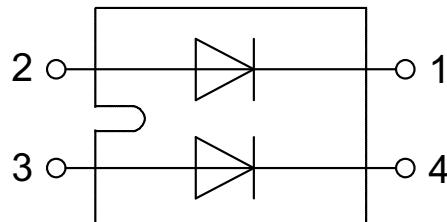


SiC Schottky Diode

$V_{RRM} = 650 \text{ V}$
 $I_{FAV} = 2 \times 80 \text{ A}$


Ultra fast switching
Zero reverse recovery

Part number
DCG160X650NA

Backside: isolated

 E72873

Features / Advantages:

- Ultra fast switching
- Zero reverse recovery
- Zero forward recovery
- Temperature independent switching behavior
- Positive temperature coefficient of forward voltage
- $T_{VJM} = 175^\circ\text{C}$

Applications:

- Solar inverter
- Uninterruptible power supply (UPS)
- Welding equipment
- Switched-mode power supplies
- Medical equipment
- High speed rectifier

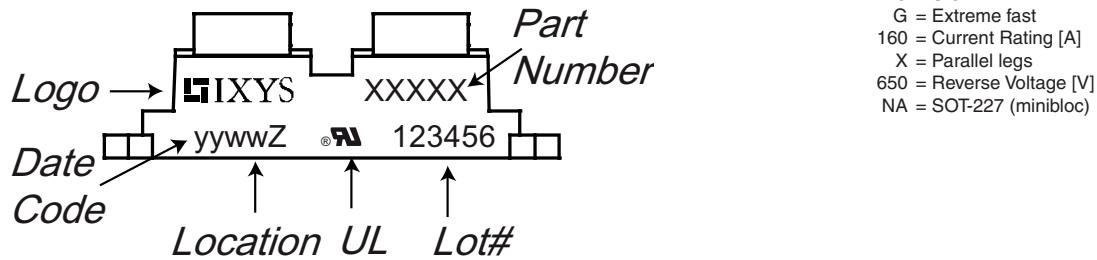
Package:

SOT-227B (minibloc)

- Isolation Voltage: 2500 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate with Aluminium nitride isolation for low thermal resistance
- Advanced power cycling

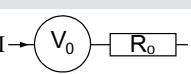
Disclaimer Notice

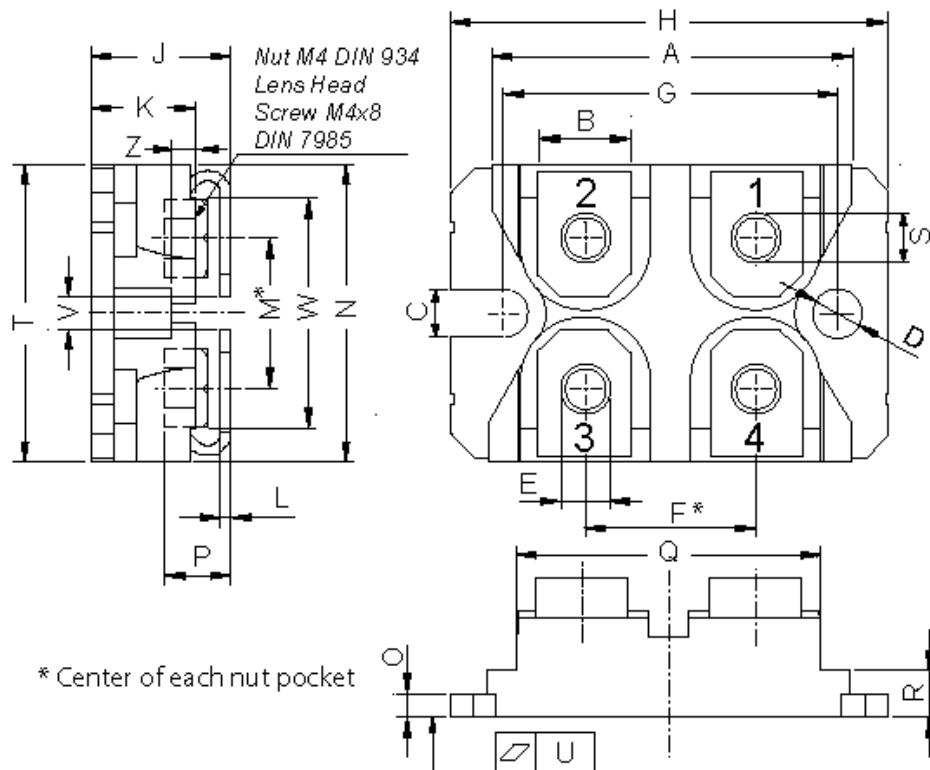
Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

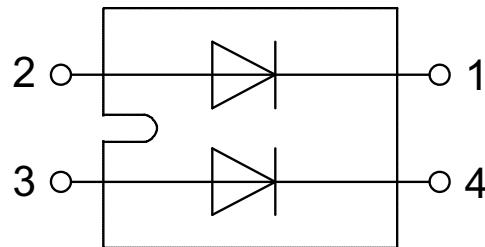

SiC Diode

Symbol	Definitions	Conditions	Ratings		
			min.	typ.	max.
V_{RSM}	max. non-repetitive reverse blocking voltage	$T_{VJ} = 25^\circ\text{C}$			650 V
V_{RRM}	max. repetitive reverse blocking voltage	$T_{VJ} = 25^\circ\text{C}$			650 V
I_R	reverse current	$V_R = V_{RRM}$ $T_{VJ} = 25^\circ\text{C}$ $T_{VJ} = 175^\circ\text{C}$	0.1 0.4	1.0 2.0	mA mA
V_F	forward voltage	$I_F = 50 \text{ A}$ $I_F = 100 \text{ A}$	$T_{VJ} = 25^\circ\text{C}$	1.25 1.55	V V
		$I_F = 50 \text{ A}$ $I_F = 100 \text{ A}$	$T_{VJ} = 175^\circ\text{C}$	1.35 1.9	V V
I_{FAV}	average forward current	$T_C = 75^\circ\text{C}$ $T_C = 100^\circ\text{C}$ d = 0.5	rectangular, $T_{VJ} = 175^\circ\text{C}$		80 A 67 A
I_{F25}	forward current	based on typ. V_{F0} and r_F	$T_C = 25^\circ\text{C}$		134 A
I_{F80}			$T_C = 80^\circ\text{C}$		101 A
I_{F100}			$T_C = 100^\circ\text{C}$		87 A
I_{FSM}	max forward surge current	$t = 10 \text{ ms, half sine (50 Hz)}$ $t_P = 10 \mu\text{s, pulse; } V_R = 0\text{V}$	$T_{VJ} = 25^\circ\text{C}$		650 A 3200 A
V_{F0}	threshold voltage		$T_{VJ} = 125^\circ\text{C}$ $T_{VJ} = 175^\circ\text{C}$	0.83 0.77	V V
r_F	slope resistance	for power loss calculation	$T_{VJ} = 125^\circ\text{C}$ $T_{VJ} = 175^\circ\text{C}$	9.5 11.3	mΩ mΩ
Q_c	total capacitive charge	$V_R = 400 \text{ V, } I_F = 100\text{A}$	$T_{VJ} = 25^\circ\text{C}$	220	nC
C	total capacitance	$V_R = 0 \text{ V}$ $V_R = 200 \text{ V}$ $V_R = 400 \text{ V}$	$f = 1 \text{ MHz; } T_{VJ} = 25^\circ\text{C}$	3950 400 360	pF pF pF
R_{thJC}	thermal resistance junction to case				0.49 K/W
R_{thJH}	thermal resistance junction to heatsink	with heatsink compound; IXYS test setup		0.62	K/W

Package Outlines SOT-227B (minibloc)			Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
I_{RMS}	<i>RMS current</i>	per terminal			100	A
T_{stg}	<i>storage temperature</i>		-40		150	°C
T_{op}	<i>operation temperature</i>		-40		150	°C
T_{VJ}	<i>virtual junction temperature</i>		-40		175	°C
Weight				30		g
M_D	<i>mounting torque</i> ¹⁾	screws to heatsink terminal connection screws			1.5 1.3	Nm Nm
d_{Spp} d_{Spb}	<i>creepage distance on surface</i>	terminal to terminal terminal to backside	10.5 8.5			mm mm
d_{App} d_{Appb}	<i>striking distance through air</i>	terminal to terminal terminal to backside	3.2 6.8			mm mm
V_{ISOL}	<i>isolation voltage</i>	$I_{ISOL} \leq 1 \text{ mA}$; 50/60 Hz	$t = 1 \text{ sec.}$ $t = 1 \text{ minute}$	3000 2500		V V
C_P	<i>coupling capacity per switch</i>	between shorted terminals of one diode and back side metallization		20		pF


¹⁾further information see application note IXAN0073 on
www.ixys.com/TechnicalSupport/appnotes.aspx (General / Isolation, Mounting, Soldering, Cooling)


Product Marking


Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	DCG160X650NA	DCG160X650NA	Tube	10	DCG160X650NA

Equivalent Circuits for Simulation *on die level

	$T_{VJ} = 125^\circ\text{C}$	$T_{VJ} = 175^\circ\text{C}$	
$V_{0\max}$	<i>threshold voltage</i>	0.83	0.77
$R_{0\max}$	<i>slope resistance</i> *	9.5	11.3
			mΩ

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches	
	min	max	min	max
A	31.50	31.88	1.240	1.255
B	7.80	8.20	0.307	0.323
C	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
E	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
H	37.80	38.23	1.488	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.74	0.84	0.029	0.033
M	12.50	13.10	0.492	0.516
N	25.15	25.42	0.990	1.001
O	1.95	2.13	0.077	0.084
P	4.95	6.20	0.195	0.244
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.167
S	4.55	4.85	0.179	0.191
T	24.59	25.25	0.968	0.994
U	-0.05	0.10	-0.002	0.004
V	3.20	5.50	0.126	0.217
W	19.81	21.08	0.780	0.830
Z	2.50	2.70	0.098	0.106

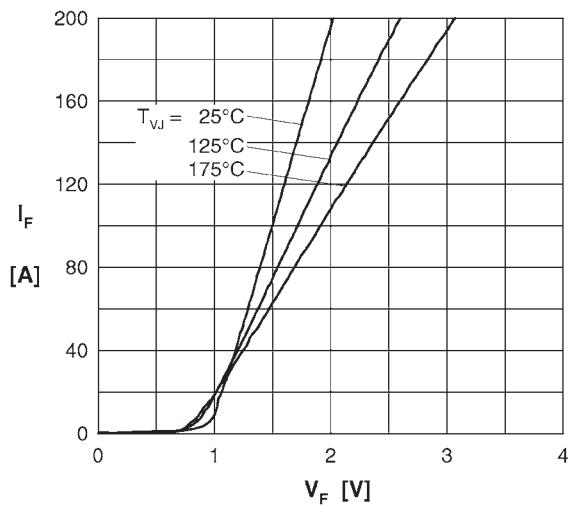

SiC Diode (per leg)

Fig. 1 Typ. forward characteristics

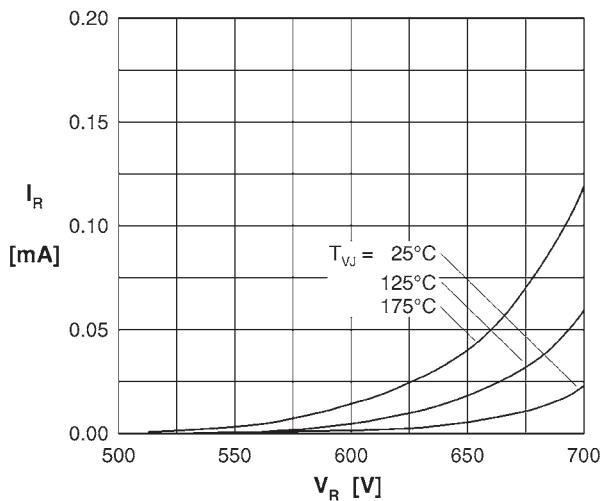


Fig. 2 Typ. reverse characteristics

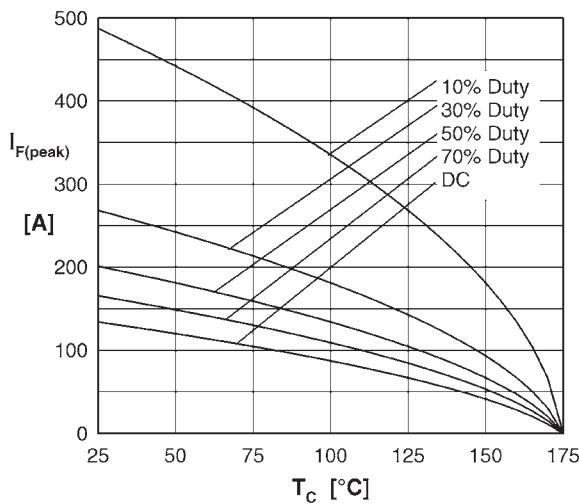


Fig. 3 Typ. current derating

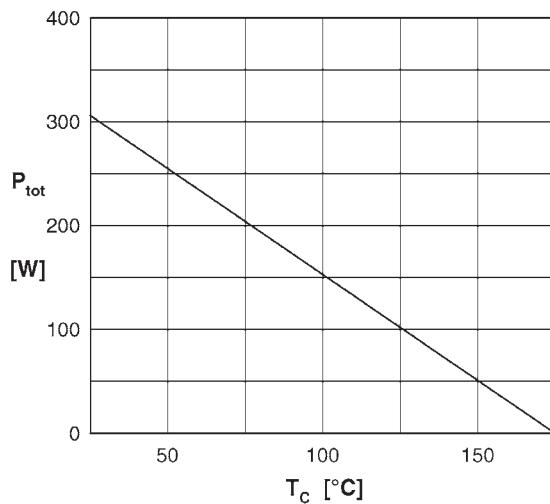


Fig. 4 Power derating

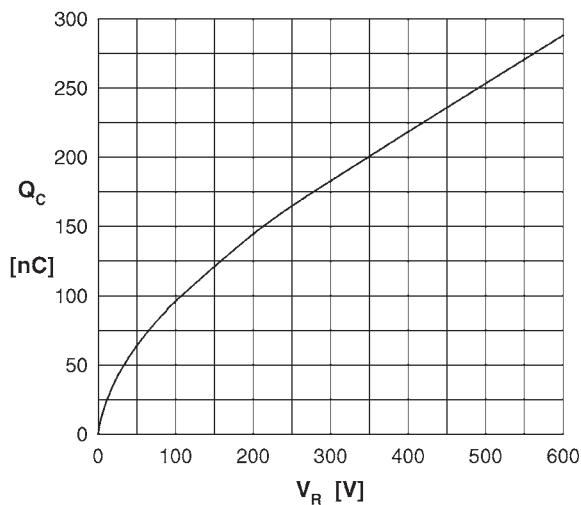


Fig. 5 Typ. recovery charge vs. reverse voltage

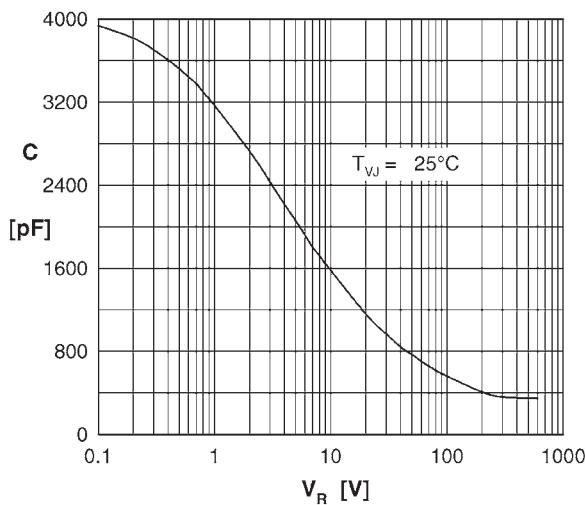


Fig. 6 Typ. junction capacitance vs. reverse Voltage

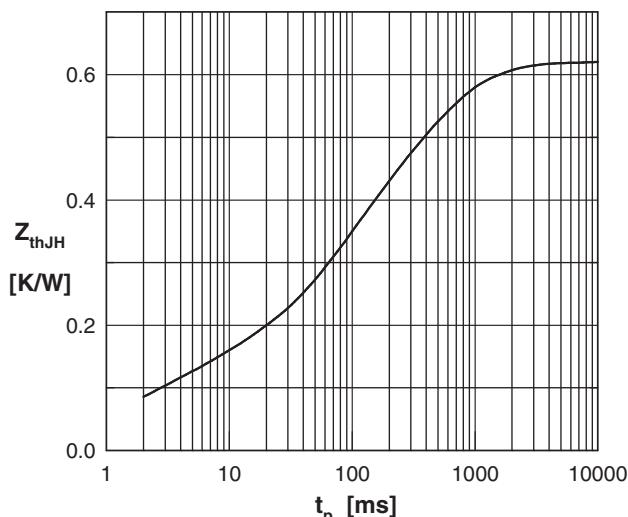

SiC Diode (per leg)

Fig. 7 Typ. transient thermal impedance