation through the DSPI protocol is implemented.

211 I2S protocol details
The I2S bus consists of the following lines:

12S SCL The clock signal frequency is the product of the sampling frequency and the number of bits
transmitted.

12S DATA The transmitted data are coded in two's complement, and the MSB (Most Significant Bit) is
therefore in the first position of each word. The data word is composed of 32 bits.

Note: The device only processes the first 24 most significant bits and disregards the least significant 8 bits.

12S WS The Word Select signal is synchronized with the sampling frequency. Its digital value identifies

the transmission channel (0 = right channel, 1 = left channel).

21.2 I12S emulation on DSPI for SPC5 MCU control of FDA903D amplifier
The FDA903D power amplifier allows audio playback at the following sampling frequencies:
. 44.1 kHz
. 48 kHz
. 96 kHz
. 192 kHz

The maximum DSPI clock limit can only support the lowest frequency (fs = 44.1 kHz).

DSPI is a synchronous serial communication interface primarily used for short-distance communication in
embedded systems. This interface is based on four signals:

SCLK: the serial clock signal from the master (the microcontroller in our application)
MOSI: the serial data from the master to the slave (the FDA903D in our case)
MISO: the serial data from the slave to the master

CS: selects which slave chip receives the message from the master

DSPI emulation of the IS interface is therefore obtained through the following associations and parameter values:
. I12S DATA — DSPI MOSI
— 32-bit data word
. 12S WS — DSPI CS
— varies the channel (right or left) according to the fg5 (sampling frequency).
. I12S SCLK — DPSI SCLK

— Frequency = numberofchannels X numberofbitsinaword X samplingfrequency = 2x32x44.1kHz
= 2.822 MHz.

. 12S TEST — DSPI MISO

— This additional signal allows the FDA903D to send real-time current sensing information to the
microcontroller and to a DSP for sound processing.

UM2719 - Rev 3 page 4/60
Downloaded from Arrow.com.

https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

‘,_l UM2719

I12S bus interface on the SPC582B60E1 microcontroller

Figure 4. Standard I?S data format
. 1/fs

1/ (64 x fs)

AfSAL fARfL_ FAAA s

1/ (2 X fS) 12Sws

X Left channel X Right channel X [2Sdata

. MCU DSPIO port access via four CN10 connector pins
. MCU has four DSPI ports

Figure 5. Connector CN10 pins for DSPIO

g

i
1441

(=il

R

b} - iy’
Ci24 RI16

12S SCL
12S CR
12S SDA
12S WS

AD =

iz [ROHS) il @

2 soamne) AO EO OF

RELATED LINKS
Refer to TN1296: "IS emulation on DSPI" for more information about emulating the I°S protocol
UM2719 - Rev 3 page 5/60

Downloaded from Arrow.com.

https://www.st.com/content/ccc/resource/technical/document/technical_note/group0/bb/cc/fb/56/6a/6c/4f/51/DM00633235/files/DM00633235.pdf/jcr:content/translations/en.DM00633235.pdf
http://www.arrow.com

‘,_l UM2719

I12C bus interface on the SPC582B60E1 microcontroller

2.2 I12C bus interface on the SPC582B60E1 microcontroller

The I?2C interface is used to control, program and request information from the audio amp. Data transmission from
SPC582B60E1 to the FDA903D and vice versa takes place through the two-wire 1?C bus interface for the SDA

and SCL lines.
Note: According to the I?C protocol, it is mandatory to insert pull-up resistors to positive supply voltage on the SDA and
SCL lines.
Figure 6. I*C typical data format
[S] Start bit
Chip address byte

Sub-address byte
[data] n-byte + Acknowledge bit

[P] Stop bit
S Address A Subaddress A Data P
Address =] ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR
Subaddrs |=] SUBA SUB A SUB A SUB A SUB A SUB A SUB A SUB A
Data =] DATA DATA DATA DATA DATA DATA DATA DATA

The AEK-MCU-C1MLIT1 provides I?C port access through two pins on the CN10 connector shown in the figure
below.

The discovery board has a single dedicated I>C port. Additional ports can be added by emulating the I1>C protocol
via software to configure a GPIO pin for I?°C SCL and another pin for I?°C SDA.

UM2719 - Rev 3 page 6/60
Downloaded from Arrow.com.

https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

‘,_l UM2719

I12C bus interface on the SPC582B60E1 microcontroller

Figure 7. Connector CN10 pins dedicated to I’C

S2a nite
(=3 = Swi
LD4 r!a!‘-_-_:ms" Wty
22 USER LED T3 "3 o (- 12C SCL
R i. &> 12C SDA
i
COMPLIANT PWM/D3
2002/95/EC
02
™01
lite. ted
le.augmentec s
UM2719 - Rev 3 page 7/60

Downloaded from Arrow.com.

http://www.arrow.com

‘,_l UM2719

AEK-AUD-D903V1 evaluation board for automotive power amplifier

3 AEK-AUD-D903V1 evaluation board for automotive power amplifier

The AEK-AUD-D903V1 is designed to allow evaluation and application development based on the embedded
FDA903D automotive digital class D power amplifier in a PowerSSO-36 slug-down package.

Figure 8. AEK-AUD-D903V1 main components and interfaces

1. Output channel; 2. FDA903D power amplifier; 3. Power supply connector

4. Enable and HW mute pins: [EN1 to EN4]: 4 pins can be configured to switch on the amplifier and assign it on of 7 possible an
12C addresses, [MUTE]: allows MUTE setting control of the power amplifier through a GPIO

5. I*C interface: [I2C SCL]: 12C clock line, [I2C SDA]: 12C data line

6. I?S interface: [I2S SCL]: 128 clock line, [1I2S WS]: I12S Word select line, [1I2S SDA]: digital input, [I2S CR]: 12S Output test
current, [GND]

-
X
w
w
O
p

- -

o —] |

~ ~

s w$l

0 s 21

0 u:|Q|
|
|

o)

The FDA903D power amplifier can be configured through its I?C bus interface and the device includes the
following diagnostics suite designed for automotive applications:

. open load in play detection

. DC diagnostic in MUTE to monitor the load status
. short to V¢ / GND diagnostic

. digital Input Offset detection

. output Voltage Offset detection

. output Current Offset detection

. thermal protection

The FDA903D features a configurable power limiting function and can be optionally operated in legacy mode
without I2C communication.

3.1 FDA903D finite state machine

The FDA903D finite state machine (FSM) describes how the device reacts to system and user inputs.

UM2719 - Rev 3 page 8/60
Downloaded from Arrow.com.

https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

‘,_l N UM27‘_IQ

FDA903D finite state machine

Figure 9. FDA903D state machine
90ms Short to Vec/Gnd check

Enables set
AND

12C programmed for the first
Stand By prog time No short to Vcc/Gnd
condition STABLE for at least
Diag Vece/Gnd 80ms
Short to Vce/Gnd present ECO-mode
even for one instant)

Overcurrent protection 12C cmd:
OR “PWM OFF)

Enables ="0000"

Vcc for system reset
OR
12S missed or not correct

Ve under UVLO present .
Overvoltage OR “IZC cmd: .
Thermal shutdown PWM ON

shutdown limit

12C cmd:
“Diag DC start”

Diagnostic DC end

12C cmd: "MUTE"
OR

Automatic mute

condition present

Diag DC

Vcc over Overvoltage
shutdown limit

The initial standby state of the device cannot be exited until the I12C interface has been correctly enabled by
providing the correct supply voltage, the I?S clock, the IS data and a valid combination of enable pins in order to
determine the I*C device address.

Table 1. I?)C device address combinations

Standby 0

Amplifier ON address 1 = ‘1110000’ 0 1 0 0
Amplifier ON address 2 = 1110001’ 1 1 0 0
Amplifier ON address 3 = 1110010’ 0 0 1 0
Amplifier ON address 4 = *1110011’ 0 1 1 0
Amplifier ON address 5 = 1110100’ 0 1 0 1
Amplifier ON address 6 = ‘1110101’ 1 1 0 1
Amplifier ON address 7 = ‘1110110’ 0 0 1 1
Amplifier ON address 8 = “1110111’ 0 1 1 1

UM2719 - Rev 3 page 9/60

Downloaded from Arrow.com.

http://www.arrow.com

‘,_l UM2719

FDA903D IS protocol

When a valid combination of Enable 1/2/3/4 is recognized, the device turns on all the internal supply voltages
and outputs are biased to V¢ / 2. The internal I?C registers are preset in the default condition until the I1°C next
instruction. A return to the Standby condition (all the enable pins set to 0) resets of the amplifier. The finite state
machine shows that a reset is also triggered if PLL is not locked, I?S is missing or not correct, or V¢ is removed.

There are also four possible legacy mode combinations for device operation without using the 12C interface.

Table 2. Legacy mode Enable configurations

1 1 1 0

Legacy mode: low voltage mode; in-phase

Legacy mode: low voltage mode; out-phase 1 1 1 1
Legacy mode: standard voltage mode; in-phase 1 0 0 0
Legacy mode: standard voltage mode; out-phase 1 0 0 1

Note: FDA903D can only work in I?C slave mode; any combination other than those indicated are invalid.

311 FDA903D FSM state descriptions

Standby The ENABLEX pins set the I12°C addresses and start up the system; if ENABLE1/2/3/4 are all

low ("0000"), then the FDA903D is off, the outputs remain biased to ground and the current
consumption is limited.

Diagnostic Vcc-Gnd This state checks the device is in a safe operating condition, with no short to ground (Gnd),
short to V¢, overcurrent, undervoltage (UVLOyc), or thermal shutdown. The FDA903D moves
to the next Eco-mode if none of these faults occur for at least 90 ms. A stable fault is
communicated to the user via I>C messages after 90 ms. While in Diagnostic Vcc-Gnd state,
FDA903D can receive all the I>C commands but will not turn the PWM on.

ECO-mode The amplifier is fully operational and can receive and execute any valid command. Output
switching is disabled for low power consumption. The device can move from ECO-mode to
the MUTE state in order to activate switching within about 1 ms and without experiencing
POP-noise. This facilitates fast transition from ECO-mode to PLAY.

MUTE The FSM transitions from ECO-mode to the MUTE state through the 1°C command to turn on
PWM. The MUTE state allows quick transition to PLAY and diagnostic states.
PLAY The FSM transitions to this state from MUTE via the I°C “PLAY” command, and the same status

register bit governs the return from PLAY back to MUTE. Certain external conditions such as
low battery mute, high battery mute, hardware mute pin and thermal mute automatically return
the amplifier to the MUTE state.

Diag DC This state starts the DC diagnostic routine to detect the load connection status and returns to
the MUTE state when the routine has finished.

Note: I?C commands performed by the user are executed via the I?C protocol by modifying the device register settings.

RELATED LINKS

Refer to the FAD903 datasheet for more information regarding its state machine

3.2 FDA903D IS protocol

Audio data is transmitted to the power amplifier via the I2S protocol. The 32-bit data word is in two's complement
representation starting from the MSB. The device only processes the first 24 most significant bits and disregards
the 8 least significant bits.

Note: Besides the standard I?S used in our demo, the FDA903D device also supports Time Division Multiplexing mode
(TDM).

UM2719 - Rev 3 page 10/60
Downloaded from Arrow.com.

https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/resource/en/datasheet/fda903d.pdf
http://www.arrow.com

‘_ UM2719
,l FDA903D I>C protocol

The FDA903D internal PLL locks on the I?S clock line signal frequency, which is why it is important to configure
the I2S bus appropriately. When the I2S clock is missing or corrupted, the PLL unlocks and the device is forced

into a standby state.

Figure 10. I?S (DSPI) connection in AEK-AUD-D903V1

AutoDevi it

-

125 SCL l 12S CLOCK LINE
125 WS 12S WS LINE
125 SDA 12S DATA LINE

125 CR 12S CURRENT TEST

GND
I12C SCL
12C SDA

GND
CDDIAG

VBAT

EN 1

EN 2

EN 3

EN 4

MUTE
GND

L

3.3 FDA903D I*C protocol
The DATA and SCLK wires for the I?C protocol are used to communicate, control and manage the FDA903D.
Connection between the I2C microcontroller port and I1°C power amplifier pins on the AEK-AUD-D903V1 is
provided by the pins on the connector shown below.

page 11/60

UM2719 - Rev 3

Downloaded from Arrow.com.

https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

‘,_l UM2719

FDA903D I*C protocol

Figure 11. I*C connection in AEK-AUD-D903V1

125 SCL
125 W5
125 SDA

125 CR
GND
12C SCL
12C SDA
GND
CDDIAG
VBAT
EN 1
EN 2
L= DO EN 3
=T, KN4 EN 4
MUTE
GND

12C CLOCK LINE

-
- 12C DATA LINE

—
=
™M
-
1))
T
-
-l
CIC
o X
L
a
-

The power amplifier FDA903D is controlled with appropriate read and write operations on Instruction Bytes
registers (from IBO to I1B14) performed with the 12C protocol. Additional Data Bytes registers (from DBO to DB6) in
the device record the state of the amplifier.

Writing to the instruction registers and reading from the device status registers are the fundamental elements of
device management.

3.31 I2C protocol writing procedure

Communication through the IC protocol takes place via a well-defined sequence of bit packages: start bit —
recipient address — acknowledge bit — sub-address — acknowledge bit — actual data — stop bit.

The amplifier address is chosen from eight possible enable pins combinations that represent eight corresponding
addresses. For example, to assign I1°C address1 = “1110000” to the device, enable pin 2 is set high (Enable 2 =
“1”) and enable pins 1,3 and 4 are set low (Enable1 = “0”, Enable3 = “0”, Enable4 = “0").

Table 3. I?)C address 1 selection

0 0 0

Standby 0

Amplifier ON address 1 = “1110000’ 0 1 0 0

Amplifier ON address 2 = 1110001’ 1 1 0 0

Amplifier ON address 3 = 1110010’ 0 0 1 0

Amplifier ON address 4 = *1110011’ 0 1 1 0
UM2719 - Rev 3 page 12/60

Downloaded from Arrow.com.

https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

‘,_l UM2719

FDA903D I*C protocol

0 1 0 1

Amplifier ON address 5 = 1110100’

Amplifier ON address 6 = 1110101’ 1 1 0 1
Amplifier ON address 7 = “1110110’ 0 0 1 1
Amplifier ON address 8 = “1110111’ 0 1 1 1

The connector on the AEK-AUD-D903V1 provide access to the four enable pins by four corresponding GPIO pins
on the microcontroller.

Important: Close J2 connector pins with jumpers.

Figure 12. ENABLE pin locations on the connector

Ol S FS 125 SCL

sP= S B h: 125 WS

e a T . 125 SDA
IL!l' - -

125 CR
GND
12C SCL
12C SDA
GND
CDDIAG

VBAT
EN 1 ENABLE 1
EN 2 ENABLE 2
EN 3 ENABLE 3
ENABLE 4

The subaddress is assigned according to the IB register to be written, as shown in the following table.

Table 4. Subaddress association

IBO 10000001
1B1 10000010

UM2719 - Rev 3 page 13/60
Downloaded from Arrow.com.

https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

‘,_l UM2719

FDA903D I*C protocol

B2 10000011
IB3 10000100
B4 10000101
IB5 10000110
IB6 10000111
IB7 10001000
IB8 10001001
IB9 10001010
1B10 10001011
1B11 10001100
1B12 10001101
1B13 10001110
1B14 10001111

In the above table, bit 7 of the subaddress is the letter “I” to represent the possibility of having an incremental
writing procedure. If the “I” bit is set to 1, the write operation is performed from the corresponding register and all
consecutive ones with a unique flow of data from I2C. The process can involve all registers or can be interrupted
by a stop bit received from I?C.

The data bits carry the actual information required to control the power amplifier.

3.3.2 I2C protocol: reading procedure
The reading procedure consists of the device address (sent by master) and the data (sent by slave).

Figure 13. Read operation packet
ol [[

When a reading procedure is performed, the first register read is the last addressed in a previous access to I1>C
peripheral. Hence, the reading of a register is enabled by a write action (a write interrupted after the sub-address
is sent) to specify which register must be read. The following figure shows the complete procedure to read a
specific register where:

1. The master performs a write action by sending only the device address and the subaddress; the
transmission must be interrupted with the stop condition after the subaddress.

2. The master starts a new communication by sending the device address and the FDA903D slave responds
by sending the data bits.

3. The read communication is ended by the master which sends a stop condition preceded by a not-
acknowledge.

Figure 14. Read operation required data

s| Address EI“. Subaddress | A [P[s| Address EIA_IP

Alternatively, performing a start immediately after the stop condition can be used to generate the repeated start
condition (Sr), which also keeps busy the I12C bus until the stop is reached.

Figure 15. Read operation with repeated start condition

s Address nmla. Subaddress | A|Sr| Address n.mlA_EP

UM2719 - Rev 3 page 14/60
Downloaded from Arrow.com.

https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

‘,_l UM2719

FDA903D I*C protocol

3.33 IB registers in I’C

The microcontroller accesses all amplifier functionality through the IB registers.

Table 5. IB register map

IB register map

D7 D6 D5 D4 D3 D2 D1 DO

IBO D7: enable/disable writing on IB registers
D6-D5: enable/disable the IS standard protocol for transmitting the digital input
D4-D1: choose between right or left channel
DO: select between low voltage and standard voltage modes
IB1 D7-D6: select the I°S WS
D4-D3: select the PWM switching frequency based on the I12S WS value
D2: select between PWM amplifier dithered or not dithered
DO: select between PWM in phase or out of phase
IB2 D7-D6: establish the short to supply diagnostic timing
D4: activate/deactivate the low radiation function
D3-D0: enable and configure the amplifier power limiter
IB3 D5: enable/disable output voltage offset detector
D4: enable/disable input offset detector
D3: enable/disable output current offset detector
D2: enable/disable high pass filter in DAC amplifier DAC
D1: enable/disable noise gating
DO: enable/disable open load in play detection
IB4 D7: enable CDDIAG to report presence of output voltage offset
D6-D4: enable CDDIAG to report temperature warnings
D3: enable CDDIAG to report overcurrent faults
D2: enable CDDIAG to report input offset
D1: enable CDDIAG to report short to V¢ or to Gnd fault
DO: enable CDDIAG to report high voltage Mute fault
IB5 D7: enable CDDIAG to report undervoltage fault
D6: enable CDDIAG to report thermal shutdown fault
D5-4: enable CDDIAG to report PWM pulse skipping
IB6 D7-D6: establish MUTE timing setup
D5: select audio signal gain control
D4: choose between standard gain or low gain
IB7 D7-D6: select the diagnostic ramp time
D5-D4: select the diagnostic hold time
D1: choose between data generated on I2S clock falling edge or rising edge

DO: select the current sensing protocol configuration

UM2719 - Rev 3 page 15/60
Downloaded from Arrow.com.

http://www.arrow.com

‘,_l UM2719

FDA903D I*C protocol

IB8 D7-D6: set the full current sensing scale

D5: turn on/off the PWM

D4: enable the DC Diagnostic

D3-D1: configure the I12S CR pin

DO: put the amplifier in MUTE/PLAY
IB9 D4: enable/disable the watchdog for word select management
IB10 D7: set short load impedance threshold for DC diagnostic

D6: set open load impedance threshold for DC diagnostic and open load in play

D4-D3: configure the output current offset detector threshold
1B11 D5-D4: select the overcurrent protection level

D3: select between default PWM or PWM Slow slope

IB12 D7: select between standard thermal warning or thermal warning shift - 15 °C

IB13 D6: select whether digital mute is enabled or disabled in PLAY when Start Analog Mute without
thermal warnings occurs

IB14: D4: set feedback on LC filter/Out

D3-D1: configure the LC filter setup

DO: select whether or not setup is programmed via 12C

3.34 DB registers in I’C

DB registers allow the microcontroller to monitor the status and operation of the power ampilifier.

Table 6. DB register map

DB register map

D7 D6 D5 D4 D3 D2 D1 DO

DBO D7: indicates whether an offset at input is present
D6: indicates whether the current offset test has ended and if it is valid
D5: indicates whether an offset at current offset is present
D3: indicates whether an offset at voltage offset is present
D2: indicates whether the open load in play test has ended
D1: indicates whether the open load in play test is valid
Do: indicates whether an open load is present or not
DB1 D7-D4: indicates whether the thermal warning is active
D3: indicates whether the PLL is locked
D2: indicates whether an undervoltage UVLOALL has been detected
D1: indicates whether an overvoltage shutdown has been detected

DO: indicates whether PWM pulse skipping has been detected

UM2719 - Rev 3 page 16/60
Downloaded from Arrow.com.

http://www.arrow.com

m UM2719

Potentiometers

DB2 D7: indicates whether the DC diagnostic pulse has ended
D6: indicates whether the DC diagnostic is valid
D5: indicates whether the overcurrent protection has been activated
D4: indicates when a short load on channel occurs
D3: indicates when a short to V¢ on channel occurs
D2: indicates when a short to Gnd on channel occurs
D1: indicates when an open load on channel occurs
DO0: indicates whether the channel is in MUTE or in PLAY

DB3 Reserved for DC Diagnostic Error codes

DB4 Register is reserved for Channel Current Sensing (10 - 8)
DB5 Register is reserved for Channel Current Sensing (7 - 0)
DB6 D7: indicates whether the high voltage mute has started

D6: indicates whether an undervoltage UVLOV ¢ has been detected
D5: indicates whether a thermal shutdown has been detected

D4: indicates whether the analog mute is started

D2: indicates whether the watchdog for word select occurs

D1: indicates whether an error frame occurs

3.3.5 Driver

A driver has been developed to allow the user to monitor and control the amplifier without engaging in tedious 1B
and DB register read and write operations associated with a task.

3.4 Potentiometers

The AVAS system includes two potentiometers to help simulate the sound of a car engine: one to simulate the
accelerator pedal and another to adjust the sound volume. The potentiometers are powered through two supply
voltages (5V and 3.3V) from the AEK-MCU-C1MLIT1 control board via female connector CN6 or male connector
CN7.

Our system uses the potentiometer as a voltage divider to obtain a manually adjustable output voltage from

a fixed input voltage applied across the two ends of the potentiometer. It is formed by an insulating cylinder

on which a metal wire is wound, and the two ends are connected to two terminals. One of these terminals is
connected to a sliding contact that runs the length of the cylinder. The operation is equivalent to a pair of resistors
in series whose total value is constant, but individually variable according to the position of the sliding contact.

Figure 16. Linear potentiometer circuit

R; =R, +R,,

R

Considering R an open, we have the voltage on Ry, equal to the power supply voltage of the potentiometer
R
multiplied by RLTZ, and since this ratio is equal to that of Lo (Rt2 resistor length) on Lt (total resistor length), we

see that the output voltage of the potentiometer is a function of the cursor position.

UM2719 - Rev 3 page 17/60
Downloaded from Arrow.com.

https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://en.wikipedia.org/wiki/Voltage_divider
http://www.arrow.com

‘,_l UM2719

Successive approximation analog-to-digital converter (SARADC)

_ V*Lo

Vo= Ir
It is possible to implement speed and volume control by directly relating these variables to the output voltage of a
potentiometer. The analog output of the potentiometers are converted into discrete values by the SPC582B60E1
microcontroller ADCs.

(1)

3.5 Successive approximation analog-to-digital converter (SARADC)

Two of the 27 SARADC channels on the AEK-MCU-C1MLIT1 control board microcontroller are used to convert
the potentiometer speed and volume signals into digital quantities through the connector CN7.

Note: These signals can also be routed through CN11.

Figure 17. Potentiometer connections

POT 1 VOLUME
GND
Analog pin SARADC
_ Vee
POT 2 ac
3.3v
__GND
__Analog pin SARADC
Veo Isv

3.6 Stereo mode
In order to produce stereo audio, the system requires a second AEK-AUD-D903V1 board to occupy both the left
and right channels available on the I1°S DATA line.

UM2719 - Rev 3 page 18/60
Downloaded from Arrow.com.

https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

‘,_l UM2719

Stereo mode

Figure 18. AVAS system for two stereo sound

CONNECTIONS COMING FROM
FRONT CONNECTOR

ZsscL 4

25Ws 4

125 DATA 4

-0903U1

=3
T
I
L

ENABLE 140
EMABLE 241
ENABLE 340
ENABLE 4 4
HW MUTE 4

TR LOW STATE 0" CONNECTIONS COMING

EHABLE 2 HIGH STATE “1° FROM BACK CONNECTOR

ENABLE 1) LOW STATE "0" Lauel, 1
125 DATA 4
EMABLE 4 LOW STATE 0"

HW MUTE)

GND
1zcscL

CN11 1zcsoa @

The connection of a second audio board will involve the following modifications to the AVAS system:

. The I2C interface is shared, so the 12C SCL clock line and the 12C DATA line are connected to both
AEK-AUD-D903V1 audio boards.

. The I2S interface is also shared as the lines (I12S SCLK, 12S WS and 12S DATA) are also used by the second
amp. The right channel and the left channel travel on the same line, and the 12S WS distinguishes the
information for the right channel and the left channel.

. The I2C communication between the microcontroller (master) and the two amplifiers (slaves) are
distinguished by the addresses that identify the two devices.

. The address that identifies each of the two amplifiers is obtained through a combination of the four enables,
so eight GPIOs are required in total.

This AEK-MCU-C1MLIT1 control board has a copy of the male CN7 and CN10 connectors on the back of the
board, which makes it relatively easy to split the connections for the 1C and I2S interfaces between the two amps.

UM2719 - Rev 3 page 19/60
Downloaded from Arrow.com.

https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

‘,_l UM2719

Stereo mode

Figure 19. AEK-MCU-C1MLIT1 seen on both sides

[l'n.llﬂ-hnﬂu maw ..' & - Tl A Fmay s W i ¢ .

BACK FRONT

Even though it would normally take eight GP1Os to assign addresses to the two amplifiers, we can use the copy
of the connectors on the back side of the control board to halve the number of GPIOs. To do this, we use two
combinations that have the same number of pins to put high ("1").

Table 7. Comparison of pin settings for addresses 1 and 3

0 1 0 0

Amplifier ON address 1 = 1110000’
Amplifier ON address 3 = 1110010’ 0 0 1 0

In the above example, where address 1 and address 3 have the same number of high and low pins, it is evident
that we can use the same GPIOs to create the two necessary combinations by connecting the GPIO high (“1”)
to Enable 2 of the first board and Enable 3 of the second board, and the three low GPIOs (“0”) to the remaining
three enable pins on each board.

UM2719 - Rev 3 page 20/60
Downloaded from Arrow.com.

http://www.arrow.com

‘,_l UM2719

AEK-AUD-C1D9031 - single board AVAS solution

4 AEK-AUD-C1D9031 - single board AVAS solution

The AEK-AUD-C1D9031 is a very compact AVAS solution based on SPC582B60E1 Chorus family MCU and
FDA903D Class D audio amplifiers that emits warning sounds to alert pedestrians of the presence of e-vehicles in
the proximity.

The optimized board size allows installation of more than one AVAS module in an e-car to guarantee that the
warning sound is heard in any direction along the vehicle.

4.1 Hardware overview
Figure 20. AEK-AUD-C1D9031 components
1. SPC582B60E1 automotive microcontroller
2. Class D FDA903D power amplifiers
3. CAN connector
4. Hardware mute switch
5. Turn on/off sound button
6. Connector compatible with AEK-CON-C1D9031

The board hosts the SPC582B60E1 automotive microcontroller belonging to the Chorus family, embedding a high
performance €200z2 single core 32-bit CPU with 80 MHz clock, 1088 KB Flash and 96 KB SRAM, in a compact
eTQFP64 package.

The microcontroller monitors and controls the two Class D FDA903D power amplifiers driving the loudspeakers.
The audio transmission from the microcontroller to the two audio amplifiers is implemented via I?S interface
(simulated by an SPI peripheral), while I1>C port and GPIOs are used to provide the necessary signals and
communication lines to configure the power amplifiers.

The proposed AVAS solution is designed to be remotely controlled by a central ECU via CAN interface, using the
on-board CAN connector. The board also features a hardware mute button and a button to turn on/off the sound.
A connector is present as well for two sliders: one to manage the speed (engine rpm) and the other to manage
the volume. A compatible version of these sliders is included in the AEK-CON-C1D9031.

UM2719 - Rev 3 page 21/60
Downloaded from Arrow.com.

https://www.st.com/en/product/aek-aud-c1d9031?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-con-c1d9031?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc582b60e1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-con-c1d9031?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

‘,_l UM2719

Software overview

4.2 Software overview
The board is ready to be tested. An example of firmware has been already uploaded on it.

If you need to download the firmware into the board again, use SPC5-UDESTK programmer plugged on the JTAG
connector. The source code is present from AutoDevKit 1.4.0, i.e. a specific demo has been implemented for this
board, “SPC582Bxx_RLA_AEK_AUD_C1D9031 - Avas Compact - Test Application”. To upload the demo into the
microcontroller, refer to Section 7.2.1 How to upload the demos for AEK-AUD-D903V1.

The demo provides an example of how to manage the two FDAS03D audio amplifiers with a driver dedicated

to an AEK-AUD-C1D9031 board. The demo shows how to simulate car engine sound, performing diagnostic in
real-time, in two different states: PLAY and MUTE. The detection of the open load in play mode depends on the
sound characteristics (refer to the FDA903D datasheet for details).

To Start and Stop the sound, use the dedicated button shown in Figure 20. While in Stop status, the LED D6
turns on. When the open load fault is detected, LED D8 turns on, while LED D7 is turned on when pushing the
hardware Mute button.

By default, this demo is controlled via CAN by an external MCU/ECU. In addition, it is possible to simulate the
car engine acceleration/deceleration using commands via CAN. The file CANCommunication.h under the source
folder contains the information (SID and Value) related to the messages managed by the demo.

To receive CAN diagnostic messages from the demo, it is mandatory to set the variable
DISTRIBUTED AVAS SYSTEM in the main.c as follows:

#define DISTRIBUTED AVAS SYSTEM TRUE
The CAN messages will be sent out by the demo to the main ECU in case of open load in play or in mute state.

The sound produced is based on .hex files located under the source/SamplePack folder and have to be loaded
into the Flash memory. A simple Flash memory loading procedure is described in Section 6.2 from step 21 on.
In this demo, we have used a simple algorithm that, depending on the rpm detected, skips some of the wave file
samples to simulate the engine acceleration/deceleration.

Note: It is possible to simulate the car engine acceleration/deceleration and the volume by using two trimmers from
AEK-CON-C1D9031 and changing the ENABLESLIDER variable in the main.c file from

#define ENABLESLIDER FALSE

to
#define ENABLESLIDER TRUE

Important:

Free UDE license allows loading 256 Kb max. To get a full license, you can buy SPC5-UDESTK programmer together with
SPC5-UDEDEBG-TL for a one-year, full-feature, unlimited code-size license or SPC5-UDEDEBG for a perpetual, full-feature,
unlimited code-size license.

4.3 FCC and IC disclaimer
FCC notice:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This
device may not cause harmful interference, and (2) this device must accept any interference received, including
interference that may cause undesired operation. Changes or modifications not expressly approved by the party
responsible for compliance could void the user's authority to operate the equipment. Note: This equipment has
been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy,
and if it is not installed and used in accordance with the instruction manual, it may cause harmful interference to
radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in
which case the user will be required to correct the interference at his own expense.

IC notice:

This Class A digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe A est
conforme a la norme NMB-003 du Canada.

UM2719 - Rev 3 page 22/60
Downloaded from Arrow.com.

https://www.st.com/en/product/spc5-udestk?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/stsw-autodevkit?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-c1d9031?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-con-c1d9031?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-udestk?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/SPC5-UDEDEBG?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/SPC5-UDEDEBG?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

m UM2719

AVAS system software

5 AVAS system software

The AVAS demo system requires the following set of software tools to develop and load the microcontroller
firmware to drive and monitor the power ampilifier:

. SPC5-STUDIO and SPC5-UDESTK-SW debugger
. STSW-AUTODEVKIT
. AEK-AUD-D903V1 driver

RELATED LINKS
Refer to user manual UM2623 for more information regarding SPC5-STUDIO and STSW-AUTODEVKIT

5.1 SPC5-STUDIO

SPC5-STUDIO is an integrated development environment (IDE) based on Eclipse designed to assist the
development of embedded applications based on SPC5 Power Architecture 32-bit microcontrollers.

The package includes an application wizard to initiate projects with all the relevant components and key elements
required to generate the final application source code. It also contains straightforward software examples for each
MCU peripheral.

Other advantages of SPC5-STUDIO include:

. ability to integrate other software products from the standard Eclipse marketplace
. free license GCC GNU C Compiler component

. support for industry-standard compilers

. support for multi-core microcontrollers

. PinMap editor to facilitate MCU pin configuration

RELATED LINKS
Download the SPC5-UDESTK-SW software to run and debug applications created with SPC5-STUDIO

5.2 STSW-AUTODEVKIT
The STSW-AUTODEVKIT plug-in for Eclipse extends SPC5-STUDIO for automotive applications.
The main advantages of STSW-AUTODEVKIT are:

. integrated hardware and software components, component compatibility checking and MCU and peripheral
configuration tools

. allows creation of new system solutions from existing solutions by adding or removing compatible function
boards

. Hardware abstraction means new code can be generated immediately for any compatible MCU
. High-level application APIs to control the AEK-AUD-D903V1 board.

The GUI helps configure interfaces, including I2C and I?S, and can automatically manage all relevant pin
allocation and deallocation operations.

5.3 AEK-AUD-D903V1.c and sound.c drivers

The AEK-AUD-D903V1.c driver and sound.c library are provided with the STSW-AUTODEVKIT installation to
facilitate the programming phase.

5.3.1 AEK-AUD-D903V1.c driver

This driver contains the functions to configure the 1B and DB registers of the FDA903D audio amplifier for
appropriate system management and control.

Consider the I1B8 register below.

UM2719 - Rev 3 page 23/60
Downloaded from Arrow.com.

https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-udestk-sw?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/autodevkitsw
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/3d/76/aa/a4/0b/5c/4b/a1/DM00643538/files/DM00643538.pdf/jcr:content/translations/en.DM00643538.pdf
https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-udestk-sw
https://www.st.com/en/product/stsw-autodevkit?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/aek-aud-d903v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/autodevkitsw
https://www.st.com/en/product/fda903d?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

‘,_l UM2719

AEK-AUD-D903V1.c and sound.c drivers

Table 8. FDA903D IB8 register description

Definition
Data bit Default value

Current Sensing Full scale setting:

0 1 A lmax
D7-D6 11 1 2 A lmax
10 4 A lmax
1 8 A lmax
0 Channel in TRISTATE (PWM OFF)
Po ° 1 Channel with PWM ON
0 Channel DC Diag disable
D4 0
1 Channel DC Diag start
I2S test pin configuration
000 High impedance configuration
001 Reserved
010 Reserved
D3-D1 000 01 Output: Current sensing enable
100 Reserved
101 Output: PWM synchronization signal
110 Reserved
111 Reserved
0 Channel in MUTE
DO 0
1 Channel in PLAY

To put the amplifier in PLAY mode, we need to configure the register accordingly:

. turn on the PWM setting IB8[D5] = 1

. put the channel in play setting IB8[DO0] = 1

The Initial state is the default 11000000. To reach the state PWM on state, we compute 11000000 OR 00100000
to obtain 11100000. To reach the PLAY mode state, we perform 11100000 OR 0001000 to obtain 11110000.

It takes several operations to modify the relevant bits in the IB register in order to transmit a simple instruction to
the amplifier.

The AEK-AUD-D903V1.c simplifies these operations through a list of APIs that can configure the IB registers in a
single command.

For example, the AEK 903D Play (AEK AUD D903V0) function configures the IB8 register bits required to set
the amplifier in PLAY mode.

Note: The parameter of the function indicates the name of the amplifier to control, so in a stereo system with two audio
boards, we must distinguish between AEK-AUD-D903V0 and AEK-AUD-D903V1.

UM2719 - Rev 3 page 24/60
Downloaded from Arrow.com.

http://www.arrow.com

m UM2719

AEK-AUD-D903V1.c and sound.c drivers

Figure 21. APl AEK_903D_Play(AEK_AUD_D903V0)

1. The function saves the current state of the IB8 register to the variable FDA903D Status IB
2. The function changes the value of variable FDA903D Status_IB to turn on PWM and activate PLAY mode.

3. The function writes the value of the FDA903D Status_IB variable to the IB8 register, effectively setting the amplifier in
PLAY mode.
‘{**

* @brief This function allows the audio amplifier to go in PLAY state.

*

* @param[in] AEK_AUD_D9@3V1_DEVICE dev

*

* @return i2c_result_t
* @api
*
i2c_result_t AEK_9@3D_Play(AEK_AUD D9@3V1 DEVICE dev)
{
if(FDA_Status[dev] != PLAY)
AEK_9@3D_Read_IB(dev, IBS,&FDA9@3D_Status_IB[dev][8],1); 0
. el
FDA9@3D_Status_IB[dev][8] = (FDA983D_Status_IB[dev][8] & @xFE) | IBS_PWM ON | IBS_PLAY;
return AEK 903D Write IB(dev, IBS, &FDA9@3D Status IB[dev][8], 1); e
1

Some APIs in the AEK-AUD-D903V1.c driver require specific configuration parameters. In the following example,
bits D3, D2 and D1 combine to define different configurations (000 = high impedance configuration, 011 = current
sensing configuration, etc.). This API therefore requires indication of the desired configuration as well as the
relevant device when it is invoked.

Figure 22. 128 Test Pin configuration API

1. The user must replace the description with the appropriate value field to indicate the desired configuration.

/**

* @brief This function configures the I2Stest pin.
* @param[in] AEK_AUD_D9@3V1 DEVICE dev

*

* [@param[in] value (Choose one of these parameters and copy it into the ‘value' field of the function):
-

* = IB8_HIGH_IMPEDENCE_CONFIG

* - IB8_CURRENT_SENSING_ENABLED

" - IB3_PWM_SYNCHRO SIGNAL

*

* f@return i2c_result_t

*

* @api

|

i2c_result_t AEK_903D_I2TestPinConfiguration(AEK_AUD D983Vl DEVICE dev, uint8 t value)
if(FDA_Status[dev] != PLAY)

AEK_903D_Read_IB(dev, IB3,&FDA983D Status IB[dev][8],1);
}

FDA983D_Status_IB[dev][8] = (FDA9@3D_Status_IB[dev][8] & @xFl) | value;
return AEK_9@3D_Write_IB(dev, IB8, &FDA9@3D_Status_IB[dev][8], 1);

The following table shows all the available functions divided according to the register on which they act.

UM2719 - Rev 3 page 25/60
Downloaded from Arrow.com.

http://www.arrow.com

‘,_l UM2719

AEK-AUD-D903V1.c and sound.c drivers

Table 9. list of API functions in AEK-AUD-D903V1.c

AEK_903D_EnableWritingOnIBs
AEK_903D_DisableWritingOnIBs

IBO AEK_903D_SetlinputDataFormats
AEK_903D_SelectChannelPosition
AEK_903D_SetVoltageMode
AEK_903D_Setl2SWordSelect
AEK_903D_SetPWMSwitchingFrequency
AEK_903D_SetPwmAplifierDithered
AEK_903D_SetPwmAplifierNotDithered
AEK_903D_SetPwmInPhase
AEK_903D_SetPwmOutOfPhase
AEK_903D_SetDiagShort2SupplyTiming
AEK_903D_DisableLowRadiationFunction
AEK_903D_EnableLowRadiationFunction

1B1

1B2

AEK_903D_ConfigurePowerLimit
AEK_903D_DisableOutputVoltageOffsetDetector
AEK_903D_EnableOutputVoltageOffsetDetector
AEK_903D_DisablelnputOffsetDetector
AEK_903D_EnablelnputOffsetDetector
AEK_903D_DisableOutputOffsetCurrentDetector
AEK_903D_TriggerOutputOffsetCurrentDetector
AEK_903D_DisableHighPassInDAC

IB3

AEK_903D_EnableHighPassInDAC
AEK_903D_DisableNoiseGating
AEK_903D_EnableNoiseGating
AEK_903D_DisableOpenLoadInPlayDetection
AEK_903D_TriggerOpenLoadinPlayDetection
AEK_903D_EnableOutputVoltageOffsetinfoOnCDDIAG
AEK_903D_DisableOutputVoltageOffsetinfoOnCDDIAG
AEK_903D_ConfigureThermalWarninginfoOnCDDIAG
AEK_903D_EnableOvercurrentinfoOnCDDIAG
AEK_903D_DisableOvercurrentinfoOnCDDIAG

B4 AEK_903D_EnablelnputOffsetinfoOnCDDIAG
AEK _903D_DisablelnputOffsetinfoOnCDDIAG
AEK_903D_EnableShortToVccOrGndinfoOnCDDIAG
AEK_903D_DisableShortToVccOrGndinfoOnCDDIAG
AEK_903D_EnableHighVoltageMuteInfoOnCDDIAG
AEK_903D_DisableHighVoltageMutelnfoOnCDDIAG
AEK_903D_EnableUvlovccinfoOnCDDIAG

IB5
AEK _903D_DisableUvlovccinfoOnCDDIAG

UM2719 - Rev 3 page 26/60
Downloaded from Arrow.com.

http://www.arrow.com

‘,_l UM2719

AEK-AUD-D903V1.c and sound.c drivers

e |,

AEK_903D_EnableThermalShutdowninfoOnCDDIAG
AEK_903D_DisableThermalShutdowninfoOnCDDIAG
AEK_903D_EnablePwmPulseSkippingInfoOnCDDIAG

IBS

AEK_903D_DisablePwmPulseSkippinglnfoOnCDDIAG
AEK_903D_SelectMuteTimingsetup

1B6 AEK_903D_SelectAudioSignalGainControl
AEK_903D_SelectGainSetting
AEK_903D_SelectDiagnosticRampTime
AEK_903D_SelectDiagnosticHoldTime

e7 AEK_903D_SelectCurrentSensingCommunication
AEK_903D_SelectCurrentSensingProtocolConfiguration
AEK_903D_SetCurrentSensingFullScale
AEK_903D_SetChannelWithPWMoff
AEK _903D_SetChannelWithPWMon
AEK_903D_Eco_Mode

B8 AEK_903D_StartDCDiag
AEK_903D_DisableDCDiag
AEK_903D_I|2TestPinConfiguration
AEK_903D_Play
AEK_903D_Mute
AEK_903D_EnableWatchDogForWordSelect
AEK_903D_DisableWatchDogForWordSelect
AEK_903D_SetShortLoadimpedanceThreshold

IB10 AEK_903D_SetOpenLoadimpedanceThreshold
AEK_903D_SetCurrentOffsetThreshold
AEK_903D_SelectOverCurrentProtectionLevel

1B11 AEK_903D_SetSlowSlopePWMConfiguration

B9

AEK_903D_SetDefaultPWMConfiguration

1B12 AEK_903D_SetThermalWarning
AEK_903D_EnableDigitalMutelnPlayForTW1
AEK_903D_DisableDigitalMutelnPlayForTW1
AEK_903D_SetFeedbackOnLCFilter
AEK_903D_SetFeedbackOnOutPin

IB14 AEK_903D_SetupLCFilter
AEK_903D_Enable903ToBeProgramVial2C
AEK_9030_Disable903ToBeProgramVial2C

IB13

Other functions in AEK-AUD-D903V1.c that are not register specific are listed below:
AEK_903D_Write_IB: I2C write to IB registers
AEK_903D_Read_IB: I2C read of single IB register
AEK_903D_Read_All_IB: I2C read of all IB registers

UM2719 - Rev 3 page 27/60
Downloaded from Arrow.com.

http://www.arrow.com

m UM2719

AEK-AUD-D903V1.c and sound.c drivers

AEK_903D_Read_DB: I2C read of single DB register
AEK_903D_Read_All_DB: I2C read of all DB registers

AEK_903D_SetDefaultRegi initializes I°C registers in AEK-AUD-D903V1 and sets first bit of IB14 to 1 (ready to work)
sters:

AEK_903D_SetEnables: used inside the AEK_903D_Init function to set/clear the Enable pins of the board as defined in
the configuration

AEK_903D_Init: initializes the 1>C and I2S protocol and to launch the AEK_903D_SetEnables function
AEK_903D_I2C_lInit: initializes the 1>C peripheral

AEK_903D_I2S_Init: initializes the I2S peripheral

AEK_903D_CheckOpenlLoa returns the result of the Open Load in Play Detection test on the DBO register in the
dinPlayDetection: FDA903D Errors structure

AEK_903D_CheckOffsetCu returns the result of the Current Offset detection test on the DBO register in the
rrent: FDA903D Errors structure

AEK_903D_ChecklnputOffs returns the result of the Input Offset Detection test on the DBO register in the

etDetector: FDA903D Errors structure

AEK_903D_CheckOutputVo returns the result of the Output Voltage Offset Detection test on the DBO register in the

ItageOffsetDetector: FDA903D Errors structure

AEK_903D_CheckDCDiagn returns the result of the DC Diagnostic on the DB1 register in the FDA903D_Errors structure

ostic:

AEK_903D_Diagnostic: reads the DB register and signals whether a certain failure condition has occurred
(SHORT2VCC, SHORT2GND, OVERCURRENT, UNDERVOLTAGE, OVERTEMPERATURE
OVERVOLTAGE) in the FDA903D Errors structure

5.3.2 sound.c description

This library contains APIs for the generation, reproduction and simulation of audio wave signals.

initWaveFile: This function takes as input the start address of the first WAV file and the number of files
that you intend to load into memory (maximum number dim=10) and initializes the sound_db
structure with all the necessary addresses to identify the beginning and end of each WAV file.

getStartWavfFile: This function computes the address that points to the first audio sample of a given WAV file.
You must provide the function with an integer that identifies the location of the WAV file within
the sound_db structure previously initialized by the initwaveFile function.

getHalfWavFile: This function computes the address that points to the middle audio sample of a given WAV file.
You must provide this function with an integer that identifies the location of the WAV file within
the sound_db structure previously initialized by the initwaveFile function.

GetEndWavfFile: This function computes the address that points to the last audio sample of a given WAV file.
You must provide this function with an integer that identifies the location of the WAV file within
the sound_db structure previously initialized by the initwaveFile function.

swapEndian32: This function swaps the order of the bits: from little (big) endian to big (little) endian.

validate_wav_file: This function validates the WAV file by checking the WAV file descriptor parameters.

checkWayvFile: This function checks the WAV file and identifies the start, middle and end of each WAV file,
removing the WAV file header.

load_channel_data: This function loads new data to the transmission buffer.

playSound: This function plays the sample provided in MONO mode by taking as input a pointer to function
that generates the audio samples and an integer indicating the volume.

playSoundStereo: This function plays the sample provided in STEREO mode by taking as input a pointer to
function that generates the audio samples and an integer indicating the volume.

UM2719 - Rev 3 page 28/60

Downloaded from Arrow.com.

http://www.arrow.com

UM2719

AEK-AUD-D903V1.c and sound.c drivers

3

The last two functions deal with actual sound reproduction. Since these two functions work in the same way, with
the only difference being that one plays mono WAV files and the other stereo files, we will describe how the first
one works.

Figure 23. playSound API

1. This input is a function pointer to the sample that playSound will run. The pointer must refer to the user function, which must
returnauint32 t data type that is assigned to the variable to be transmitted.

2. In this MONO mode example, the same sample is transmitted to both channels. In STEREO mode, the samples for the left
and right channels may differ.

Iln'll
* @brief This function plays the samples provided inm MONO mode.

* @param[in] volume: integer which determines the sound volume
@param[in] (*sample_source)(void): function which provides the samples to be played.

* @api

*
void playSeund(int volume, uint32_t (*sample_source)({veid))
{

uint8®_t *new_sample;

if (load_new_sample == 1U)

{
new_sample = Stxbuf[which_buffer * (sizeof(txbuf) > 1)];
for (i = 0; i € ((sizeof(txbuf) »> 1)); i += BU)

{
| sample = (*sample_source)(); @

sample = (sample*volume) << 16;

Ilriltlﬁi'tzlll_o‘.d In.ingt Cl‘l.‘,ﬂr’uﬁ-}l"“”“‘““,."
load_channel_data(sample , new_sample};
new_sample += 4;

II.'ilf'lt!l‘ll'liLoad]..E"Ft channelttkv!tltl‘ll{ e
load_channel _data(sample, new_sample);
new_sample += 4;

}

FDA_Status[@] = PLAY;
AEK_903D_Read_All_DB(@);
AEK_903D_Read_All_IB(@);

load_new_sample = 8;

The sound. c library allows storing samples generated by mathematical functions or writing a function able to
take audio samples from any file WAV loaded in memory.

UM2719 - Rev 3 page 29/60

Downloaded from Arrow.com.

http://www.arrow.com

‘,_l UM2719

How to play an audio WAV file

6 How to play an audio WAV file

6.1 SPC582B60E1 memory map

Excluding the 64 KB data flash, the remaining 1024 KB MCU memory is divided into the following blocks:
. 4 blocks of 16 KB (Low Flash Blocks)

. 2 blocks of 32 KB (Low Flash Blocks)

. 2 blocks of 64 KB (Mid Flash Blocks)

. 6 blocks of 128 KB (Large Flash Blocks)

We allocate the Low and Mid Flash Blocks to load and execute the source code of our application, and the

remaining 6 Large Flash Blocks for the WAV audio files. This of course means that the WAV files cannot exceed
768 KB.

The following microcontroller Flash memory map shows the physical addresses used to identify and divide the
different memory portions.

Table 10. Flash memory map of SPC582B

1 RWR partition
Start address End address Description
RWW Partition ID

Data Flash: 64 KB

0x00804000 0x00807FFF 16 KB EEPROM block1 1
0x00808000 0x0080BFFF 16 KB EEPROM block2 1
0x0080C000 0x0080FFFF 16 KB EEPROM block3 1
0x00810000 0xO0FBFFFF Reserved

Low & Mid Flash blocks: 256 KB for application code

0x00FC0000 0xO00FC3FFF 16 KB Code Flash block1 0
0x00FC4000 0x00FC7FFF 16 KB Code Flash block2 0
0x00FC8000 0xO00FCBFFF 16 KB Code Flash block3 0
0x00FCC000 0x00FCFFFF 16 KB Code Flash block4 0
0x00FDO0000 Ox00FD7FFF 32 KB Code Flash block0 0
0x00FD8000 OxOOFDFFFF 32 KB Code Flash block1 0
0x00F E0000 OXO0FEFFFF 64 KB Code Flash block0 0
0xO00FF0000 0xO00FFFFFF 64 KB Code Flash block1 0
Large Flash Blocks: 768 KB for audio WAV files

0x01000000 0x101FFFF 128 KB Code Flash blockO 0
0x01020000 0x103FFFF 128 KB Code Flash block1 0
0x01040000 0x0105FFFF 128 KB Code Flash block2 0
0x01060000 0x0107FFFF 128 KB Code Flash block3 0
0x01080000 0x0109FFFF 128 KB Code Flash block4 0
0x010A0000 0x010BFFFF 128 KB Code Flash block5 0
0x010C0000 OXOFFFFFFF Reserved

6.2 Uploading audio WAV file

Use the procedure below to upload audio WAV files.
UM2719 - Rev 3 page 30/60

Downloaded from Arrow.com.

http://www.arrow.com

m UM2719

Uploading audio WAV file

Step 1. Launch SPC5-STUDIO and Create a new SPC5-STUDIO application for Chorus 1M (SPC582B).

Step 2. Right-click the [source] folder to create another folder inside it.
You can name the folder “audio files”.

Step 3. Copy the desired WAV files and paste them inside the newly created folder.
Verify that all files have been inserted.

Figure 24. Project folder for audio files

K% Project Explorer Eﬂ\t = 0O
BEE % |B&[+==0"0458 7
v (55 Project Name
v €= Application Name
€1 SPC582Bxx Platform Component RLA
w [source
v [= audic files
|4 my_wav_file_audio_T.wav
|4 my_wav_file_audio_Zwav
|| my_wav_file_audio_3.wav
| my_wav_file_audio_dwav
| my_wav_file_audio_3.wav
|4 my_wav_file_audio_B.wav
Ly configurationxml
readme.tid

Step 4. Compile your application.
This creates a file named application.1d in your project folder.

Step 5. In the same folder, make a copy of the application.1d file and rename the file according to the
compiler you are using.
- Free GCC — user freegcc.1ld.
— Green Hills —» user ghs.1d.
— Hitech —» user hightec.1ld.

Step 6. Double click on the user freegcc.1d file to openiit.

UM2719 - Rev 3 page 31/60
Downloaded from Arrow.com.

https://www.st.com/en/product/spc5-studio?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

UM2719

Uploading audio WAV file

3

Step 7. Inside the file, modify the memory partition by splitting the flash block into flash and sound blocks.
— The new flash block is 256 KB where application source code is loaded and executed
— The new sound block is 768 KB where audio WAV files are saved

Figure 25. Old flash block memory allocation
1. Old 1 MB flash block

| [wserdd E3
22
23 _irq_stack_size__ = B;
24 __process_stack_size__ = 4896;
25
26 MEMORY
27 {
28 dataflash : org = BxP0800000, len = 128k
29 [flash : org = @x@0FCE088, len = 1M
30 ram : org = Bx4090AB00Q, len = 96K
31}
32
33 ENTRY(_reset_address)
34
Figure 26. New flash block memory allocation
1. New 256 KB flash block
2. New 768 KB sound block
; user.ld EEH'E

22
23 irg _stack size = 8;
24 process_stack_size = = 4896;
23
26 MEMORY
27 {
28 dataflash : org = @xP9300008, len = 128k
29 flash : org = @x@eFCeese, len = 256K g
ie sound : org = Bx81800008, len = TEBK
31 ram : org = Bxd80AB208, len = 96K
32}
33
34 ENTRY(_reset_address)
315

UM2719 - Rev 3 page 32/60
Downloaded from Arrow.com.

http://www.arrow.com

UM2719

Uploading audio WAV file

3

Step 8. Define a section called sounddb as indicated below.

Figure 27. sounddb definition

1. Location of new sounddb definition
2. sounddb definition code

51 userdd ® % | Bl userld Y o

125 .ehwfpame : ONLY“IF_“RO 126 .eh_fr‘ame = ONLY_IF_RO

126 { 127 {

127 *(.eh_frame) 128 #*(.eh_frame)

128 } > flash 123} > flash

129 138

130 [msta—ﬂmwrs)—mtg 131 -sounddb : ALIGN(16)

131 { 132 {

132 _ romdata_start_ = .; 133 __sounddb_start__ = . ;

133 } > flash 134 *(.sounddb)

134 135 *(.sounddb. *) o

135 .stacks : ALIGN(16) SUBALIGN(16) 136 *(.gnu.linkonce.s.*)

136 { 137 KEEP(*(. sounddb))

137 . = ALIGN(S); 138 __sounddb_end__ = .;

138 __irqg_stack_base__ = .; 139 } » sound

139 . += __irq_stack_size__; 148

140 . = ALIGN(8); 141 .romdata : ALIGN(16) SUBALIGN(16)

141 __irq_stack_end__ = .; 142 {

142 __process_stack_base__ = .; 143 __romdata_start__ = .;

143 __main_thread stack_base_ = .; 144 } » flash

144 . += __process_stack_size_ ; 145

145 . = ALIGN(8); 146 .stacks : ALIGN(16) SUBALIGN(16)

146 __process_stack_end__ = .; 147 1

147 __main_thread_stack_end__ = .; 148 . = ALIGN(8);

148 } » ram 149 __irq_stack_base__ = .;

149 158 . += _ irq stack size_ ;
151 . = ALIGN(8);
152 _irqg_stack_end__ = .;
153 _ process_stack_base_ = .;
154 __main_thread_stack_base__ = .;
155 . *+= _ process_stack_size_ ;
156 . = ALIGN(8);
157 __process_stack_end__ = .;
158 _ main_thread stack end_ = .;
159 } » ram

Step 9. Right-click the [source] folder to create a new file called sounddb. s.

UM2719 - Rev 3 page 33/60

Downloaded from Arrow.com.

http://www.arrow.com

UM2719
Uploading audio WAV file

3

Step 10. In the file, indicate the path of the WAV files to be loaded and declare the variables that identify the
physical start and end addresses of the various WAV files.

Below is an example with paths and address variables for six WAV files.

Figure 28. sounddb.s audio file declarations

. first line of code

. start address variable for first audio file
. end address variable for first audio file
. path to first audio file

&1 workspace - SPC55tudio - Project Mame/source/sounddb.s - SPC3Studio
File Edit MNavigate 3Search Project Run Window Help

O~ HR R o) % @O U~ P if~il o>

A ODN =

E&;Punﬂ:t&ghmk i3 ‘.\._ =01 *sounddb.s &2 L] Application Name
(=] %| ol Y | B &g = R Jj.secti.an .sounddb, “a"
22 3 .align 2
~ 55 Project Name x : ‘-:8 t‘.la ENEiNE_star
A engine startl:
¥ E:fﬁ;::g::;sm;:; c tRLA] .incbin "source/audic files/my wav_file_ audio 1.wav" °
! Ack RraL IO HIL oM ponen Cglobal engine_endl 3
» (2 components Qﬂlgine endl:]
~ [source 9
s = audio files 1e Jiilg:“_lz . "
" . 11 - al engine_star
Ii,‘ m‘)r_wuv_‘Ffle_ludfu-_T.ww 12 engine stgrtz'. :l =
1] my_ww_fll:_aud:o_z.ww 13 - .incbin "sourcefaudio files/my wav_file audio Z.wav"
12| my_wav file_audio_J.wav 14 .global engine_end2
(] pry_wwav_file_sudio_d.wav 15 engine_end2:
& Py _wav_file_audio_S.wav ig —
. . . .align
L] iy ware_file_suchio]Bway 18 .global engine_start3
>[5 sounddb.s 19 engine_start3:
> (& build 28 -incbin "sourcefaudic files/my_wav_file_audioc_3.wav”
» (= pelint 21 -glebal engine_end3
3 = UDE 22 engine_end3:
|5l application.id ;:_ align 2
'ﬁ'i cm-!flguratlon.:u-nl 25 .global engine_start4
€] main.c 26 engine_start4:
| & Makefile 27 .incbin “sourcefaudio files/my_wav_file_audio_4.wav"
@ patchaml 28 -glebal engine_endd
m readynett 29 engine_endd:
= 38
| wserd 31 .align 2
|5 usermak 32 .global engine_starts
33 engine_start5:
34 .incbin “sourcefaudic files/my wav_file_audio_5.wav"
35 .global engine_end5
36 engine_end5:
37
38 -align 2
39 -glebal engine_starte
48 engine_start6:
41 .incbin “sourcefaudio files/my_wav_file_audio_6.wav"
42 .global engine_ends
< > 43 engine_end6:
44

fo= ~ . e =T R————

UM2719 - Rev 3 page 34/60

Downloaded from Arrow.com.

http://www.arrow.com

m UM2719

Uploading audio WAV file

Step 11. Recompile the project.
The size of the build output should now include the audio files added in the sounddb. s file.

After compiling, the [build] folder will contain the output file of the application in BIN, DMP, ELF, HEX,
MAP and MOT formats.

Figure 29. Build output before adding sounddb.s component

1. size of build output before adding sounddb.s component

(E Console &3 =] Pruperties\l E: Problemq & Tasks)

\CDT Build Console [Project Mame]
Compiling boot.s
Compiling components.c
Compiling main.c
Compiling crt@.s

Linking build/out.elf
Creating build/out.hex
Creating build/cut.bin
Creating build/cut.dmp
Creating build/out.mot

text data bss dec hex Tilename
4116 5] 4895 8212 2814 build/out.elf

Done

Figure 30. Build output after adding sounddb.s component

1. added sounddb.s component
2. size of build output after adding sounddb.s component

fE Console EE\E Propertieq E Problems} s Tasks}

\CDT Build Console [Project Mame]
Compiling sounddb.s
Compiling main.c
Compiling boot.s
Compiling components.c
Linking build/out.elf
Creating build/out.mot
Creating build/out.bin
Creating build/out.dmp
Creating build/out.hex

text data bss dec hex filename
557348 @ 498 Sel436 8911c buildfout.elf
Done

Step 12. Expand the [build] folder, select the out . hex file and move or copy it to the same folder where the
audio files were saved.

The .hex file can actually be saved to any external folder.

UM2719 - Rev 3 page 35/60
Downloaded from Arrow.com.

http://www.arrow.com

m UM2719

Uploading audio WAV file

Step 13. Rename the .hex file as you prefer.
This file contains all the application files.

Step 14. Open your .hex file using a text editor.
You can use the SPC5-STUDIO editor or an external one.

Figure 31. Open hex file with editor

a1 workspace - SPC5Studio - Project Name/source/audio files/my_hex_file.hex - SPCStudio
File Edit Mavigate Search Project Run Window Help

=R - T SR ST P N R SRR R

Ej Project Explorer i3 = B8 my_hex_filehex &2
O @y [6a|%="1aa38 - 1 :92000004B0FCFE
5 Project Name N 2:1 @008 7C1E43A652
v roe 3 :1000102REIR4E9597500000C7CARA2TETC210ATEAE
» & Application Name 4 :180P200R7C4212787C631A7E7C8422787CAS2ATERA
v [companents 5 :18BB3PBB7CC632787CE73A78700842787D294A7818
> @ spcs@2buor_platform_component_rla G +10B249BR7D4A52787D6B5A787DEC62757DADGATETE
» [components.c 7 +18@@SPBB7DCE72787DEF7AT87E1882787E318A7ED4
B components.h 5 :10BRGARR7ES292787E730A787EI4A2TETERSAATEI2
- P : o :166R7PBR7EDGE2787EF7EATETF18C27E7F39CATE98
= components.mak 10 :10PRSRRR7F5AD2787F 7BDATE7FICE27S7FBDEATSEE
v [source 11 +166RAPBR7FDEF2787FFFFATE7085E00AT00BCAR0R7
v = audio files 12 :1800APEE7RASEABC70ARCERE7CE42840E00514R490
B s 13 :100RBPBRE0RR]BE45040EEF 9706002017 C7SFBAGIS
S 14 :10PRCPRRRRR444007060E2067062CR087C6RA1249D
Ly New > |15 :188e06BE7REAERFC7A6RC2B67C7FREAGRAALAERAS2
1] rmy 16 :1600E000T
2] my Open B3 117 :1nnnrana7e7RFARA7A2CRRR45001 361 06F 8704000
1y Open With * |5 notepad++ B71ABE@RET1AZCRER1EBET2
@ m T p———— N B7@38EGRATEI2COBRTAARER
3 my owin Local fermina Text Editor 045677C04254PE004DB7444
Ll = ; @EGFC7082C03070AREARADS
>[5 sound Copy UG < svstem Ediiog 3E@RA7AD2CEER7CASIA48E8
Paste Ctrl+V = In-Place Editor DB752835E8FO780808132E
i 50ARR0RAEE40004
Delete Delete Default Editor 00aa47 6C
Rdovec Other...
Rename... F2 F
28 :1801A
: 29 110018 ;
s |Import..
Bt 30 :1801C F
8= Outline 22 . | £ Export. 31 110010 1F
- - 32 :1801E
An outline is not avail
Refresh F5 1331001 ;
L 34 :1002008879F FFEER4400440044004400440044
ol Generate SPC5 Application 25 .amra1aEa;

UM2719 - Rev 3 page 36/60

Downloaded from Arrow.com.

http://www.arrow.com

m UM2719

Uploading audio WAV file

Step 15. Examine the file and verify that the address is 0200000400FCFE.

00FC is the base address (the first 16 bits) of the physical address of the data contained in each
record.

Figure 32. hex file data

Legend:
: start code, M number of bytes in data field ,. address of data added to base address, M record type (00 data, 01
end of file, 04 Extended linear address for 32-bit addressing, etc.), M data 32 hex digits, M checksum
Emy_hex_ﬂle.he:ml
1 ©H:0200000400FCFE
2 :1000000000A5000000FC0O008700000027C1E43A652
3 :10001000E904E959780000DCT7C0002787C210A7848
4 :100020007C4212787C631A787C8422787CAL2ATE8RA
5 :100030007CCe32787CET3AT787D0842787D254A7818
6
7
8

:100040007D4A52787D6B5A787DEC62787DADBATE/ 6
:100050007DCE72787DEFTATSTEL082787E318A78D4
:100060007E5292787E739A787TES4A2787EBSAATE 32

9 :100070007EDEB2787EFTBATS8TF18C2787TF39CATE90
10 :100080007F5AD2787F7BDATS8TFIOCE2787TFBDEATBEE
11 :100090007FDEF2787FFFFA7S8T7088E00A7090C00007
12 :1000A00070ABEOOC70A0C0007C042840E0061A04590
13 :1000B000090018848040E8F9706002017CT75FBAGY5
14 :1000C000000444007060E2067062C0007C6001245D
15 :1000D0O0O0O7060EO0FC7060C2007C7FOBAG0004000032
16 :1000E0007800000000000000000000000000000098
17 :1000FOCO7028EO0OA7032C0004800180106F870400D
18 :10010000EOFC7052C03071A8EO00B71A2C000180072
19 :10011000D0O00O7800005B7088E00AT7052C00070A880
20 :10012000EQ0AT70B2C00048077C042840E004D07424

Intel HEX binary data

UM2719 - Rev 3 page 37/60
Downloaded from Arrow.com.

http://www.arrow.com

UM2719
Uploading audio WAV file

UM2719 - Rev 3

Step 16. In the text editor, search for the string following: 020000040100.

This string contains the base address of the sound partition in the memory where the audio WAV
samples specified in sounddb.s are loaded. The sound partition was defined previously in the
user freegcc.ld file.

Figure 33. Starting point of audio content in hex file

1. search string to find
2. string found in hex file

Eﬁ my_hex file.hex \ I & Find/Replace O X

Find: 020000040100 @ |~

Replace with: | W |

31 Direction Scope

21 (®) Forward ® Al

i () Backward () Selected lines

i L Options
258 : IBIMIEZIBSFMBBDE!BITQFFFlﬁg?EmlﬁFﬁ
350 19131366?8 5 [Case sensitive 7] Wrap search
Wholeword []Incremental

267 1 100BEOGBSIA0AEA 246501005741 5645666074204 [Regular expressions

253 :1e681e60122000000100010044ACERARE55301RRFD
254 :1068206202001000646174610068010000000000B8
265 e B

266 :
267 -

Replace | Replace All

Close

Step 17. Delete all the lines in the hex file before the starting line of the audio content.
The hex file now only contains the sample audio data to be played by the AVAS system.

page 38/60

Downloaded from Arrow.com.

http://www.arrow.com

UM2719

Uploading audio WAV file

3

Step 18. Open the soundb. s file and remove or comment out all paths to the audio sample files.

This ensures that the application does not include the audio content the next time you compile, leaving
only the information regarding the source code.

Figure 34. sounddb.s file with audio sample file paths removed

1. path statements to be commented or deleted
2. build file returns to its original size when the audio content is removed

[sounddbs 22 ‘_IF Application Name
1.section .sounddb, “a®
z
3 -align 2
4 -global engine_startl
5 rtl:
i .inchin "source/audio files/my wev_file audio_1.wav" '
-Elobal engine_endl
fengine_endl:
aQ
18 .align 2
11 -global engine start2
12 ine start?:
13/* .incbhin "source/audic files/my wev_file_audio 2 .wav" =
L4 -global engine_endl
15 engine_end2:
16
17 .align 2
18 -global engine start3d
19 M_:Im\'_t}aﬂ=1~
s .inchin "source/sudio files/my waw file audio 3.wav" E

31 .glabal engine_end3
Il engine_end3:

33

24 .align 2

25 .global engine_starts

3&mlm_;raﬂn~

21."‘ .Anchin "source/audio files/my wav file awdio 4.waw" .
25 -global engine_ends

29 engine_endd:

L]

1 -align 2

32 .global engine_start5

33 minp_;r:rt“--

3-{ i .dnchin "seurce/audic files/my wav_ file audic 5.wawv" -
35 .global engine_endS

36 engine_endS:

8 .align 2

19 -Elobal engine_starté

4 engine_startfi:

41/ .dnchkin "scurce/audio Tiles/my wav_file audio 6.wav" *f
4z .global engine_enda

43 engine_ends:

COT Build Console [Project Name]
I o S R Tl
|Creating build/out.mot
| Creating build/out.dmp

text a bss dec hex filename
41186 @ 4396 8212 2814 bulldfout.elf

Done

[
112:86:41 Build Finished (took 2s5.584ms)

Step 19. Recompile the project.

Step 20. Connect the mini-B USB port on the Discovery AEK-MCU-C1MLIT1 control board to a USB port on
your PC with an appropriate mini USB to USB cable.

UM2719 - Rev 3 page 39/60

Downloaded from Arrow.com.

https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

UM2719

Uploading audio WAV file

3

Step 21. Launch SPC5-UDESTK-SW on your PC and run the debug.wsx file.
This opens a [Multicore / multi program loader] window.

Figure 35. SPC5-UDESTK-SW software with loader window

1. loader window
2. browse file icon
3. remove file icon

B UDE STK 4.10 - CASPCSStudio\workspace\Project Mame\UDE\debug.wsx - Cere2 - Core2 Symboals
File Edit Debug Show Views Tools Config Window Macro Help
D206 4 2@ ¢m@ﬁ‘?}{?1lﬁ!@ﬁb »&@Imzwwm M. gEHEE
Core2 Symbols = code <0x4040FC-0x4044FB> | C:\.\Project Namelmain.c 7
: 0=004040FC oo oo SE_ILLEGAL
& B A 0=004040FE 00 00 SE_ILLEGAL
""" reakpoints e 0x00404100 - 70 A0 E0 40 E_ I.IS R5. 0=40
Ix00404104 70 AF C7 00 2 RE, Ox7F00
0x00404108 7C BF 0B &b Ux3F . RS
Ox0040410C 70 00 00 QO o RO, Ox0
e O0A0A310 0 &0 00 06 b =] Dee(l
" Multicore / multi program loader m x
o] ¢ o]
Load File To | Controller. Core2 | HewELF | Cancel |
cut.e i L =4
Help |
O =Binay
[= Spmbols

=0040415C T3 el ol oD ETLT R2870x0
0x00404160 73 40 00 00 E LI R29, 0x0
0x00404164 73 CO 00 00 E LI R30. 0x0
0=00404168 73 E0 00 00 E LI R31, 0=0
0=0040416C 70 48 E0 0B E_LI R2.0=400E
0=00404170 1C 42 00 08 . D R2.R2,0=8
0x00404174 70 BE E7 FB 15 RG, 0xF7FB

0x00404178 1C A5 80 00
0x0040417C 50 CE 03 00

RE, RS, =0x8000
RE. Ox300(RS)

Step 22. Click on the [delete] icon in the menu bar to remove the current file from the [Load File To].
Step 23. Click on the [browse] icon to add a new file.

Step 24. Browse to you hex file and select [open].
The [Multicore / multi program loader] window reopens with the hex file in the [Load File To] list.

UM2719 - Rev 3 page 40/60

Downloaded from Arrow.com.

https://www.st.com/en/product/spc5-udestk-sw?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

m UM2719

Uploading audio WAV file

Step 25. Click [OK] to open the [FLASH/OTP Memory Programming Tool] window.

Note: The free UDE license allows you to upload a maximum file size of up to 256 KB.

Figure 36. FLASH/OTP Memory Programming Tool

X, UDE - FLASH/OTP Memory Programming Tool - ControllerD,Core2 - (DEMO) >
FLASH/OTP - Memory Device

[PFLASH: 1 MByte OnChip program FLASH (Starterkit] v ¥ Enable

Index | Start [End | Size A Remove All | Erase.. About |
0 0:<00F COO00 0+00F C3FFF 1BK
1 O«00FC4000 O<00FCTFFF 18K Remove Sel. | Pragram | Help |
2 (00FCE000 0«00F CBFFF 16K
3 O400FCCOO0 OW0OFCFFFF 16K Veily | General . |
4 Ce00F D000 0x00FDFFFF cr. 8
5 000FDB000 Ox0OFDFFFF 32K S Protect... [Hiw' Protect |
B (:00FEOOO0 0<00FEFFFF B
7 0:00F FO000 0«00FFFFFF Bk Tezt Empty ..
8 (0071 000000 (01 01 FFFF 128k —I Pro Al
0x01000000 Ox01DIFFFF gram |
3 (b0 020000 D01 03FFFF 128k w T
. - o.. | Setp. | veiy Al |
Step 26. Select the [Erase] button.
A Flash selection window appears.
Step 27. Select from memory block 8 (0x01000000) to block13 and click [Start].
Figure 37. UDE Flash erase tool
1. blocks to be erased
2. start erase procedure
3. exit when erase has completed
ELASHUOTIR kA, B L L L. trolladd Corad DERION
Select FLASH Sectors to Erase - PFLASH *®
" Erase whole FLASH Module Start Execute Memtool Command X
@ Erase selected Sectors Custent FLASH/DTP Device
TInder| Start | End ! SiZ’LI_ e PFLASH: 1 MByte O
[J6 O«00FEO000 ODOFEFFFF BdK Help | Dperdion
az O:00FFO0OD0 OWOOFFFFFF 64K [Evase Sectar 13
8 001 000000 0«0 O1FFFF 128¢ Rasd:
9 0x01 020000 001 03FFFF 128k
M0 0«01040000 OWO10SFFFF 128K foucess
11 0«01080000 OWDI07FFFF 128K Progess:
B oomom oo | L || NSNRNNNNNNRRRRRRRRNNNNRNREN
o . stat_| e | Hee |
ate: Only unprotected sactors ars listed hars |

Mote: Chip eraze may eraze protected sectors az well |

Step 28. Click [Exit] when the process has finished.

Step 29. In the FLASH/OTP Memory Programming Tool, click on [Program All].
This process loads the audio samples.

Step 30. Wait until the operation has completed and select [Exit].

Step 31. Close UDE-STK.
You have loaded your audio samples into the designated memory portion.

UM2719 - Rev 3 page 41/60

Downloaded from Arrow.com.

http://www.arrow.com

UM2719

Uploading audio WAV file

3

Step 32. Save your SPC5-STUDIO application and keep the user.1d and sounddb. s files in a folder.

These two files are important because they are the starting point for the creation of the AEK-AUD-
D903V1 application.

UM2719 - Rev 3 page 42/60
Downloaded from Arrow.com.

http://www.arrow.com

UM2719
AEK-AUD-D903V1 sample applications

7 AEK-AUD-D903V1 sample applications

7.1 How to create a simple AEK-AUD-D903V1 application

Before you start, ensure that the audio samples have been correctly loaded in the microcontroller memory.

This procedure shows you how to play an audio WAV file loaded in memory and perform some diagnostics.

Step 1.

Step 2.

Step 3.

UM2719 - Rev 3
Downloaded from Arrow.com.

Create a new SPC5-STUDIO application for the SPC582B series microcontroller and add the following
components:

— SPC582Bxx Init Package Component RLA
— SPC582Bxx Low Level Drivers Component RLA

These components must be added immediately, or the remaining will not be visible.

Add the following further components:

— AutoDevKit Init Package Component
SPC582Bxx Platform Component RLA
AEK-AUD-D903V1 Component RLA

Figure 38. SPC5-STUDIO adding audio project components

1. SPC582Bxx Platform Component RLA
2. Open available components
3. AEK-AUD-D903V1 Component RLA

File Edit Mavigate Search Project Run Window Help

BRIV aR L @GO QU P D

([Project Explorer 52 . () = B | [*Engine Sound Simulator for AVAS - Test Application 52
G ey |6 Q|- =

v (5 Engine Sound Simulator for AVAS - Test Applicat

v £ Engine Sound Simulator for AVAS - Test A
43 SPC582Bxx Platform Component R
% AutoDevKit Init Package Component
£+ SPC582B:x Init Package Component RLA)
#% SPC582Bwx Low Level Drivers Comp

Gi Select availablecomponents *

Select one or more components to add.

filter text]

Flat View Tree View

@ [[ep] Board wizard component Component Name Vendor Categon
#1 [Dep] SPC582By0x Board Initialization Com AEK EV-VNHxT00 Component RLA STMicroelectronics EV-VNH ‘
@) [Dep] SPC562Box Clock Component RLA| | . ApK EV-VN«Tioox Component RLA STMicroelectronics ~ EV_VNx7 |

&= [Dep] SPC582Bxx IRQ Component RLA

e = AEK Linear Hall Effect Sensor Component RLA STMicroelectronics Linear
_# [Dep) SPC582Bix OSAL Component RLA| [[q) ~ pgk- AUD-D903V1 Component RLA STMicroelectronics AEK_AUI
@ source AEK-COM-BLEV1 Component RLA STMicroelectronics ~ AEK-CO

% f:;:::':l"’“““" £ AEK-COM-GNSST31 Component RLA STMicroelectronics AEK-CO

- - - AEK-LED-21DISM1 Compenent RLA STMicreelectronics AEK_LEC
& AEK-MOT-SM81M1 Component RLA STMicroelectronics ~ AEK_MC .,
< >

¢ 85 e 1 - _) [JShow Ih'»dden :n:{mpnnents
~ 4ii SPC582Bx Platform Component RLA L_IShin ot tupunents _
« %2, Platform Settings Concel
2, details

Select [AEK-AUD-D903V1 Component RLA] to open the [Application Configuration] window.

page 43/60

http://www.arrow.com

UM2719

How to create a simple AEK-AUD-D903V1 application

UM2719 - Rev 3

Downloaded from Arrow.com.

Step 4.

Step 5.

Select the 12S (DSPI) port and the
D903V1 list.

12S WS. Then, click on [+] to add a new element to the AEK AUD

If you want to create a STEREO version, you will need to insert a second element in the list.

Figure 39. AEK-AUD-D903V1 component configuration

1. AEK-AUD-D903V1 component
2. Pin association
3. add new element icon
4. new entry
(5 Project Explorsr 52 =]
| B e | EEe=-308
~ L Engine Sound Simulator for AVAS - Test Application
e €2 Engine Sound Simulator for AVAS - Test Application
4 SPC3A2Bw Platform Compenent RLA

tm AutoDevkit Int Packsge Component
£} SPC3828xx Init Package Component RLA

= ent RLA
4} AEK-AUD-D303V1 Component RLA

TBTaTd wizard commp
'C582Bx Board Initialization Component RLA
'C5828 Clock Compenent RLA
C 58260 IRQ Companent RLA
4 [Dep] SPC3B2Brr OSAL Component RLA
8 source
I configuration.xml
[readme.tdt

=

w

| BE Outhine 2
v 4 AEK-AUD-D30IV1 Component RLA
w 25, Dirver Settings
v £, Allocation Pin
#3, Sedect 125 for AEK AUD D903VT
» #] AEKAUD D9O3VT List fsize=1

' (5] "Engine Sound Simulster for AVAS - Test Aplication 1%

"us 1250

= Enablel Enable2 Ensble3 Enabled B
M 0 ToBeDefined o o 1 0

Gj Application Configuration - 7 2=
AEK-AUD-DO0IV1 Companent RLA =T |&e~&E-
AEK-AUD-DIOIVT driver configuration.

Diriver Settings

AEK-AUD-DSO3VT Audie amplifier board to works requires the follewing mandatory configuration settings:

- 125 and 12C peripherals
- 4“Enable” pins properly setted

Mote: all other pins will allocate automatically. If them not need for the scope of user appli

, they have to be deallocat:

Allocation Fin

Sedect 125 for AEX AUD DSOSV

~ Bws (wsoo

AEK AUD DS03VT L

2

Double click on the newly added element to configure the I12C interface.

The I?C configuration window opens.

page 44/60

http://www.arrow.com

m UM2719

How to create a simple AEK-AUD-D903V1 application

Step 6. Select the I2C HW and the address for the power amplifier derived from a combination of enable pins.

To create a STEREO version, you need to assign two different addresses for the two elements so that
you can communicate with each power amplifier independently.

Figure 40. AEK-AUD-D903V1 I?)C configuration

1. 12C HW selection
2. Enable pin configuration
3. Confirm configuration

|5 *Engine Sound Simultorfor AVAS - TestApplcaton £ =5
oy Application Configuration r31 - GG
AEK-AUD-D903V1 Component RLA g e~~~
AEK-AUD-DI03V1 driver configuration.
AEK_FDAS03 [0]
Select 12C for FDAS03
Dﬂlzc llZCHW “| Driven By Interrupt ~| Timeout | 800 Number of SW 12C 1

Select Enables pins for FDA903

Select enables pin according to the table below.

Table 1.
Enable 1| Enable 2 | Enable 3 | Enable 4
Amplifier ON address 1 = "1110000 1] 1 1] 0
Amplifier ON address 2 = "1110001" 1 1 0 0
Amplifier ON address 3 = "1110010° 0 0 1 0
Amplifier ON address 4 = "1110011" 0 1 1 0
Ampiifier ON address 5 = "1110100° 0 1 0 1
Amplifier ON address 6 ="1110101" 1 1 0 1
Amplifier ON address 7 = 1110110 o 0 1 1
Ampiifier ON address 8 = "1110111° 0 1 1 1
Enablel |0 =
Enable2 0 ~
Enabled _‘I >
Enabled 0 ~

Step 7. Click the [Allocation] button below the AEK-AUD-D903V1 list and click [OK] in the confirmation
window.
This operation delegates automatic pin allocation to STSW-AUTODEVKIT. If the system warns you that
the selected I?S (DSPI) port is not available, restart from step 3 and select another I2S port or another
I2S WS.

UM2719 - Rev 3 page 45/60
Downloaded from Arrow.com.

https://www.st.com/autodevkitsw
http://www.arrow.com

UM2719

How to create a simple AEK-AUD-D903V1 application

3

Step 8. Click on the PinMap editor icon to check that the twelve required pins have been allocated
appropriately.
— 128 SCL (pin 24 — PG11)
— 125 SDA1 (pin 48 — PD5)
— 128 WS (pin 29 — PB11)
— 12S CR (pin 26 — PD11), not used in this application
— I*)C SCL (pin 32 — PB8)
— |>)C SDA (pin 31 — PB9)
— 4 GPIO pins for Enable
- 1 GPIO pin for Hardware Mute
— 1 GPIO pin for CDDIAG, not used in this application

Figure 41. PinMap editor

N

. PinMap editor icon
57 "Engine Sound Simulator for AVAS - Test Application m s3 = 0 [Commontasks 5 € Projec

- Starter actions
How to start with SPC5Studie

@ Create new SPCS applicati
a Import samples from appl

Editors for ‘Engine Sound Simulat
Here are the available editors on th

=z
2
e
i|
g
>

| Tr PIN_AEK_AUD_DS03VIBoard0.)

- Ir PIN_AEK_ALD D903V 1Boardd

Bl 400 A VDD HY_10_MAIN

@ SPC582_1M MCU wizard
PIN_AEK_AUD_D203V1B0ard0_J10 12550

| o

* VDD_WV " -

<D PIN_AEK_AUD_DI03V1808rd0_I10_EN2_E @ Einfiap eciicd o
| I
| 4

40_10_EN3_EN3_GPIO36 T I
|

4 PORST
CDDIAG_CDDIAG_GPIO34 T (ISR TESTMODE O SPC582B TM clock tree
J10_MUTE_MUTE_GPIO33 <O |ISEN
L7
L :_ 41| 0 SPC3828 1M board view
L0 | |33 |
vDD_v T [Em B8N T VDD_HV_0SC Code centric actions
WOD_HV_IO_MAIN T [E12 | T L Actions to handle code generation
[4 BxmaL
34 | & vS5_HV_0SC Generate application code
LTS | T VDD_HV_IO_MAIN ovenwriting all previous co
L1 | ™ voo_Lv

‘ Compile your applicatien.

o e
4 [N
i+ 2
4 [mm

[23]
C [
4 B
4 [(wzmEn
9 (.

¢ -
5

L - 3
> 1 — Execute and debug your g
2288 4 JZEg &% ﬂ
2 T
2277 % 2838 <4
zzsi 3 2°2g 8% ﬁ Clean generated fles.
it B OE JF Oe
£g>% £ £ 3¢ §3
_—— o B
£ S %8 g
§ 5 = 2% ¥

Step 9. Close the PinMap Editor and save the application.

Step 10. Generate and build the application using the appropriate icons in SPC5-STUDIO.

The project folder will be populated with new files, including main . c and the components folder with
AEK-AUD-D903V1 and sound drivers.

Step 11. Before starting coding, insert the user freegcc.1ld and sounddb. s files prepared previously.

UM2719 - Rev 3 page 46/60
Downloaded from Arrow.com.

http://www.arrow.com

3

UM2719
How to create a simple AEK-AUD-D903V1 application

Step 12. Open the main. c file and include AEK-AUD-D903V1 and sound files, and define the required

UM2719 - Rev 3
Downloaded from Arrow.com.

constants and variables.

#include "components.h"
#include "sound.h"
#include "AEK-AUD-D903V1.h"

/*************** Variables Section ***************/

extern uint32 t* engine_startl;

/* These variables are defined in the file sounddb.s,
thus it is necessary to declare them as extern */

intl6 t* wavfileBeginPtr; //pointer to wave file initial point
intl6 t* wavfileEndPtr; //pointer to wave file final point
intl6 t* wavfilePtr; //pointer to wave file current position

uint32 t volume = 1;

/* This variable is defined for the Playsound function.

There is a volume threshold under which the Open Load in Play Detection Test is not
valid.

Thus, if you perform this Test, make sure to increase the volume until you overcome
this threshold */

/************* end Variables Section *************/

page 47/60

http://www.arrow.com

UM2719
How to create a simple AEK-AUD-D903V1 application

Step 13. Place the following functions inside main () :

UM2719 - Rev 3
Downloaded from Arrow.com.

int main(void)
{
componentsInit () ;
/* This function initializes all the imported components. It is present in the
generated file. */
irgIsrEnable(); /* This function deals with interrupt management */
initWaveFile (&¢engine startl, 6);
/*This function takes in input the starting address of the first WAVE file and the
number of files yow want to upload */
AEK_903D_Init (AEK_AUD D903V1_ DEVO) ;
/* This function initializes the I2C and I2S peripherals and sets the enable pins
chosen during the configuration.
In the STEREO case, you would need to duplicate this function for the second device
called AEK AUD D903Vl DEV1. */
AEK_903D_SetDefaultRegisters (AEK AUD D903V1 DEVO);
/* This function sets the register to the default state. In the STEREO case,
you would need to duplicate this function for the second device called
AEK_AUD D903V1 DEV1.
AEK_903D_SelectOverCurrentProtectionLevel (AEK AUD D903V1 DEVO,
IB11 OVER CURRENT PROTECTION 4A);
/* This function selects the current protection level from four possible values:
47, 6A, 8A, and 11A.
The protection circuit will trigger as soon as the chosen threshold is exceeded.
Increasing the volume, you could end up triggering the current protection circuit.
Clearly, lower the threshold (4A), higher the protection triggering probability.
In the STEREO case, you would need to duplicate this function for the second device
called AEK-AUD-D903V1 DEV1. */
AEK_903D_Play (AEK_AUD D903V1_DEVO);
/*This function turns on the PWM and puts in PLAY state the amplifier.
In the STEREO case, you would need to duplicate this function for the second device
called AEK AUD D903Vl DEV1. */
wavfilePtr = wavfileBeginPtr = getStartWavFile(0); // set the start address of the
first wave file
wavfileEndPtr = getEndWavFile (0); // set the end address of the first wave file/*
Application main infinite loop. */for (; ;)
{
playSound (volume, userFunction);
/* This function allows to play the samples generated with the function pointed by
‘userFunction’ .
In the STEREO case, you would need to use the playSoundStereo() .*/
AEK_903D_Diagnostic (AEK AUD D903V1 DEVO);
/* This function updates the FDA903 Errors structure with the information contained
in the DB registers.
In the STEREO case, you would need to duplicate this function for the second device
called AEK AUD D903Vl DEV1. */
AEK_903D_TriggerOpenLoadInPlayDetection (AEK AUD D903V1 DEVO) ;
/* This function triggers the Open Load in Play Detection.
In the STEREO case, you would need to duplicate this function for the second device
called AEK AUD D903Vl DEV1. */
AEK_903D_CheckOpenLoadInPlayDetection (AEK AUD D903V1 DEVO) ;
/* This function updates the FDA903 Errors structure with the information inside
the DBl register.
In the STEREO case, you would need to duplicate this function for the second device
called AEK AUD D903Vl DEV1. */
}
}

page 48/60

http://www.arrow.com

m UM2719

Available demos for AEK-AUD-D903V1

Step 14. Declare the function uint32 t userFunction (void); inthe header file.
You can now write the following code between the variables section and the main () function.

/* In case of multiple wave files, these variables will be re-assigned with new
addresses using the same above functions with different parameters, e.g.
getStartWavFile (1); */
uint32 t userFunction ()
{

uintlé t sampleWav; // sample from wave file to be processed

int32 t sampleToPlay = 0;

if (wavfilePtr > wavfileEndPtr)
// if we reach the end of the file we restart from the initial address

{

wavfilePtr = wavfileBeginPtr;
}
sampleWav = (*wavfilePtr << 8) | ((*wavfilePtr >> 8) & OxFF);
// swap endianness
sampleToPlay = (int32 t)sampleWav;
// place the sample in a 32-bit format
wavfilePtr++;
//pointer to the next wave file sample
return sampleToPlay;

}

Step 15. Save, generate and compile the application.

Step 16. Open the BoardView Editor provided by STSW-AUTODEVKIT.

Step 17. This provides a graphical point-to-point guide on how to wire the boards.

Step 18. Connect the AEK-MCU-C1MLIT1 to a USB port on your PC using a mini-USB to USB cable.

Step 19. Launch SPC5-UDESTK-SW and open the debug.wsx file in the AEK_AUD_D903V1 — Application /
UDE folder.

Step 20. Run and debug your code.

7.2 Available demos for AEK-AUD-D903V1

There are eight different demos with specific features provided with the audio component:

SPC582Bxx_RLA AEK-AUD-D903V1 - Test Application

SPC582Bxx_RLA AEK-AUD-D903V1 - Mono audio and Diagnostic - Test Application
SPC582Bxx_RLA AEK-AUD-D903V1 - Stereo audio and Diagnostic - Test Application
SPC582Bxx_RLA AEK-AUD-D903V1 - I>C Software Mono audio - Test Application

SPC582Bxx_RLA AEK-AUD-D903V1 - Engine Sound Simulator Test Application

SPC58ECxx_RLA AEK-AUD-D903V1 - I2C Software Mono audio - Test Application for SPC58EC-DISP
SPC58ECxx_RLA AEK-AUD-D903V1 - Mono audio - Test Application for SPC58EC-DISP
SPC584Bxx_RLA AEK-AUD-D903V1 - Mono audio - Test Application for SPC584B-DIS

© N ORE N =

Note: More demos may become available with new AutoDevKit releases.

7.21 How to upload the demos for AEK-AUD-D903V1
Follow the procedure below to import the demos into SPC5-STUDIO.

Step 1. Select [Import samples from application library] from the Common tasks pane.
An Import application Wizard appears.

UM2719 - Rev 3 page 49/60
Downloaded from Arrow.com.

https://www.st.com/autodevkitsw
https://www.st.com/en/product/aek-mcu-c1mlit1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
https://www.st.com/en/product/spc5-udestk?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2719
http://www.arrow.com

3

UM2719

Available demos for AEK-AUD-D903V1

UM2719 - Rev 3

Step 2.

In the Import application Wizard, insert the appropriate product family details.

Figure 42. SPC5-STUDIO Import application Wizard

1. Import samples task button

2. Product family selection panel
B SPCSStudia Wizard

SPCS5tudia Wizard
mpedt Application(s) freem SPCHStudic Apphoatson template librany.

Ly sPcsstudio Import application Wizard

—

Step 1:

Select & family
|SPCS8

Select & produdt ine
9 [CHORUSTM:-Line

Select & device
| AN deaces

Select an evaluation board:

%y Common tasks 51 ﬂ'mm &

* Starter acthons
How bo stat with SPC55tude

@ Create new SPC3 application

@ Impot samples from application Mrary o

Editors for "AEK_AUD_ D903V - Application’

Here are the semlable eddort on the selectad
applcation

@ SPCSA2 1M BACU weizand
0 PanbAap edetor

‘ SPCSAIB 1M clock tres

. SPCS82E 1M board view

Codo contric action
Actions to handle code genesation, build and del

Generate spplication code,
owenaniting oll preaous content.

‘ Compile your application,

6 Execute and debug your application.

Downloaded from Arrow.com.

page 50/60

http://www.arrow.com

m UM2719

Available demos for AEK-AUD-D903V1

Step 3. Select the desired application from the library.

Figure 43. SPC5-STUDIO application library

1. application selector
2. confirmation buttons

Lyy sPcsstudio Import application Wizard
Step 2:
Template Bbrary for selected lines / evaluation boards.
Salect your search paramaters:
Board Drervers Lale L
O SPOE Dis O PAL 0 OSLes
L} Serial) FreeRTOS
O RQ
O BRQ
o P
0 5TM
i L
DChMuwwnmpll application: | o - o | B E
Applcation Name Diescription Dievices Board Dirivvers oS~
[SPCsadien RLA PWM-ICU Teut Applicat... Test spplication for the SPCS82Bex crested wsing the .. SPCIJBSOEY .. SPCSEZE .. PALICUP. OfSlen
[sPCsadBun LA PIT Test Application for.. Test spplicatson for the SPC582B: created using the .. SPCSS2BS0ET .. SPCSE2E.. PALPIT O5less
[0 SPCS83Ba RLA LIM Test Application for.. Test application fior the SPC384Bu created wsing the .. SPCI2BG0EY .. SPCSE2E... PALLINSe. Ofles
[SPCsaiBsx LA IRC Test Apphcation fo.. Test application for the SPCS82Bex crested using the ... SPCSEJBBEY .. SPCSEZB .. IRQ OSless
[sPCsaiie FLA 125 Test Applicatson for .. Test application for the SPC582Bxx created using the ... SPCSSIBS0EY .. SPCSEZB.. PALLS OSiLesy
[SPCSidfhor RLA I2C Test Application for.. Test application for the SPCSA2Exx created using the ... SPCSIIBG0EY .. SPCSEZE.. PALI2C O5less
[SPCS&MBux PLA FreeRTOS SERIAL Test A.. Test soplicetson for the SPCS82Bw crested wsing the ... SPCSE2B60E1 .. SPCSH2E .. Sevial il
€ »
"I’ AT
\ﬁ_,l « Back hoent = Frarzh Cancel
7.2.2 Mono audio — Test Application (SPC584Bxx and SPC58ECxx)

This demo plays an audio wave file stored in memory.

The main APIs in this demo are:

. AEK_903D_Init: initializes the I*C and 12S interface

. initWaveFile: initializes the structure that contains the addresses used to identify the beginning and end
of each wave file

. getStartWavFile: computes the address pointing to the first audio sample of a given wave file

. GetEndWavFile: computes the address pointing to the last audio sample of a given WAV file

. playSound: plays the samples provided through a pointer to function able to generate audio samples

7.23 I>’C Software Mono audio — Test Application (SPC582Bxx and SPC58ECxx)

This demo is like the Mono audio — Test Application, but the I?C protocol is implemented via software thanks to
the allocation of two GPIO pins suitably configured by AutoDevKit itself.

7.24 Mono audio and Diagnostic - Test Application (SPC582Bxx)

This demo shows how to reproduce an audio wave file and how to perform system diagnostics during the PLAY
and MUTE states, using the button on the microcontroller board to switch between the two states. The audio
reproduction functions are the same as those in the Mono audio - Test Application, so the functions described
below relate to diagnostics only.

. AEK 903D TriggerOpenLoadInPlayDetection: triggers the Open Load in Play Detection test
. AEK 903D_CheckOpenLoadInPlayDetection: verifies the result of the Open Load in Play Detection test

UM2719 - Rev 3 page 51/60
Downloaded from Arrow.com.

https://www.st.com/autodevkit
http://www.arrow.com

m UM2719

Available demos for AEK-AUD-D903V1

. AEK 903D CheckOffsetCurrent: verifies the result of the Output Current Offset Detection test

. AEK 903D CheckOutputVoltageOffsetDetector: verifies the result of the Output Voltage Offset
Detection test

. AEK 903D CheckInputOffsetDetector: verifies the result of the Input Offset Detection test

. AEK 903D_Diagnostic: reads the DB register and reports if a failure condition has
occurred (SHORT2VCC, SHORT2GND, OVERCURRENT, UNDERVOLTAGE, OVERTEMPERATURE
OVERVOLTAGE)

. AEK 903D Mute: changes from PLAY to MUTE state

. AEK 903D_StartDCDiag: changes from MUTE to DC Diag state and to perform the DC diagnostic

. AEK 903D _CheckDCDiagnostic: verifies the result of the DC diagnostic.

The red LED on the Discovery control board provides load (speaker) connection status resulting from the Open
Load in Play Detection test during PLAY state operation and the DC diagnostic in MUTE:

. The red LED goes on when an open load fault is detected, and the tests performed are self-validated.

. The red LED stays off when the load is correctly connected, or the tests cannot be self-validated.

7.2.5 Stereo audio and Diagnostic - Test Application (SPC582Bxx)

This demo is the stereo version of the Mono audio and Diagnostic application, in which the functions used are
duplicated to perform the same diagnostics on both boards (i.e., audio channels).

. The red LED communicate the load status of the first board
. The yellow LED communicates the load status of the second board.

7.2.6 Engine Sound Simulator - Test Application for AVAS purpose (SPC582Bxx)

The demo offers an entry-level AVAS implementation using the AEK-AUD-D903V1 AutoDevKit component. The
application uses an algorithm to simulate the sound of an internal combustion engine during acceleration and
deceleration.

The application allows you to:

1. reproduce a WAV file for a car engine sound recorded in Neutral

2. simulate engine ignition and shutdown sounds through a user button on the control board
3. simulate engine noise during acceleration and deceleration

4. change the volume and rpm values through two potentiometers

The acceleration and deceleration phases are simulated by increasing and decreasing the number of samples
reproduced. For example, consider that for an engine idling in Neutral at 800rpm, its sound may be represented
by a sinusoidal wave with period T. We simulate the acceleration phase by decreasing the period (increasing
signal frequency), as shown in the following figure.

Figure 44. Audio sample frequency modulation

audio samples
T=PERIOD
800 rpm
4
5T
2200 rpm
2
3l
3400 rpm
UM2719 - Rev 3 page 52/60

Downloaded from Arrow.com.

http://www.arrow.com

m UM2719

Available demos for AEK-AUD-D903V1

The samples in the MCU memory are sampled at 44,100 Hz frequency, and frequency modulation is simulated by
varying the number of samples to be played. The following image shows the algorithm operating principle.

Figure 45. Varying sample numbers to simulate frequency modulation

n = number of samples audio samples
processed
4, o 4,
5 we are skipping one 5
i —‘I sample each 4 samples r—]
’-) § p|ayed oo | et I Py “\ oy
=l toy £ i g i ' oY
i L ¢ L] R i X ;o ! ‘\ f’ \ [
{ y & | $ v PR — S A R S SN SN N N 2200 rpm
i . 3y [1 ¥ § vy v 1 4
* . 1 y} Lo | v |
LY + " ‘ L h g % vy \
- ! - A ~ ~ ’
g n g n
.3 3
) i Il AU T A A W A T o I
:Iz‘ £y £y A KNMARAARNLNA
; § i % ANANARANANANAR A
t‘ “ 5 | g = 1 rr jll by rr jll =7 rr j'| = rr 51-.._| 3400 rpm
_ﬁ 1Y A L ; i. ! { JJ i. ! { JJ i. ! \ ‘J i. ! | JJ
h“ “' \vr W 1% W 1% W i W ¥

The userFunction () used in this application has the following characteristics:

1. As soon as the application is started and the ignition command is given, the initial pointer is assigned to the

first sample to be played, while the final address is assigned to the last sample.

At the end of the first cycle (i.e., when the pointer to the current sample is the same as the pointer of the last
sample in the audio file for the first time), the algorithm no longer restarts from the first sample, but 90,000

samples after the first. This effectively simulates the effect of engine start and engine idle with a few seconds
of recording.

uint32 t userFunction ()
{
if (acc_first time)
{
wavfilePtr = wavfileBeginPtr = getStartWavFile (0);
wavfileEndPtr = getEndWavFile (0) ;
acc first time = false;
}
if (wavfilePtr > wavfileEndPtr)
wavfilePtr = wavfileBeginPtr + 90000;
int32_t amplitude = 0;
uintl6é t sampleWav;

sampleWav = (*wavfilePtr << 8) | ((*wavfilePtr >> 8) & OxFF);
//raw sample, change endianness
amplitude = (int32 t)sampleWav;

The acceleration and deceleration is obtained through voltage variation from a potentiometer. This external input
is converted by the microcontroller SARADC, and its value is stored in an rpm variable. The higher the value of
rpm, the greater the number of samples to be skipped.

This method, shown in the code snippet below, can therefore simulate variations in engine rpm sounds in
acceleration and deceleration.

UM2719 - Rev 3 page 53/60
Downloaded from Arrow.com.

http://www.arrow.com

UM2719

Available demos for AEK-AUD-D903V1

3

UM2719 - Rev 3 page 54/60

Downloaded from —

http://www.arrow.com

m UM2719

Revision history

Table 11. Document revision history

[EmfEme]

19-May-2020 1 Initial release.

Added Section 4 AEK-AUD-C1D9031 - single board AVAS solution, Section 4.1 Hardware overview,
Section 4.2 Software overview and Section 4.3 FCC and IC disclaimer.

Updated Section 1 AVAS system hardware, Section 3 AEK-AUD-D903V1 evaluation board for
15-Apr-2021 3 automotive power amplifier, Section 3.2 FDA903D I2S protocol Section 3.3 FDA903D I2C protocol,
Section 3.3.1 I?C protocol writing procedure and Section 3.6 Stereo mode.

17-Feb-2021 2

UM2719 - Rev 3 page 55/60
Downloaded from Arrow.com.

http://www.arrow.com

Lys oo
Contents

1 AVAS system hardwarec..iiiii ittt raaaaaiaiaasannnnnnnnnnns 2

2 AEK-MCU-C1MLIT1 Discovery board audio supportc.ccoiiiiiiiininnnnnnn 3

2.1 I?S bus interface on the SPC582B60E1 microcontroller. 4

2141 I2S protocol details 4

2.1.2 I2S emulation on DSPI for SPC5 MCU control of FDA903D amplifier 4

2.2 I*C bus interface on the SPC582B60E1 microcontroller 6

3 AEK-AUD-D903V1 evaluation board for automotive power amplifier 8

3.1 FDA903D finite state machine. 8

311 FDA903D FSM state descriptions 10

3.2 FDAOSO3D I2S protoCol.o 10

3.3 FDAQOSBD I2C ProtoCOlottt 11

3.31 [2C protocol writing procedure 12

3.3.2 I2C protocol: reading procedure. 14

3.33 IBregisters in 12C 15

3.34 DB registers in I2C. 16

3.3.5 DY 17

3.4 Potentiometers 17

3.5 Successive approximation analog-to-digital converter (SARADC) 18

3.6 Stereo mMOde 18

4 AEK-AUD-C1D9031 - single board AVAS solution...............cccoiiiiiiiinnnnnnn. 21

41 Hardware OVEIVIEW e e e 21

4.2 SOftware OVEIVIBW.o e 22

4.3 FCC and IC disclaimer 22

5 AVAS system software.c.coiiiiiiiiiiiii it it ittt i a e 23

5.1 SPC5-STUDIO . . e 23

5.2 STSW-AUTODEVKIT . . e e e e e e 23

5.3 AEK-AUD-D903V1.cand sound.C AriVErSt 23

5.3.1 AEK-AUD-DO03VI.C ANV . . o o 23

5.3.2 SOUNd.C AESCriPtiONo 28

6 Howtoplay an audio WAV ilec.cceiiiii i i iiiiinaaanas 30

UM2719 - Rev 3 page 56/60

Downloaded from Arrow.com.

http://www.arrow.com

Lys oo
6.1 SPC582BB0ET MEMOIY Map. . o ottt et et e et e e e e e e 30

6.2 Uploading audio WAV file 30

7 AEK-AUD-D903V1 sample applications. ... i ieaaaens 43
71 How to create a simple AEK-AUD-D903V1 application 43

7.2 Available demos for AEK-AUD-DO03V 1 49

7.21 How to upload the demos for AEK-AUD-DO03V1 49

7.2.2 Mono audio — Test Application (SPC584Bxx and SPC58ECXX).o oo ... 51

7.23 I2C Software Mono audio — Test Application (SPC582Bxx and SPC58ECxx) 51

7.24 Mono audio and Diagnostic - Test Application (SPC582Bxx). 51

7.2.5 Stereo audio and Diagnostic - Test Application (SPC582Bxx). 52

7.2.6 Engine Sound Simulator - Test Application for AVAS purpose (SPC582Bxx). 52

ReVISion RiStoryot i it 55
UM2719 - Rev 3 page 57/60

Downloaded from Arrow.com.

http://www.arrow.com

m UM2719

List of figures

List of figures

Figure 1. AVAS system AutoDevKit control board and audioboard 1
Figure 2. AVAS demo hardware and CONNECLIONS 2
Figure 3. AEK-MCU-C1MLIT1 Discovery board components 3
Figure 4. Standard I2S data format 5
Figure 5. Connector CN10 pins for DSPIOo 5
Figure 6. I2C typical data format 6
Figure 7. Connector CN10 pins dedicated to I12C. 7
Figure 8. AEK-AUD-D903V1 main components and interfaces. 8
Figure 9. FDA903D state machine 9
Figure 10. I2S (DSPI) connection in AEK-AUD-DO03V1 11
Figure 11. I2C connection in AEK-AUD-DO03V 1 12
Figure 12. ENABLE pin locations on the connector. 13
Figure 13. Read operation packet. 14
Figure 14. Read operationrequired data 14
Figure 15. Read operation with repeated start condition 14
Figure 16. Linear potentiometer circuit 17
Figure 17. Potentiometer connections. e e 18
Figure 18. AVAS system fortwo stereo sound 19
Figure 19. AEK-MCU-C1IMLIT1 seenonboth sides e e e e 20
Figure 20. AEK-AUD-C1D9031 COMPONENES o oot e e e e e e e e e e e 21
Figure 21. API AEK_903D_Play(AEK_AUD_DO903VO0). oo e e 25
Figure 22. 128 Test Pin configuration APl 25
Figure 23. playSound APl 29
Figure 24. Project folder foraudio files 31
Figure 25. Old flash block memory allocation. 32
Figure 26. New flash block memory allocation 32
Figure 27. sounddb definition. 33
Figure 28. sounddb.s audio file declarations 34
Figure 29. Build output before adding sounddb.s component 35
Figure 30. Build output after adding sounddb.s component 35
Figure 31. Open hex file with editor 36
Figure 32. hexfile data 37
Figure 33. Starting point of audio contentin hexfile 38
Figure 34. sounddb.s file with audio sample file paths removed 39
Figure 35. SPC5-UDESTK-SW software with loaderwindow e 40
Figure 36. FLASH/OTP Memory Programming ToOlo e e 41
Figure 37. UDE Flash erase tool 41
Figure 38. SPC5-STUDIO adding audio project Componentsttt e e et et 43
Figure 39. AEK-AUD-D903V1 component configuration 44
Figure 40. AEK-AUD-D903V1 I2C configuration 45
Figure 41. PinMap editor. 46
Figure 42. SPC5-STUDIO Import application Wizard e e 50
Figure 43. SPC5-STUDIO application library 51
Figure 44. Audio sample frequency modulation 52
Figure 45. Varying sample numbers to simulate frequency modulation 53
UM2719 - Rev 3 page 58/60

Downloaded from Arrow.com.

http://www.arrow.com

IS72 UM2719
List of tables
List of tables
Table 1. IPC device address combinations 9
Table 2. Legacy mode Enable configurations. 10
Table 3. IPC address 1 selection. 12
Table 4. Subaddress association 13
Table 5. IBregister map 15
Table 6. DB register map. 16
Table 7. Comparison of pin settings foraddresses 1and 3 20
Table 8. FDA903D IB8 register description 24
Table 9. list of APl functions in AEK-AUD-DO03V1.C. i e e e 26
Table 10. Flash memory map of SPC582B 30
Table 1. Document revision history 55
UM2719 - Rev 3 page 59/60

Downloaded from Arrow.com.

http://www.arrow.com

m UM2719

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics — All rights reserved

UM2719 - Rev 3 page 60/60

Downloaded from Arrow.com.

http://www.st.com/trademarks
http://www.arrow.com

	2 AEK-MCU-C1MLIT1 Discovery board audio support
	2.1 I²S bus interface on the SPC582B60E1 microcontroller
	2.1.1 I²S protocol details
	2.1.2 I²S emulation on DSPI for SPC5 MCU control of FDA903D amplifier

	2.2 I²C bus interface on the SPC582B60E1 microcontroller

	3 AEK-AUD-D903V1 evaluation board for automotive power amplifier
	3.1 FDA903D finite state machine
	3.1.1 FDA903D FSM state descriptions

	3.2 FDA903D I²S protocol
	3.3 FDA903D I²C protocol
	3.3.3 IB registers in I²C
	3.3.4 DB registers in I²C

	3.5 Successive approximation analog-to-digital converter (SARADC)
	3.6 Stereo mode

	4 AEK-AUD-C1D9031 - single board AVAS solution
	4.2 Software overview
	4.3 FCC and IC disclaimer

	5 AVAS system software
	5.1 SPC5-STUDIO
	5.2 STSW-AUTODEVKIT
	5.3 AEK-AUD-D903V1.c and sound.c drivers
	5.3.1 AEK-AUD-D903V1.c driver
	5.3.2 sound.c description

	6 How to play an audio WAV file
	6.1 SPC582B60E1 memory map
	6.2 Uploading audio WAV file

	7 AEK-AUD-D903V1 sample applications
	7.2 Available demos for AEK-AUD-D903V1
	7.2.1 How to upload the demos for AEK-AUD-D903V1

	Revision history

