

Dual Operational Amplifiers And Voltage Reference

SOP-8

Pin assignment:

<u>—</u> 3

General Description

The TS103 is a monolithic IC specifically designed to control the output current and voltage levels of switch mode battery chargers and power supplies.

The device contains two operational amplifiers and a precision shunt regulator. Op Amp 1 is designed for voltage control, whose non-inverting input internally connects to the output of the shunt regulator. Op Amp 2 is for current control with both inputs uncommitted. The IC offers the power converter designer a control solution that features increased precision with a corresponding reduction in system complexity and cost.

Features

Input Offset Voltage: 0.5mV

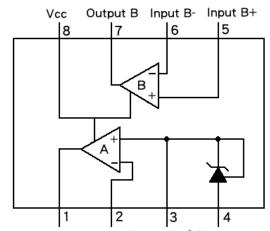
Supply Current: 250uA per OP AMP @ 5V

Unity Gain Bandwidth: 1MHz

Output Voltage Swing: 0~(Vcc − 1.5) V

Power Supply Voltage: 3~18V

• Fixed Output Voltage Reference: 2.5V±1%


Sink Current Capability from 0.2~80mA

Package types: SOP-8

Ordering Information

Part No.	Package	Packing
TS103CS RL	SOP-8	2.5Kpcs / 13" Reel
TS103ACS RL	SOP-8	2.5Kpcs / 13" Reel

Block Diagram

Output A Input A- Input A+/Vka Gnd

Absolute Maximum Rating

Parameter	Symbol	Value	Unit
Power Supply Voltage (V _{CC} to GND)	V _{CC}	20	V
Op Amp 1 and 2 Input Voltage Range (Pins 2,5,6)	V _{IN}	-0.3 to V _{CC} +0.3	V
Op Amp 2 Input Differential Voltage (Pins 5,6)	V _{ID}	20	V
Voltage Reference Cathode Current (Pin 3)	I _K	100	mA
Power Dissipation	P _D	500	mW
Storage Temperature Range	T _{STG}	-65 to 150	°C
ESD Protection Voltage (Machine Model)		≥200	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

1/6 Version: B07

Pb RoHS

Dual Operational Amplifiers And Voltage Reference

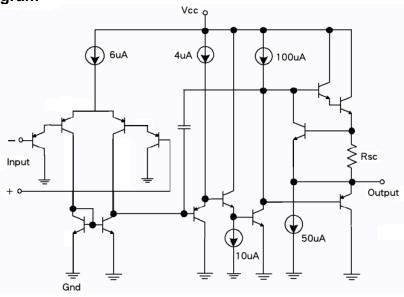
Recommended Operating Conditions

Parameter	Min.	Max.	Unit
Supply Voltage	3	18	V
Ambient Temperature	-40	85	°C

Electrical Characteristics (Operating Conditions: V_{CC} = +5V, TA= 25°C unless otherwise specified)

Parameters		Conditions	Min.	Тур.	Max.	Unit	
Total Supply Current, excluding Current in Voltage Reference		$V_{CC} = 5V$, no load, $-40^{\circ}C \le T_A \le 85^{\circ}C$		0.5	0.8	— mA	
		$V_{CC} = 18V$, no load, $-40^{\circ}C \le T_A \le 85^{\circ}C$		0.6	1.2		
Voltage Reference Sect	ion						
Deference Voltage		I _{KA} = 10mA, (TS103)	2.475	2.500	2.525	V	
Reference Voltage		I _{KA} = 10mA, (TS103A)	2.490	2.500	2.510		
Reference Voltage Deviat Over Full Temperature Ra		I _{KA} = 10mA, T _A =-40 to 85°C		5 5	24 17	m\/	
Minimum Cathode Curren for Regulation	t			0.2	1.0	mA	
Dynamic Impedance		V _{CC} = 1.0 to 80mA, f<1kHz		0.3	0.5	Ω	
OP AMP 1 Section (V _{CC} =	= 5V, V _O = 1.4V	, T _A = 25°C, unless otherwise noted)					
		T _A = 25°C (TS103)		0.5	3		
Input Offset Voltage		T _A = 25°C (TS103A)		0.5	2	mV	
		T _A = -40 to 85°C			5	1	
Input Offset Voltage Temperature Drift		T _A = -40 to 85°C		7		μV/°C	
Input Bias Current (Inverting Input Only)		T _A = 25°C		20	150	nA	
Large Signal Voltage Gain		$V_{CC} = 15V, R_{L} = 2k\Omega,$ $V_{O} = 1.4 \text{ to } 11.4V$	85	100		dB	
Power Supply Rejection Ratio		V _{CC} = 5 to I8V	70	90		dB	
0.15.10.55.1	Source	V _{CC} = 15V, V _{ID} = 1V, V _O = 2V	20	40		mA	
Output Current	Sink	$V_{CC} = 15V, V_{ID} = -1V, V_{O} = 2V$	10	20		mA	
Output Voltage Swing (High)		$V_{CC} = 18V, R_{L} = 10k\Omega, V_{ID} = 1V$	16	16.5		V	
Output Voltage Swing (Low)		$V_{CC} = 18V, R_{L} = 10k\Omega, V_{ID} = -1V$		17	100	mV	
Slew Rate		$V_{CC} = 18V, R_L = 2k\Omega, A_V = 1,$ $V_{IN} = 0.5 \text{ to } 2V, C_L = 100pF$	0.2	0.5		V/µs	
Gain Bandwidth Product		$V_{CC} = 18V, R_{L} = 2k\Omega, C_{L} = 100pF$ $V_{IN} = 10mV, f = 100kHz$	0.5	1		MHz	

2/6 Version: B07



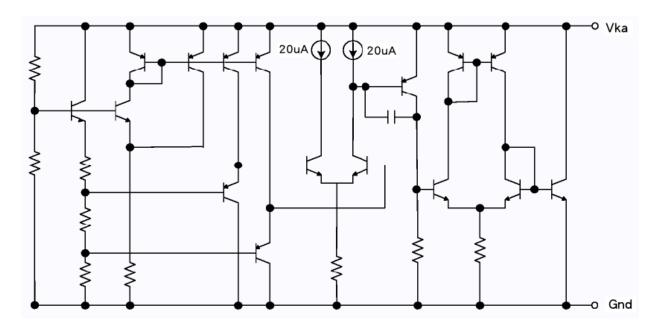
Dual Operational Amplifiers And Voltage Reference

Electrical Characteristics (Operating Conditions: V_{CC} = +5V, T_A= 25°C unless otherwise specified)

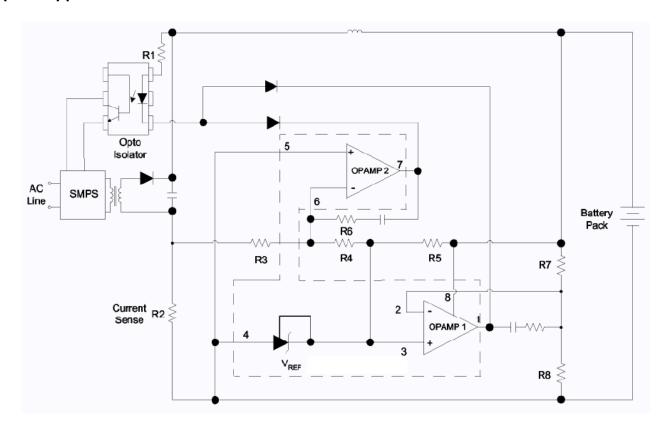
Parameters		Conditions	Min.	Тур.	Max.	Unit
OP AMP 2 Section (V _{CC} = 5V, V _O = 1.4V, T _A = 25°C, unless otherwise noted)						
Input Offset Voltage		T _A = 25°C (TS103)		0.5	3	mV
		T _A = 25°C (TS103A)		0.5	2	
		$T_A = -40 \text{ to } 85^{\circ}\text{C}$			5	
Input Offset Voltage Temperature Drift		T _A = -40 to 85°C		7		μV/°C
Input Bias Current		T _A = 25°C		20	150	nA
Input Voltage Range		V _{CC} = 0~18V	0	00	Vcc-1.5	V
Large Signal Voltage Gain		$V_{CC} = 15V, R_L = 2k\Omega,$ $V_O = 1.4 \text{ to } 11.4V$	85	100		dB
Power Supply Rejection F	Ratio	V _{CC} = 5 to I8V	70	90		dB
Output Current	Source	V _{CC} = 15V, V _{ID} = 1V, V _O = 2V	20	40		mA
Output Current	Sink	V _{CC} = 15V, V _{ID} = -1V, V _O = 2V	10	20		mA
Output Voltage Swing (Hi	gh)	$V_{CC} = 18V, R_L = 10k\Omega, V_{ID} = 1V$	16	16.5		V
Output Voltage Swing (Low)		$V_{CC} = 18V, R_L = 10k\Omega, V_{ID} = -1V$		17	100	mV
Slew Rate		$V_{CC} = 18V, R_L = 2k\Omega, A_V = 1,$ $V_{IN} = 0.5 \text{ to } 2V, C_L = 100pF$	0.2	0.5		V/µs
Gain Bandwidth Product		$V_{CC} = 18V, R_L = 2k\Omega, C_L = 100pF$ $V_{IN} = 10mV, f = 100kHz$	0.5	1		MHz

Function Block Diagram

OP AMP Function Block Diagram (Each Amplifier)

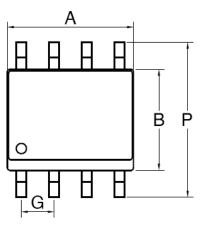

3/6 Version: B07

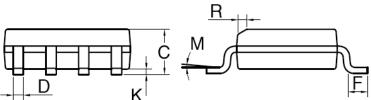
Pb RoHS COMPLIANCE


Dual Operational Amplifiers And Voltage Reference

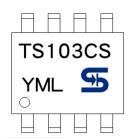
Function Block Diagram (Continue)

Voltage Reference Function Block Diagram


Typical Application Circuit



Dual Operational Amplifiers And Voltage Reference


SOP-8 Mechanical Drawing

SOP-8 DIMENSION					
DIM	MILLIMETERS		INCHES		
DIIVI	MIN	MAX	MIN	MAX.	
Α	4.80	5.00	0.189	0.196	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.05	BSC	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

Marking Diagram

Y = Year Code

M = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep,

J=Oct, K=Nov, L=Dec)

L = Lot Code

5/6 Version: B07

Dual Operational Amplifiers And Voltage Reference

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.