SiC431

www.vishay.com

3 V to 24 V Input, 24 A microBUCK[®] DC/DC Converter

DESCRIPTION

The SiC431 is a synchronous buck regulator with integrated high side and low side power MOSFETs. Its power stage is capable of supplying 24 A continuous current at up to 1 MHz switching frequency. This regulator produces an adjustable output voltage down to 0.6 V from 3 V to 24 V input rail to accommodate a variety of applications, including computing, consumer electronics, telecom, and industrial.

SiC431's architecture supports ultrafast transient response with minimum output capacitance and tight ripple regulation at very light load. The device is internally compensated and no external ESR network is required for loop stability purposes. The device also incorporates a power saving scheme that significantly increases light load efficiency.

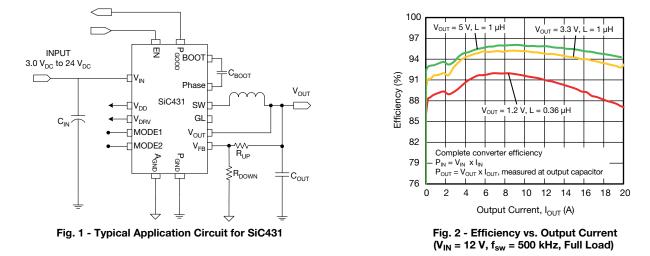
The regulator integrates a full protection feature set, including output over voltage protection (OVP), cycle by cycle over current protection (OCP) short circuit protection (SCP) and thermal shutdown (OTP). It also has UVLO and a user programmable soft start.

The SiC431 is available in lead (Pb)-free power enhanced MLP44-24L package in 4 mm x 4 mm dimension.

APPLICATIONS

- 5 V, 12 V, and 24 V input rail POLs
- · Desktop, notebooks, server, and industrial computing

TYPICAL APPLICATION CIRCUIT AND PACKAGE OPTIONS


- Industrial and automation
- consumer electronics

FEATURES

- Versatile
 - Operation from 3 V to 24 V input voltage - Adjustable output voltage down to 0.6 V

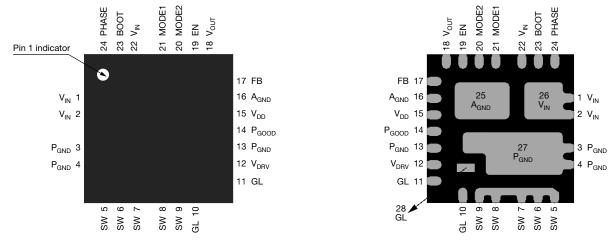
- COMPLIANT HALOGEN FREE
- Scalable solution 8 A (SiC438), 12 A (SiC437), and 24 A (SiC431)
- Output voltage tracking and sequencing with pre-bias start up
- ± 1 % output voltage accuracy from -40 °C to +125 °C
- Highly efficient
 - 97 % peak efficiency
 - 1 µA supply current at shutdown
 - 50 µA operating current, not switching
- Highly configurable
 - Four programmable switching frequencies available: 300 kHz, 500 kHz, 750 kHz, and 1 MHz
- Adjustable soft start and adjustable current limit
- Three modes of operation: forced continuous conduction, power save (SiC431B, SiC431D), or ultrasonic (SiC431A, SiC431C)
- Robust and reliable
 - Cycle-by-cycle current limit
 - Output overvoltage protection
 - Output undervoltage / short circuit protection with auto retry
 - Power good flag and over temperature protection
- Design tools
 - Supported by Vishay PowerCAD Online Design Simulation (www.vishay.com/power-ics/powercad-list/) Design Support Kit (www.vishay.com/ppg?74589)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

S18-0866-Rev. D, 27-Aug-2018

1

Document Number: 74589

For technical questions, contact: powerictechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT


ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

WISHAY www.vishay.com

Vishay Siliconix

PIN CONFIGURATION

PIN DESCRIP	PIN DESCRIPTION					
PIN NUMBER	SYMBOL	DESCRIPTION				
1, 2, 22, 26	V _{IN}	Input voltage				
3, 4, 13, 27	P _{GND}	Power signal return ground				
5 to 9	SW	Switching node signal; output inductor connection point				
10, 11, 28	GL	Low side power MOSFET gate signal				
12	V _{DRV}	Supply voltage for internal gate driver. Connect a 2.2 μ F decoupling capacitor to P _{GND}				
14	P _{GOOD}	Power good signal output; open drain				
15	V _{DD}	Supply voltage for internal logic. Connect a 1 µF decoupling capacitor to A _{GND}				
16, 25	A _{GND}	Analog signal return ground				
17	FB	Output voltage feedback pin; connect to V _{OUT} through a resistor divider network.				
18	V _{OUT}	Output voltage sense pin				
19	EN	Enable pin				
20	MODE2	Soft start and current limit selection; connect a resistor to V_{DD} or A_{GND} per Table 2				
21	MODE1	Operating mode and switching frequency selection; connect a resistor to V_{DD} or A_{GND} per Table 1				
23	BOOT	Bootstrap pin; connect a capacitor to PHASE pin for HS power MOSFET gate voltage supply				
24	PHASE	Switching node signal for bootstrap return path				

ORDERING INFORMATION							
PART NUMBER PART MARKING		MAXIMUM CURRENT	V _{DD} , V _{DRV} LIGHT LOAD MODE		OPERATING JUNCTION TEMPERATURE	PACKAGE	
SiC431AED-T1-GE3	SiC431A	Internal -		Ultrasonic			
SiC431BED-T1-GE3	SiC431B	24 A	Internal	Internal	Power saving	-40 °C to +125 °C	PowerPAK [®] MI P44-24I
SiC431CED-T1-GE3	SiC431C	24 A	External	Ultrasonic	-40 °C to +125 °C	PowerPAK® MLP44-24L	
SiC431DED-T1-GE3	SiC431D]	External	Power saving			

www.vishay.com

Vishay Siliconix

SiC431

ELECTRICAL PARAMETER	CONDITIONS	LIMITS	UNIT			
V _{IN}	Reference to P _{GND}	-0.3 to +25				
V _{OUT}	Reference to P _{GND}	-0.3 to +22				
V _{DD} / V _{DRV}	Reference to P _{GND}	-0.3 to +6				
SW / PHASE	Reference to P _{GND}	-0.3 to +25				
SW / PHASE (AC)	100 ns; reference to P _{GND}	-8 to +30	V			
BOOT	Reference to P _{GND}	-0.3 to +31	v			
BOOT to SW		-0.3 to +6				
A _{GND} to P _{GND}	-0.3 to +0.3					
EN	Reference to A _{GND}	-0.3 to +25				
All other pins	Reference to A _{GND}	-0.3 to +6				
Temperature						
Junction temperature	TJ	-40 to +150	<u></u> ℃			
Storage temperature	T _{STG}	-65 to +150	C			
Power Dissipation						
Junction-to-ambient thermal impedance ($R_{\theta JA}$)		16	°C/W			
Junction-to-case thermal impedance ($R_{\theta JC}$)		2	C/W			
Maximum power dissipation	Ambient temperature = 25 °C	7.75	W			
ESD Protection						
Electrostatic discharge protection	Human body model	4000	V			
Electrostatic discharge protection	Charged device model	1000	V			

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating/conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (all voltages referenced to A_{GND} , $P_{GND} = 0$ V)						
PARAMETER	MIN.	TYP.	MAX.	UNIT		
Input voltage (V _{IN}) (SiC431A, SiC431B)	4.5	-	24			
Input voltage (VIN) (SiC431C, SiC431D)	3	-	24			
Logic supply voltage, gate driver supply voltage (V _{DD} , V _{DRV}) (SiC431C, SiC431D)	4.5	5	5.5	V		
Enable (EN)	0	-	24			
Output voltage (V _{OUT})	0.6	-	0.9 x V _{IN} and < 20 V			
Temperature	<u>.</u>					
Recommended ambient temperature -40 to +105				*0		
Operating junction temperature -40 to +125				°C		

3

SHAY

SiC431

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Power Supplies				J			
V _{DD} supply	V _{DD}	V _{IN} = 6 V to 24 V (SiC431A, SiC431B)	4.75	5	5.25		
V _{DD} UVLO threshold, rising	V _{DD_UVLO}		3.3	3.6	3.9	V	
V _{DD} UVLO hysteresis	V _{DD_UVLO_HYST}		-	300	-	mV	
Maximum V _{DD} current		V _{IN} = 6 V to 24 V	3	-	-	mA	
V _{DRV} supply	V _{DRV}	$V_{IN} = 6 V \text{ to } 24 V (SiC431A, SiC431B)$	4.75	5	5.25	V	
Maximum V _{DRV} current	I _{DRV}	$V_{IN} = 6 V \text{ to } 24 V$	50	-	-	mA	
Input current		Non-switching, $V_{FB} > 0.6 V$	-	50	120	110 (
Shutdown current		$V_{\rm EN} = 0 V$	-	0.5	3	μA	
Controller and Timing	IN_SHDN	VEN - O V		0.0	0		
		T 25 °C	597	600	603		
Feedback voltage	V _{FB}	$T_J = 25 \text{ °C}$ $T_J = -40 \text{ °C to } +125 \text{ °C} (1)$	594	600	606	m/V	
V input higs ourront	I	$1j = -40^{\circ} + 123^{\circ} +$	-	2	-	nA	
V _{FB} input bias current	I _{FB}						
Minimum on-time	t _{ON_MIN} .		-	50	65	ns	
t _{on} accuracy			-10	-	10	%	
On-time range	t _{ON_RANGE}		65	-	2250	ns	
Minimum frequency, skip mode	f _{SW_MIN} .	Ultrasonic version (SiC431A, SiC431C)	20	-	30	kHz	
1 2 1		Power save version (SiC431B, SiC431D)	0	-	-		
Minimum off-time	t _{OFF_MIN} .		205	250	305	ns	
Power MOSFETs							
High side on resistance	R _{ON_HS}	V _{DBV} = 5 V, T₄ = 25 °C	-	6	-	mΩ	
Low side on resistance	R _{ON_LS}	$v_{DRV} = 5 v, T_A = 25 C$	-	2	-	1115.2	
Fault Protections							
Over current protection (inductor valley	current protection (inductor valley		- 00		- 20		
current)	I _{OCP}	T _J = -10 °C to +125 °C	-20	-	20	07	
Output OVP threshold	V _{OVP}	V with respect to 0.6 V reference	-	20	-	%	
Output UVP threshold	V _{UVP}	V_{FB} with respect to 0.6 V reference	-	-80	-		
	T _{OTP_RISING}	Rising temperature	-	150	-		
Over temperature protection	T _{OTP_HYST}	Hysteresis	-	25	-	°C	
Power Good							
	V _{FB_RISING_VTH_OV}	V _{FB} rising above 0.6 V reference	-	20	-		
Power good output threshold	VFB_FALLING_VTH_UV	V _{FB} falling below 0.6 V reference	-	-10	-	%	
Power good hysteresis	VFB_HYST		-	40	-	mV	
Power good on resistance	R _{ON PGOOD}		-	7.5	15	Ω	
Power good delay time	t _{DLY_PGOOD}		15	25	35	μs	
EN / MODE / Ultrasonic Threshold	ULY_PGOOD		15	25	- 55	μο	
			16		1	[
EN logic high level	V _{EN_H}		1.6 -	-	0.4	V	
EN logic low level	V _{EN_L}				-	Mo	
EN pull down resistance	R _{EN}		-	5	-	MΩ	
Switching Frequency		4 000111					
		$f_{SW} = 300 \text{ kHz}$	-	51	55		
MODE1 (switching frequency)	R _{MODE1}	$f_{SW} = 500 \text{ kHz}$	90	100	110	kΩ	
	MODEL	f _{SW} = 750 kHz	180	200	220	132	
		f _{SW} = 1000 kHz	450	499	-		
Soft Start					•		
		Connect R _{MODE2} between	1.8	3	4.2		
Soft start time	t _{ss}	MODE2 and A _{GND}		-	<u> </u>	ms	
	-35	Connect R _{MODE2} between	3.6	6	8.4		
		MODE2 and V _{DD}			L		
Over Current Protection					1		
		I _{OCP} = 32 A	450	499	-		
MODE2 (over current protection)	Buch	I _{OCP} = 24.8 A	180	200	220	kΩ	
	R _{MODE2}	I _{OCP} = 17.3 A	90	100	110		
		I _{OCP} = 9.6 A	-	51	55	7	

Note (1) Guaranteed by design

S18-0866-Rev. D, 27-Aug-2018

4

Document Number: 74589

For technical questions, contact: powerictechsupport@vishay.com

Vishay Siliconix

FUNCTIONAL BLOCK DIAGRAM

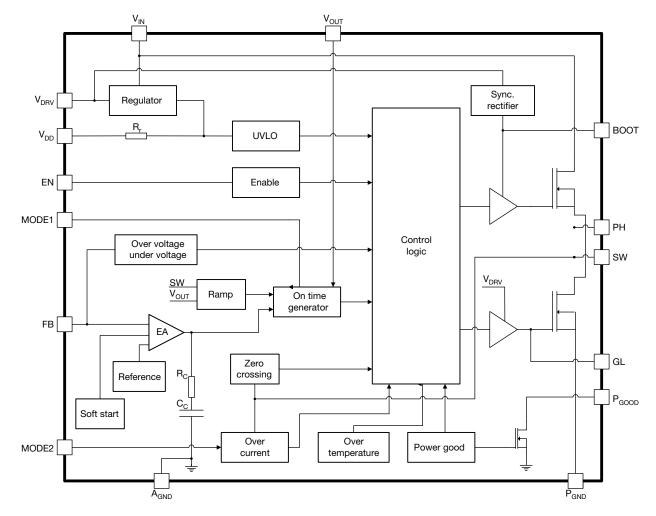


Fig. 4 - SiC431 Functional Block Diagram

S18-0866-Rev. D, 27-Aug-2018

5

OPERATIONAL DESCRIPTION

Device Overview

SiC431 is a high efficiency synchronous buck regulator capable of delivering up to 24 A continuous current. The device has user programmable switching frequency of 300 kHz, 500 kHz, 750 kHz, and 1 MHz. The control scheme delivers fast transient response and minimizes the number of external components. Thanks to the internal ramp information, no high ESR output bulk or virtual ESR network is required for the loop stability. This device also incorporates a power saving feature that enables diode emulation mode and frequency fold back as the load decreases.

SiC431 has a full set of protection and monitoring features:

- Over current protection in pulse-by-pulse mode
- Output over voltage protection
- Output under voltage protection with device latch
- Over temperature protection with hysteresis
- · Dedicated enable pin for easy power sequencing
- Power good open drain output

This device is available in MLP44-24L package to deliver high power density and minimize PCB area.

Power Stage

SiC431 integrates a high performance power stage with a 2 m Ω n-channel low side MOSFET and a 6 m Ω n-channel high side MOSFET. The MOSFETs are optimized to achieve up to 97 % efficiency.

The input voltage (V_{IN}) can go up to 24 V and down to as low as 3 V for power conversion. For input voltages (VIN) below 4.5 V an external V_{DD} and V_{DRV} supply is required (SiC431C, SiC431D). For input voltages (VIN) above 4.5 V only a single input supply is required (SiC431A, SiC431B).

Control Mechanism

SiC431 employs an advanced voltage - mode COT control mechanism. During steady-state operation, feedback voltage (V_{FB}) is compared with internal reference (0.6 V typ.) and the amplified error signal (V_{COMP}) is generated at the internal comp node. An internally generated ramp signal and V_{COMP} feed into a comparator. Once V_{RAMP} crosses V_{COMP}, an on-time pulse is generated for a fixed time. During the on-time pulse, the high side MOSFET will be turned on. Once the on-time pulse expires, the low side MOSFET will be turned on after a dead time period. The low side MOSFET will stay on for a minimum duration equal to the minimum off-time (t_{OFF MIN}) and remains on until V_{RAMP} crosses V_{COMP} . The cycle is then repeated.

Fig. 5 illustrates the basic block diagram for VM-COT architecture. In this architecture the following is achieved:

- The reference of a basic ripple control regulator is replaced with a high again error amplifier loop
- This establishes two parallel voltage regulating feedback paths, a fast and slow path
- · Fast path is the ripple injection which ensures rapid correction of the transient perturbation
- Slow path is the error amplifier loop which ensures the DC component of the output voltage follows the internal accurate reference voltage

S18-0866-Rev. D, 27-Aug-2018

SW FR OLIT INPUT WM com Erro Ripple base controlle SiC431 GND

Fig. 5 - VM-COT Block Diagram

All components for RAMP signal generation and error amplifier compensation required for the control loop are internal to the IC, see Fig. 5. In order for the device to cover a wide range of V_{OUT} operation, the internal RAMP signal components (R_X, C_X, C_Y) are automatically selected depending on the V_{OUT} voltage and switching frequency. This method allows the RAMP amplitude to remain constant throughout the VOUT voltage range, achieving low jitter and fast transient Response. The error amplifier internal compensation consists of a resistor in series with a capacitor (R_{COMP}, C_{COMP}).

Fig. 6 demonstrates the basic operational waveforms:

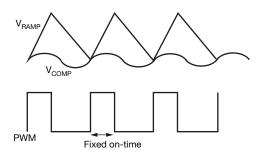


Fig. 6 - VM-COT Operational Principle

Light Load Condition

To improve efficiency at light-load condition, SiC431 provides a set of innovative implementations to eliminate LS recirculating current and switching losses. The internal zero crossing detector monitors SW node voltage to determine when inductor current starts to flow negatively. In power saving mode, as soon as inductor valley current crosses zero, the device deploys diode emulation mode by turning off low side MOSFET. If load further decreases, switching frequency is reduced proportional to load condition to save switching losses while keeping output ripple within tolerance. The switching frequency is set by the controller to maintain regulation. In the standard power save mode, there is no minimum switching frequency (SiC431B, SiC431D).

For SiC431A, SiC431C, the minimum switching frequency that the regulator will reduce to is < 20 kHz as the part avoids switching frequencies in the audible range. This light load mode implementation is called ultrasonic mode.

Vishay Siliconix

6 For technical questions, contact: powerictechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Mode Setting, Over Current Protection, Switching Frequency, and Soft Start Selection

The SiC431 has a low pin count, minimal external components, and offers the user flexibility to choose soft start times, current limit settings, switching frequencies and

to enable or disable the light load mode. Two MODE pins, MODE1 and MODE2, are user programmable by connecting a resistor from MODEx to V_{DD} or A_{GND} , allowing the user to choose various operating modes. This is best explained in the tables below.

TABLE 1 - MODE1 CONFIGURATION SETTINGS					
OPERATION	CONNECTION	f _{switcн} (kHZ)	R _{MODE1} (kΩ)		
		300	51		
Skip	To A _{GND}	500	100		
Skip		750	200		
		1000	499		
		300	51		
Forced CCM	To V	500	100		
Forced CCM	To V _{DD}	750	200		
		1000	499		

TABLE 2 - MODE2 CONFIGURATION SETTINGS					
SOFT-START TIME	CONNECTION	I _{LIMIT} (%)	R _{MODE2} (kΩ)		
		30	51		
3 ms	To A _{GND}	54	100		
3 ms		78	200		
		100 (32 A)	499		
		30	51		
6	To V _{DD}	54	100		
6 ms		78	200		
		100 (32 A)	499		

OUTPUT MONITORING AND PROTECTION FEATURES

Output Over Current Protection (OCP)

SiC431 has pulse-by-pulse over current limit control. The inductor current is monitored during low side MOSFET conduction time through $R_{DS(on)}$ sensing. After a pre-defined blanking time, the inductor current is compared with an internal OCP threshold. If inductor current is higher than OCP threshold, high side MOSFET is kept off until the inductor current falls below OCP threshold.

OCP is enabled immediately after V_{DD} passes UVLO rising threshold.

7

Output Undervoltage Protection (UVP)

UVP is implemented by monitoring the FB pin. If the voltage level at FB drops below 0.12 V for more than 25 μ s, a UVP event is recognized and both high side and low side MOSFETs are turned off. After a duration equivalent to 20 soft start periods, the IC attempts to re-start. If the fault condition still exists, the above cycle will be repeated.

UVP is active after the completion of soft start sequence.

Output Overvoltage Protection (OVP)

OVP is implemented by monitoring the FB pin. If the voltage level at FB rising above 0.72 V, a OVP event is recognized and both high side and low side MOSFETs are turned off. Normal operation is resumed once FB voltage drop below 0.68 V.

OVP is active after V_{DD} passes UVLO rising threshold.

Over-Temperature Protection (OTP)

OTP is implemented by monitoring the junction temperature. If the junction temperature rises above 150 °C, a OTP event is recognized and both high side and low MOSFETs are turned off. After the junction temperature falls below 115 °C (35 °C hysteresis), the device restarts by initiating a soft start sequence.

Sequencing of Input / Output Supplies

SiC431 has no sequencing requirements on its supplies or enables (V_{IN}, V_{DD}, V_{DRV}, EN).

Enable

The SiC431 has an enable pin to turn the part on and off. Driving the pin high enables the device, while driving the pin low disables the device.

The EN pin is internally pulled to A_{GND} by a 5 M Ω resistor to prevent unwanted turn on due to a floating GPIO.

Pre-Bias Start-Up

In case of pre-bias startup, output is monitored through FB pin. If the sensed voltage on FB is higher than the internal reference ramp value, control logic prevents high side and low side MOSFETs from switching to avoid negative output voltage spike and excessive current sinking through low side MOSFET.

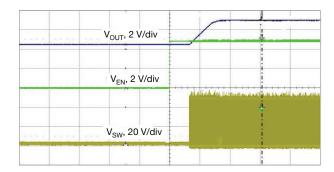
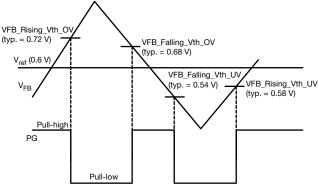
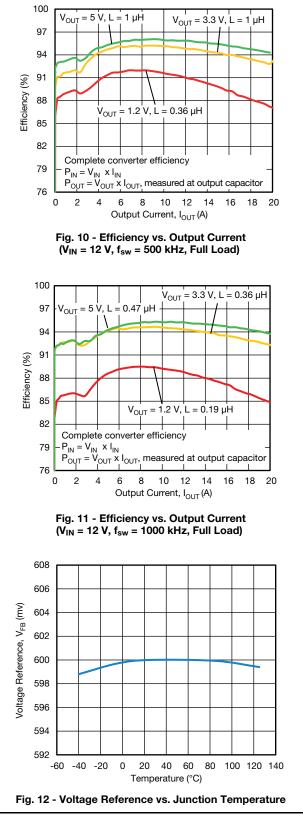



Fig. 8 - Pre-Bias Start-Up

Power Good

SiC431's power good is an open-drain output. Pull P_{GOOD} pin high through a > 10K resistor to use this signal. Power good window is shown in the below diagram. If voltage on FB pin is out of this window, P_{GOOD} signal is de-asserted by pulling down to A_{GND}. To prevent false triggering during transient events, P_{GOOD} has a 25 µs blanking time.


www.vishay.com

Vishay Siliconix

ELECTRICAL CHARACTERISTICS

(V_{IN} = 12 V, V_{OUT} = 1.2 V, f_{sw} = 500 kHz, C_{OUT} = 47 µF x 13, C_{IN} = 10 µF x 6, unless otherwise noted)

Efficiency (%)

S18-0866-Rev. D, 27-Aug-2018

100 = 5 V, L = 1 μ H VOUT 92 1 I I I TIII 84 3.3 V. L = -IIII 76 1.2 V, L = 0.36 µH VOUT = 68 60 52 Complete converter efficiency 44

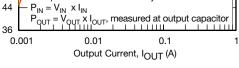


Fig. 13 - Efficiency vs. Output Current (V_{IN} = 12 V, f_{sw} = 500 kHz, Light Load)

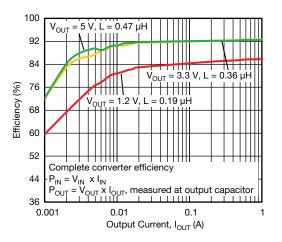
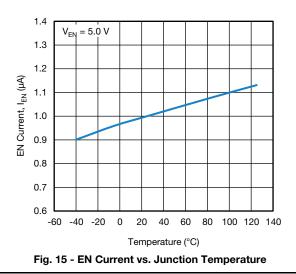



Fig. 14 - Efficiency vs. Output Current (V_{IN} = 12 V, f_{sw} = 1000 kHz, Light Load)

9

Document Number: 74589

For technical questions, contact: powerictechsupport@vishay.com

www.vishay.com

Vishay Siliconix

ELECTRICAL CHARACTERISTICS

(V_{IN} = 12 V, V_{OUT} = 1.2 V, f_{sw} = 500 kHz, C_{OUT} = 47 µF x 13, C_{IN} = 10 µF x 6, unless otherwise noted)

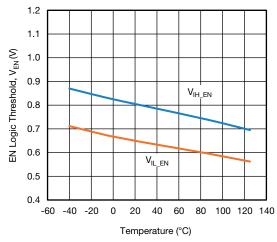


Fig. 16 - EN Logic Threshold vs. Junction Temperature

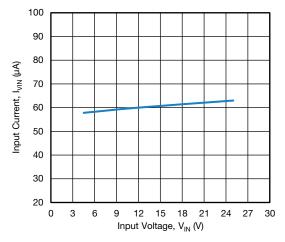



Fig. 17 - Input Current vs. Input Voltage

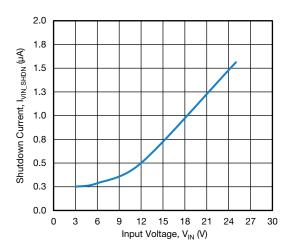


Fig. 19 - Shutdown Current vs. Input Voltage

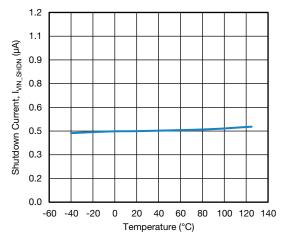


Fig. 20 - Shutdown Current vs. Junction Temperature

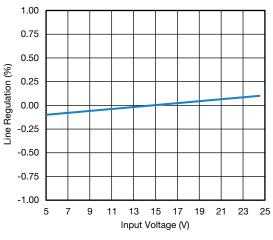


Fig. 21 - Line Regulation vs. Input Voltage

S18-0866-Rev. D, 27-Aug-2018

10

Document Number: 74589

ELECTRICAL CHARACTERISTICS

(V_{IN} = 12 V, V_{OUT} = 1.2 V, f_{sw} = 500 kHz, C_{OUT} = 47 µF x 13, C_{IN} = 10 µF x 6, unless otherwise noted)

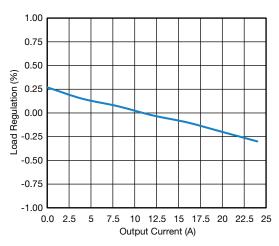


Fig. 22 - Load Regulation vs. Output Current

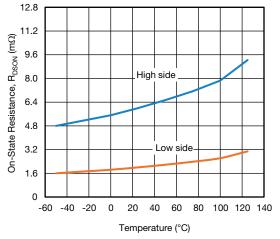


Fig. 23 - On Resistance vs. Junction Temperature

11

SiC431

ELECTRICAL CHARACTERISTICS

www.vishay.com

VISHAY

(V_{IN} = 12 V, V_{OUT} = 1.2 V, f_{sw} = 500 kHz, C_{OUT} = 47 µF x 13, C_{IN} = 10 µF x 6, unless otherwise noted)

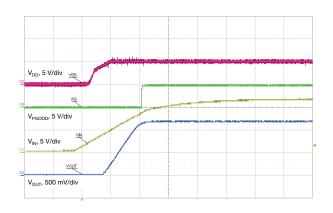


Fig. 24 - Startup with VIN, t = 2 ms/div

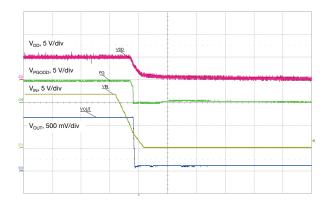


Fig. 25 - Shut down with V_{IN} , t = 100 ms/div

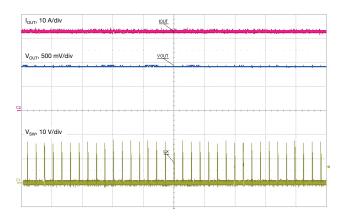


Fig. 26 - Overcurrent Protection Behavior, t = 5 μ s/div

 Venc 5 V/div
 Venc 5 V/div

 Voor 5 V/div
 Voor

 Voor 5 V/div
 Voor

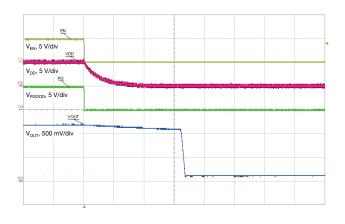
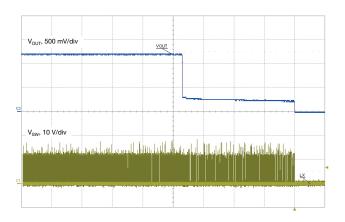



Fig. 28 - Shut down with EN, t = 200 ms/div

S18-0866-Rev. D, 27-Aug-2018

12

Document Number: 74589

www.vishay.com

Vishay Siliconix

ELECTRICAL CHARACTERISTICS

(V_{IN} = 12 V, V_{OUT} = 1.2 V, f_{sw} = 500 kHz, C_{OUT} = 47 µF x 13, C_{IN} = 10 µF x 6, unless otherwise noted)

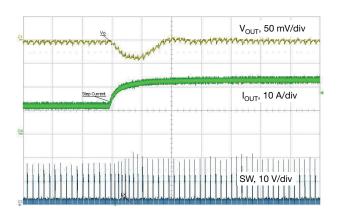


Fig. 30 - Load Step, 12 A to 24 A, 1 A/ μ s, t = 10 μ s/div

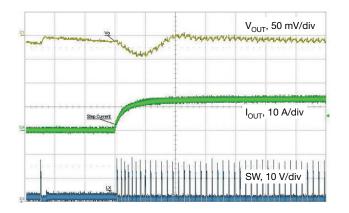


Fig. 31 - Load Step, 0.1 A to 12 A, 1 A/ μ s, t = 10 μ s/div Skip Mode Enabled

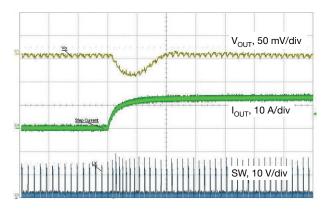


Fig. 32 - Load Step, 0.1 A to 12 A, 1 A/µs, t = 10 µs/div Forced Continuous Conduction Mode

S18-0866-Rev. D, 27-Aug-2018

V_{OUT}, 50 mV/div

Fig. 33 - Load Release, 24 A to 12 A, 1 A/ μ s, t = 10 μ s/div

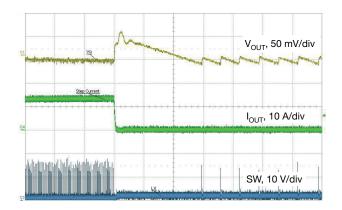


Fig. 34 - Load Release, 12 A to 0.1 A, 1 A/ μ s, t = 50 μ s/div Skip Mode Enabled

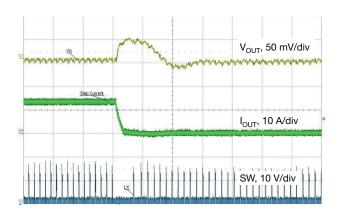


Fig. 35 - Load Release, 12 A to 0.1 A, 1 A/µs, t = 20 µs/div Forced Continuous Conduction Mode

Vishay Siliconix

ELECTRICAL CHARACTERISTICS

(V_{IN} = 12 V, V_{OUT} = 1.2 V, f_{sw} = 500 kHz, C_{OUT} = 47 µF x 13, C_{IN} = 10 µF x 6, unless otherwise noted)

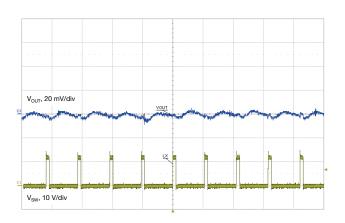


Fig. 36 - Output Ripple, 0.1 A, $t = 2 \mu s/div$ Forced Continuous Conduction Mode

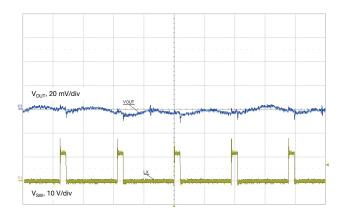


Fig. 38 - Output Ripple, 12 A, t = 1 μ s/div Forced Continuous Conduction Mode

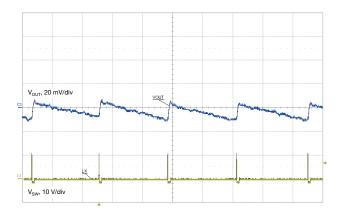


Fig. 37 - Output Ripple, 0.1 A, t = 20 µs/div Skip Mode Enabled

EXAMPLE SCHEMATIC FOR SiC431

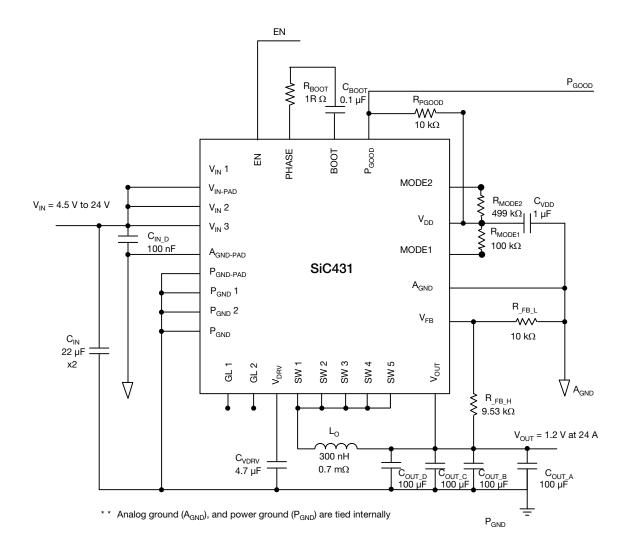


Fig. 39 - Schematic

EXTERNAL COMPONENT SELECTION FOR THE SiC43X

This section explains external component selection for the SiC43x family of regulators. Component reference designators in any equation refer to the schematic shown in Fig. 36.

See PowerCAD online design center to simplify external component calculations.

Output Voltage Adjustment

If a different output voltage is needed, simply change the value of V_{OUT} and solve for $R_{\text{FB}_{-}\text{H}}$ based on the following formula:

$$\mathsf{R}_{\mathsf{FB}_{\mathsf{H}}} = \frac{\mathsf{R}_{\mathsf{FB}_{\mathsf{L}}}(\mathsf{V}_{\mathsf{OUT}} - \mathsf{V}_{\mathsf{FB}})}{\mathsf{V}_{\mathsf{FB}}}$$

Where V_{FB} is 0.6 V for the SiC43X. R_{FB_L} should be a maximum of 10 k Ω to prevent V_{OUT} from drifting at no load.

Inductor Selection

In order to determine the inductance, the ripple current must first be defined. Low inductor values allow for the use of smaller package sizes but create higher ripple current which can reduce efficiency. Higher inductor values will reduce the ripple current and, for a given DC resistance, are more efficient. However, larger inductance translates directly into larger packages and higher cost. Cost, size, output ripple, and efficiency are all used in the selection process.

The ripple current will also set the boundary for power save operation. The SiC431 will typically enter power save mode when the load current decreases to 1/2 of the ripple current. For example, if ripple current is 4 A, power save operation will be active for loads less than 2 A. If ripple current is set at 40 % of maximum load current, power save will typically start at a load which is 20 % of maximum current.

The inductor value is typically selected to provide ripple current of 25 % to 50 % of the maximum load current. This provides an optimal trade-off between cost, efficiency, and transient performance. During the on-time, voltage across the inductor is (V_{IN} - V_{OUT}). The equation for determining inductance is shown below.

$$L_{O} = \frac{(V_{IN} - V_{OUT}) \times D}{K \times I_{OUT} \text{ max. } \times f_{SW}}$$

where, K is the maximum percentage of ripple current, D is the duty cycle, I_{OUT_MAX} is the maximum load current and f_{SW} is the switching frequency.

Capacitor Selection

The output capacitors are chosen based upon required ESR and capacitance. The maximum ESR requirement is controlled by the output ripple requirement and the DC tolerance. The output voltage has a DC value that is equal to the valley of the output ripple plus 1/2 of the peak-to-peak ripple. A change in the output ripple voltage will lead to a change in DC voltage at the output.

For instance, the design goal for output voltage ripple is 3 % (45 mV for V_{OUT} = 1.5 V) with ripple current of 4.43 A. The maximum ESR value allowed is shown by the following equation.

$$ESR_{MAX.} = \frac{V_{RIPPLE}}{I_{RIPPLE}} = \frac{45 \text{ mV}}{4.43 \text{ A}}$$
$$ESR_{MAX.} = 10.2 \text{ m}\Omega$$

The output capacitance is usually chosen to meet transient requirements. A worst-case load release (from maximum load to no load) at the moment of peak inductor current, determines the required capacitance. If the load release is instantaneous (maximum load to no load in less than 1 μ s) the output capacitor must absorb all the inductor's stored energy. The output capacitor can be calculated according to the following equation.

$$C_{OUT_MIN.} = \frac{L_{O}(I_{OUT} + 0.5 \times I_{RIPPLE_{MAX.}})^{2}}{V_{PK}^{2} - V_{OUT}^{2}}$$

Where I_{OUT} is the output current, $I_{RIPPLE_MAX.}$ is the maximum ripple current, V_{PK} is the peak V_{OUT} during load release, V_{OUT} is the output voltage.

The duration of the load release is determined by V_{OUT} and the inductor. During load release, the voltage across the inductor is approximately $-V_{OUT}$, causing a down-slope or falling di/dt in the inductor. If the di/dt of the load is not much larger than di/dt of the inductor, then the inductor current will tend to track the falling load current. This will reduce the excess inductive energy that must be absorbed by the output capacitor; therefore a smaller capacitance can be used.

Under this circumstance, the following equation can be used to calculate the needed capacitance for a given rate of load release (di_{LOAD}/dt).

$$C_{OUT} = \frac{\frac{L \times I_{PK}^{2}}{V_{OUT}} - (I_{PK} \times I_{RELEASE}) \times \frac{dT}{di_{LOAD}}}{2(V_{PK} - V_{OUT})}$$
$$I_{PK} = I_{RELEASE} + (\frac{1}{2} \times I_{RIPPLE_{MAX}})$$

16

Where I_{PK} is the peak inductor current, I_{RIPPLE_MAX} is the maximum peak to peak inductor current, $I_{RELEASE}$ is the maximum load release current, V_{PK} is the peak V_{OUT} during load release, dI_{LOAD} /dt is the rate of load release.

If the load step does not meet the requirement, increasing the crossover frequency can help by adding feed forward capacitor (C_{FF}) in parallel to the upper feedback resistor to generate another zero and pole. Placing the geometrical mean of this pole and zero around the crossover frequency will result in faster transient response. f_Z and f_P are the generated zero and pole, see equations below.

$$f_{Z} = \frac{1}{2\pi x R_{FB1} x C_{FF}}$$
$$f_{P} = \frac{1}{2\pi x (R_{FB1} // R_{FB2}) x C_{FF}}$$

Where R_{FB1} is the upper feedback resistor, R_{FB2} is the lower feedback resistor C_{FF} is the feed forward capacitor, f_Z is the zero from feed forward capacitor, f_P is the pole frequency generated from the feed forward capacitor.

A calculator is available to assist user to obtain the value of the feed forward capacitance value.

From the calculator, obtain the crossover frequency (f_C). Use the equation below for the calculation of the feed forward capacitance value.

$$f_{C} = \sqrt{(f_{Z} \times f_{P})}$$

$$C_{FF} = \frac{1}{2\pi \times (f_{C} \times \sqrt{(R_{FB1} \times (R_{FB1} / / R_{FB2})))})}$$

As the internal RC compensation of the SiC431 works with a wide range of output LC filters, the SiC431 offers stable operation for a wide range of output capacitance, making the product versatile and usable in a wide range of applications.

Input Capacitance

In order to determine the minimum capacitance the input voltage ripple needs to be specified; $V_{CINPKPK} \le 500 \text{ mV}$ is a suitable starting point. This magnitude is determined by the final application specification. The input current needs to be determined for the lowest operating input voltage,

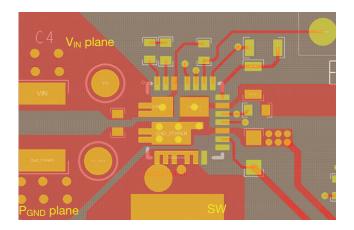
 $I_{CIN(RMS)} =$

$$I_{O} \ge \sqrt{D \ge (1-D) + \frac{1}{12} \times \left(\frac{V_{OUT}}{L \times f_{sw} \times I_{OUT}}\right)^{2} \times (1-D)^{2} \times D}$$

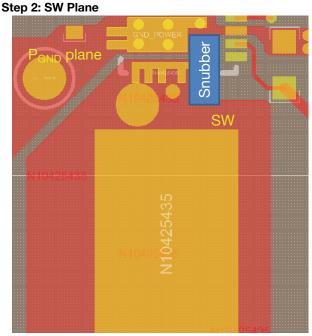
The minimum input capacitance can then be found,

$$C_{IN_min.} = I_{OUT} \times \frac{D \times (1 - D)}{V_{CINPKPK} \times f_{sw}}$$

If high ESR capacitors are used, it is good practice to also add low ESR ceramic capacitance. A 4.7 μ F ceramic input capacitance is a suitable starting point.

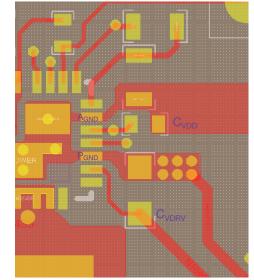

Care must be taken to account for voltage derating of the capacitance when choosing an all ceramic input capacitance.

SiC431 Vishay Siliconix

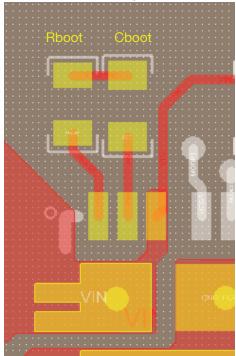


PCB LAYOUT RECOMMENDATIONS

Step 1: V_{IN}/GND Planes and Decoupling



- 1. Layout V_{IN} and P_{GND} planes as shown above
- 2. Ceramic capacitors should be placed between V_{IN} and P_{GND}, and very close to the device for best decoupling effect
- 3. Various ceramic capacitor values and package sizes should be used to cover entire decoupling spectrum e.g. 1210 and 0603
- 4. Smaller capacitance values, closer to V_{IN} pin(s), provide better high frequency response

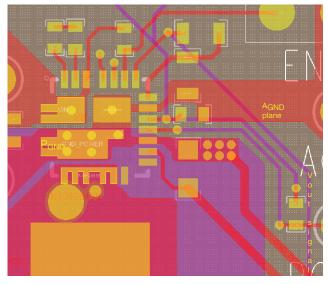

- 1. Connect output inductor to device with large plane to lower resistance
- 2. If a snubber network is required, place the components on the bottom layer as shown above

Step 3: V_{DD}/V_{DRV} Input Filter

- 1. C_{VDD} cap should be placed between V_{DD} and A_{GND} to achieve best noise filtering
- 2. $C_{VDRV}\,cap$ should be placed close to $V_{DRV}\,and\,P_{GND}\,pins$ to reduce effects of trace impedance and provide maximum instantaneous driver current for low side MOSFET during switching cycle

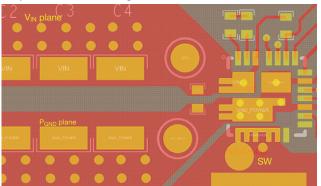
Step 4: BOOT Resistor and Capacitor Placement

- 1. C_{BOOT} and R_{BOOT} need to be placed very close to the device, between PHASE and BOOT pins
- 2. In order to reduce parasitic inductance, it is recommended to use 0402 chip size for the resistor and the capacitor


S18-0866-Rev. D, 27-Aug-2018

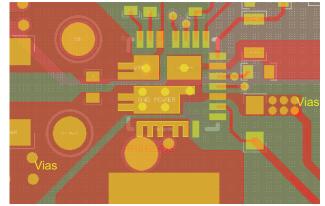
18

Document Number: 74589

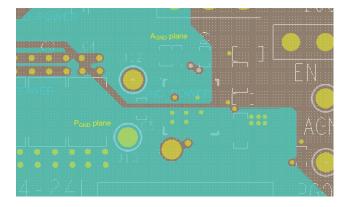

www.vishay.com

Step 5: Signal Routing

- 1. Separate the small analog signal from high current path. As shown above, the high paths with high dv/dt, di/dt are placed on the left side of the IC, while the small control signals are placed on the right side of the IC. All the components for small analog signal should be placed closer to IC with minimum trace length
- 2. IC analog ground (A_{GND}), pin 16, should have a single connection to P_{GND} . The A_{GND} ground plane connected to pin16 helps to keep A_{GND} quiet and improves noise immunity
- 3. The output signal can be routed through inner layers. Make sure this signal is far away from SW node and shielded by an inner ground layer


Step 6: Thermal Management

- 1. Thermal relief vias can be added to the $V_{\rm IN}$ and ${\rm P}_{\rm GND}$ pads to utilize inner layers for high current and thermal dissipation
- 2. To achieve better thermal performance, additional vias can be placed on V_{IN} and P_{GND} planes. It is also necessary to duplicate the V_{IN} and ground plane at bottom layer to maximize the power dissipation capability of the PCB


- 3. SW pad is a noise source and it is not recommended to place vias on this pad
- 4. 8 mil vias on pads and 10 mil vias on planes are ideal via sizes. The vias on pad may drain solder during assembly and cause assembly issues. Please consult with the assembly house for guideline

Step 7: Ground Connection

1. In order to minimize the ground voltage drop due to high current, it is recommended to place vias on the P_{GND} planes. Make use of the inner ground layers to lower the impedance

Step 7: Ground Layer

- 1. It is recommended to make the whole inner 1 layer (next to top layer) ground plane
- 2. This ground plane provides shielding between noise source on top layer and signal trace within inner layer
- 3. The ground plane can be broken into two section, P_{GND} and A_{GND}

S18-0866-Rev. D, 27-Aug-2018

19

Vishay Siliconix

PRODUCT SUMMARY	PRODUCT SUMMARY						
Part number	SiC431A	SiC431B	SiC431C	SiC431D			
Description	24 A, 4.5 V to 24 V input, 300 kHz, 500 kHz, 750 kHz, 1 MHz, synchronous buck regulator with ultrasonic mode and internal 5 V bias	24 A, 4.5 V to 24 V input, 300 kHz, 500 kHz, 750 kHz, 1 MHz, synchronous buck regulator with power save mode and internal 5 V bias	24 A, 3 V to 24 V input, 300 kHz, 500 kHz, 750 kHz, 1 MHz, synchronous buck regulator with ultrasonic mode (external 5 V bias)	24 A, 3 V to 24 V input, 300 kHz, 500 kHz, 750 kHz, 1 MHz, synchronous buck regulator with power save mode (external 5 V bias)			
Input voltage min. (V)	4.5	4.5	3.0	3.0			
Input voltage max. (V)	24	24	24	24			
Output voltage min. (V)	0.6	0.6	0.6	0.6			
Output voltage max. (V)	$0.90 \times V_{IN}$	0.90 x V _{IN}	0.90 x V _{IN}	0.90 x V _{IN}			
Continuous current (A)	24	24	24	24			
Switch frequency min. (kHz)	300	300	300	300			
Switch frequency max. (kHz)	1000	1000	1000	1000			
Pre-bias operation (yes / no)	Y	Y	Y	Y			
Internal bias reg. (yes / no)	Y	Y	Ν	Ν			
Compensation	Internal	Internal	Internal	Internal			
Enable (yes / no)	Y	Y	Y	Y			
P _{GOOD} (yes / no)	Y	Y	Y	Y			
Over current protection	Y	Y	Y	Y			
Protection	OVP, OCP, UVP/SCP, OTP, UVLO	OVP, OCP, UVP/SCP, OTP, UVLO	OVP, OCP, UVP/SCP, OTP, UVLO	OVP, OCP, UVP/SCP, OTP, UVLO			
Light load mode	Selectable ultrasonic	Selectable powersave	Selectable ultrasonic	Selectable powersave			
Peak efficiency (%)	97	97	97	97			
Package type	PowerPAK MLP 44-24L	PowerPAK MLP 44-24L	PowerPAK MLP 44-24L	PowerPAK MLP 44-24L			
Package size (W, L, H) (mm)	4 x 4 x 0.75	4 x 4 x 0.75	4 x 4 x 0.75	4 x 4 x 0.75			
Status code	1	1	1	1			
Product type	microBUCK (step down regulator)	microBUCK (step down regulator)	microBUCK (step down regulator)	microBUCK (step down regulator)			
Applications	Computers, consumer, industrial, healthcare, networking	Computers, consumer, industrial, healthcare, networking	Computers, consumer, industrial, healthcare, networking	Computers, consumer, industrial, healthcare, networking			

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg274589.

S18-0866-Rev. D, 27-Aug-2018	20	Document Number: 74589
	For technical questions, contact: powerictechsupport@vishay.com	

PowerPAK[®] MLP44-24L Case Outline

(5) (6) Pin 1 dc by mark		D		$\begin{array}{c} \text{H} \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 1017110171101711 + + + + + + + + + + + + + + + + + + +
DIM.		MILLIMETERS			INCHES	
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A ⁽⁸⁾	0.70	0.75	0.80	0.027	0.029	0.031
A1	0.00	-	0.05	0.000	-	0.002
A2		0.20 ref.			0.008 ref.	
b ⁽⁴⁾	0.20	0.25	0.30	0.008	0.010	0.012
b1	0.15	0.20	0.25	0.006	0.008	0.010
D	3.90	4.00	4.10	0.155	0.157	0.159
е		0.45 BSC			0.018 BSC	
e1		0.70 BSC			0.028 BSC	
e2		0.90 BSC		0.035 BSC		
E	3.90	4.00	4.10	0.154	0.157	0.161
L	0.35	0.40	0.45	0.014	0.016	0.018
N ⁽³⁾		24			24	
D2-1	1.00	1.05	1.10	0.039	0.041	0.043
D2-2	1.45	1.50	1.55	0.057	0.059	0.061
D2-3	2.68	2.73	2.78	0.106	0.108	0.110
D2-4	2.02	2.07	2.12	0.079	0.081	0.083
D2-5	0.47	0.52	0.57	0.018	0.020	0.022
E2-1	0.95	1.00	1.05	0.037	0.039	0.041
E2-2	1.10	1.15	1.20	0.043	0.045	0.047
E2-3	0.33	0.38	0.43		0.015	0.017
E2-4 E2-5	0.95 0.27	1.00 0.32	1.05	0.037	0.039 0.013	0.041 0.015
E2-5 K	0.27	0.32 0.40 ref.	0.37	0.011	0.013 0.016 ref.	0.015
K1		0.40 ref.			0.016 ref.	
K1 K2						
K3	0.35 ref. 0.35 ref.			0.014 ref.		
K3 K4				0.014 ref.		
K5	0.35 ref.			0.014 ref. 0.021 ref.		
K6	0.525 ref. 0.725 ref.				0.021 ref.	
K7	0.725 ref. 0.575 ref.					
K8	0.975 ref.			0.023 ref. 0.038 ref.		
ECN: T17-0551-R DWG: 6055	lev. B, 16-Oct-17					

Notes

(1) Use millimeters as the primary measurement
 (2) Dimensioning and tolerances conform to ASME Y14.5M. - 1994
 (3) N is the number of terminals

(4)

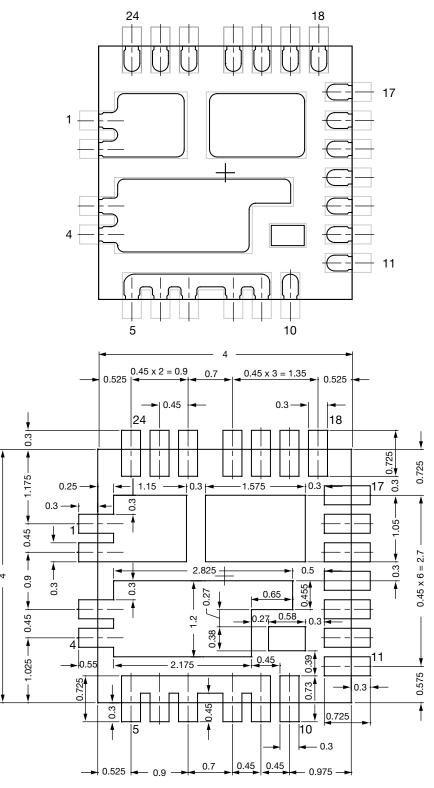
Dimension b applies to plated terminal and is measured between 0.20 mm and 0.25 mm from terminal tip The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body Exact shape and size of this feature is optional Package warpage max. 0.08 mm Applied only for terminals (5)

(6) (7)

(8)

Revision: 16-Oct-17

Document Number: 74345


For technical questions, contact: powerictechsupport@vishay.com

PAD Pattern

Vishay Siliconix

Recommended Land Pattern PowerPAK® MLP44-24L

All dimensions are in millimeters

Revision: 15-Aug-17

1 For technical questions, contact: <u>powerictechsupport@vishay.com</u> Document Number: 78231

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.