MOSFET, N-Channel, SuperFET® II

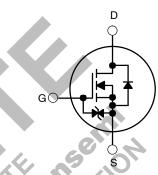
600 V, 4.5 A, 900 m Ω

Description

SuperFET® II MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

Features

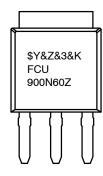
- 675 V @ $T_J = 150$ °C
- Typ. $R_{DS(on)} = 820 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 13 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 48.6 pF)
- 100% Avalanche Tested
- ESD Improved Capacity
- RoHS Compliant


Applications

- LCD/LED/PDP TV and Monitor Lighting
- Solar Inverter
- Charger

ON Semiconductor®

www.onsemi.com



N-Channel

DPAK3 CASE 369AP

MARKING DIAGRAM

\$Y	= ON Semiconductor Logo
&Z	= Assembly Plant Code
&3	= Numeric Date Code
&K	= Lot Code

FCU900N60Z = Specific Device Code

ORDERING INFORMATION

Device	Top Mark	Package	Shipping
FCU900N60Z	FCU900N60Z	DPAK3	
			Tube

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Symbol		Value	Unit	
V_{DSS}	Drain to Source Voltage	Voltage		V
V_{GSS}	Gate to Source Voltage	DC	±20	V
		AC (f > 1 Hz)	±30	
I _D	Drain Current	Continuous (T _C = 25°C)	4.5	Α
		Continuous (T _C = 100°C)	2.8	
I _{DM}	Drain Current	Pulsed (Note 1)	13.5	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		47.5	mJ
I _{AR}	Avalanche Current (Note 1)		1	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		0.52	mJ
dv/dt	MOSFET dv/dt Peak Diode Recovery dv/dt (Note 3)		100	V/ns
			20	
P_{D}	Power Dissipation	(T _C = 25°C)	52	W
		Derate above 25°C	0.42	W/°C
T _{J,} T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Repetitive rating: pulse–width limited by maximum junction temperature. 2. $I_{AS}=1.0$ A, $V_{DD}=50$ V, $R_{G}=25$ Ω , starting $T_{J}=25^{\circ}C$. 3. $I_{SD}\leq 2.3$ A, di/dt ≤ 200 A/ μ s, $V_{DD}\leq BV_{DSS}$, starting $T_{J}=25^{\circ}C$.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max.	2.4	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max.	100	
	O HIS PEON A INF		

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHARAC	TERISTICS					•
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V, T _J = 25°C	625	-	-	V
		I _D = 1 mA, V _{GS} = 0 V, T _J = 150°C	675	_	-	
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 1 mA, referenced to 25°C	-	0.67	-	V/°C
BV _{DS}	Drain to Source Avalanche Breakdown Voltage	V _{GS} = 0 V, I _D = 4.5 V	-	700	=	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 600 V, V _{GS} = 0 V	-	-	1	μΑ
		V _{DS} = 600 V, T _C = 125°C	-	-	10	
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μΑ
ON CHARACT	ERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.5	-	3.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 2.3 A	_	0.82	0.90	Ω
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 2.3 A	-	4.6	-	S
DYNAMIC CHA	ARACTERISTICS		al			
C _{iss}	Input Capacitance	V _{DS} = 40 V, V _{GS} = 0 V,	-0	534	710	pF
C _{oss}	Output Capacitance	f = 1 MHz	9	399	530	pF
C _{rss}	Reverse Transfer Capacitance		V	19.7	30	pF
C _{oss}	Output Capacitance	$V_{DS} = 380 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	4/2	11.1	_	pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 480 V, V _{GS} = 0 V	07	48.6	-	pF
Q _{g(tot)}	Total Gate Charge at 10 V	$V_{DS} = 380 \text{ V}, I_{D} = 2.3 \text{ A},$	-	13.1	17	nC
Q_{gs}	Gate to Source Gate Charge	V _{GS} = 10 V	_	2.2	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	(Note 4)	_	4.5	_	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	2.4	-	Ω
SWITCHING C	HARACTERISTICS	(0 X 14 , 4)				
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 380 \text{ V}, I_D = 2.3 \text{ A},$	_	10.9	32	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, R_{G} = 4.7 \Omega$	_	5.3	21	ns
t _{d(off)}	Turn-Off Delay Time	(Note 4)	_	33.6	77	ns
t _f	Turn-Off Fall Time		_	11.9	34	ns
DRAIN-SOUR	CE DIODE CHARACTERISTIC					
IS	Maximum Continuous Drain to Source Di	ode Forward Current	_	-	4.5	Α
I _{SM}	Maximum Pulsed Drain to Source Diode	Forward Current	_	_	13.5	Α
V _{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 2.3 \text{ A}$	_	_	1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 2.3 A,	_	156	-	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs	_	1.3	_	μС

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature.

TYPICAL PERFORMANCE CHARACTERISTICS

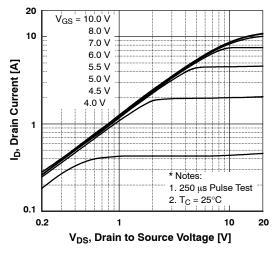


Figure 1. On-Region Characteristics

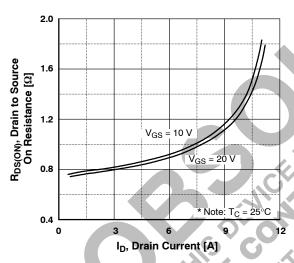


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

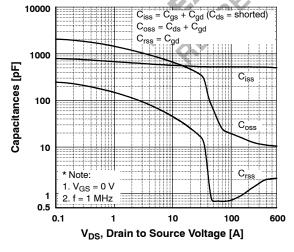


Figure 5. Capacitance Characteristics

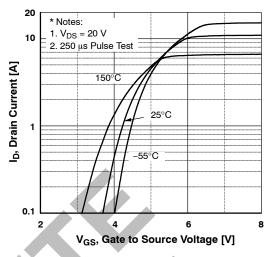


Figure 2. Transfer Characteristics

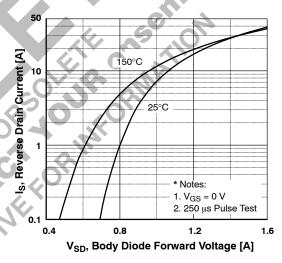


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

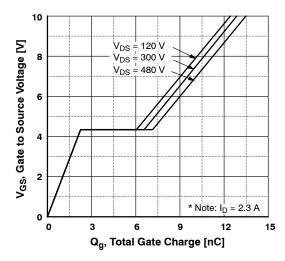


Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

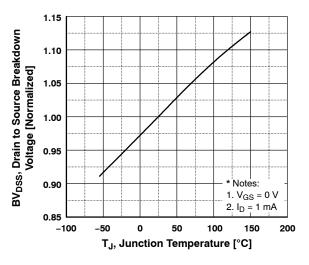


Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 9. Maximum Safe Operating Area

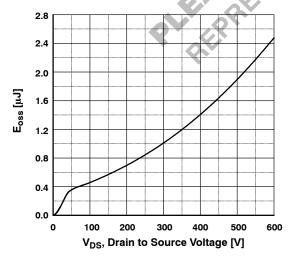


Figure 11. Eoss vs. Drain to Source Voltage

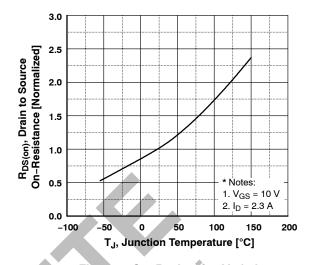


Figure 8. On-Resistance Variation vs. Temperature

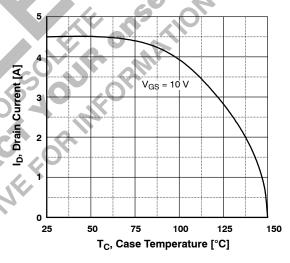


Figure 10. Maximum Drain Current vs. Case Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

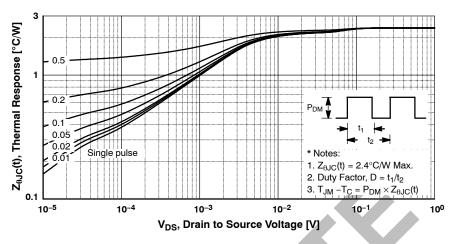


Figure 12. Transient Thermal Response Curve

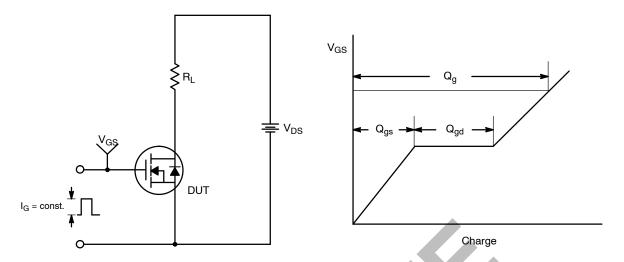


Figure 13. Gate Charge Test Circuit and Waveform

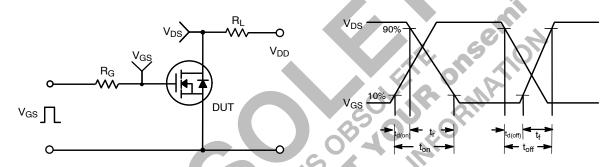


Figure 14. Resistive Switching Test Circuit and Waveforms

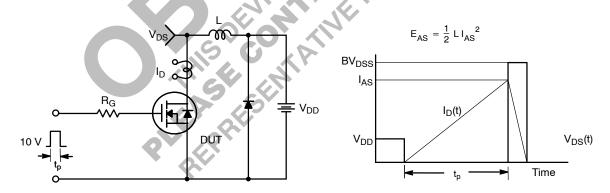
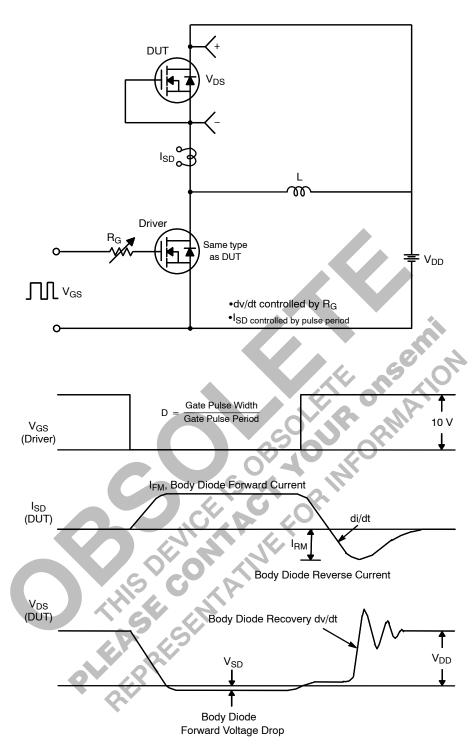
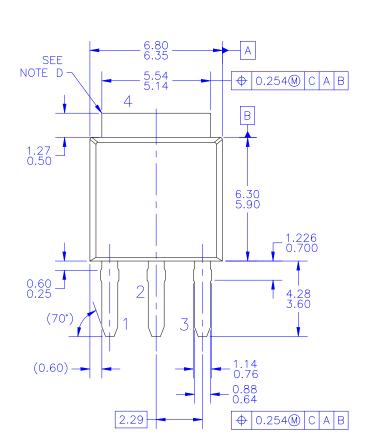
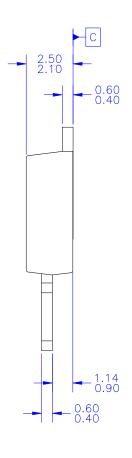
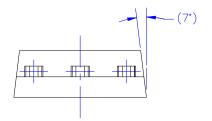


Figure 15. Unclamped Inductive Switching Test Circuit and Waveforms




Figure 16. Peak Diode Recovery dv/dt Test Circuit and Waveforms


SuperFET is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.



DPAK3 (STRAIGHT LEADS) CASE 369AP ISSUE O

DATE 30 SEP 2016

NOTES: UNLESS OTHERWISE SPECIFIED

- A) ALL DIMENSIONS ARE IN MILLIMETERS.
- B) PACKAGE BODY REFERENCE: JEDEC, TO-251, ISSUE D, VARIATION AA, DATED JUNE 2002.
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- D) HEAT SINK TOP EDGE COULD BE IN CHAMFERED CORNERS OR EDGE PROTRUSION.

DOCUMENT NUMBER:	98AON13816G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK3 (STRAIGHT LEADS	S)	PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

