

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

Downloaded from Arrow.com.

October 2000 Revised September 2001

74LCXH245 Low Voltage Bidirectional Transceiver with Bushold

General Description

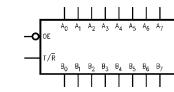
FAIRCHILD

SEMICONDUCTOR

The LCXH245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V and 3.3V) V_{CC} applications. The T/R input determines the direction of data flow through the device. The $\overline{\text{OE}}$ input disables both the A and B ports by placing them in a high impedance state.

The LCXH245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation. The LCXH16244 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

Features


- 5V tolerant control inputs
- 2.3V–3.6V V_{CC} specifications provided
- \blacksquare 7.0 ns t_{PD} max (V_{CC} = 3.3V), 10 $\mu A \ I_{CC}$ max
- Power down high impedance outputs
- ±24 mA output drive ($V_{CC} = 3.0V$)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- Bushold on inputs eliminates the need for external pull-up/pull-down resistors
- ESD performance: Human body model > 2000V Machine model > 200V

Ordering Code:

Order Number	Package Number	Package Description
74LCXH245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCXH245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCXH245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LCXH245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Pin Descriptions

Pin Names	Description
OE	Output Enable Input
T/R	Transmit/Receive Input
A ₀ -A ₇	Side A Inputs or 3-STATE Outputs (Bushold)
B ₀ -B ₇	Side B Inputs or 3-STATE Outputs (Bushold)

Connection Diagram

t∕R —	1	20	– v _{cc}
A ₀ —	2	19	- OE
A ₁ —	3	18	— в _о
A2 -	4	17	— В ₁
A3 —	5	16	— в ₂
A4 —	6	15	— В _З
A ₅ —	7	14	— В ₄
A ₆ —	8	13	— В ₅
A ₇ —	9	12	— В ₆
GND —	10	11	— В ₇

GTO[™] is a trademark of Fairchild Semiconductor Corporation.

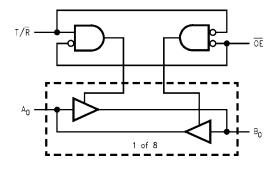
© 2001 Fairchild Semiconductor Corporation DS500363

www.fairchildsemi.com

dering code.

1 Fairchild Semiconductor Cor

Truth Table


74LCXH245

Inp	outs		
OE	T/R	Outputs	
L L		Bus $B_0 - B_7$ Data to Bus $A_0 - A_7$	
L	Н	Bus $A_0 - A_7$ Data to Bus $B_0 - B_7$	
н	х	HIGH Z State on $A_0 - A_7$, $B_0 - B_7$ (Note 1)	

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

Note 1: Unused bus terminals during HIGH Z State must be held HIGH or LOW.

Logic Diagram

www.fairchildsemi.com

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +7.0		V	
VI	T/R, OE	0.5 to +7.0		V	
	I/O Ports	-0.5 to V _{CC} + 0.5			
V _O	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V	
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 3)	v	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA	
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA	
		+50	$V_{O} > V_{CC}$	IIIA	
I _O	DC Output Source/Sink Current	±50		mA	
I _{CC}	DC Supply Current per Supply Pin	±100		mA	
I _{GND}	DC Ground Current per Ground Pin	±100		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

74LCXH245

Recommended Operating Conditions (Note 4)

Symbol	Parameter			Max	Units	
V _{CC}	Supply Voltage	2.0	3.6	V		
		Data Retention	1.5	3.6	v	
VI	Input Voltage		0	V _{CC}	V	
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V	
		3-STATE	0	5.5	v	
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24		
		V _{CC} = 3.0V - 3.6V V _{CC} = 2.7V - 3.0V		±12	mA	
		V _{CC} = 2.3V - 2.7V		±8		
T _A	Free-Air Operating Temperature		-40	85	°C	
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V - 2.0V$, $V_{CC} = 3.0V$		0	10	ns/V	

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Floating or unused control inputs must be HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Symbol	Falailietei	Conditions	(V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		v
			2.7 – 3.6	2.0		Ť
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
		2.7 - 3.6		0.8	Ň	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2		
		I _{OH} = -8 mA	2.3	1.8		v
		I _{OH} = -12 mA	2.7	2.2		
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 8mA	2.3		0.6	1
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	1
l _l	Input Leakage Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		±5.0	μΑ

74LCXH245

DC Electrical Characteristics (Continued)

$T_A = -40^{\circ}C$ to $+85^{\circ}C$ ٧_{cc} Symbol Parameter Conditions Units Min (V) Max Bushold Input Minimum $V_{IN} = 0.7V$ 45 II(HOLD) 2.3 Drive Hold Current $V_{IN} = 1.7V$ -45 μΑ $V_{IN} = 0.8V$ 75 3.0 $V_{IN} = 2.0V$ -75 Bushold Input Over-Drive (Note 6) 300 I_{I(OD)} 2.7 Current to Change State (Note 7) -300 μΑ 450 (Note 6) 3.6 -450 (Note 7) 3-STATE I/O Leakage 2.3 - 3.6 ±5.0 $V_0 = V_{CC} \text{ or } GND$ μΑ I_{OZ} I_{CC} Quiescent Supply Current $V_I = V_{CC}$ or GND 2.3 - 3.6 10 μΑ $3.6V \le V_I$, $V_O \le 5.5V$ (Note 5) 2.3 - 3.6±10 ΔI_{CC} Increase in I_{CC} per Input $V_{IH} = V_{CC} - 0.6V$ 2.3 - 3.6 500 μΑ

Note 5: Outputs disabled or 3-STATE only.

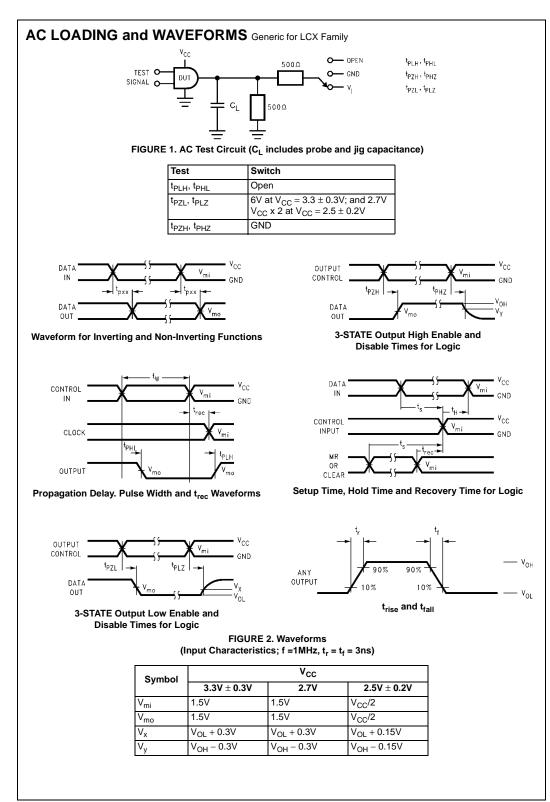
Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

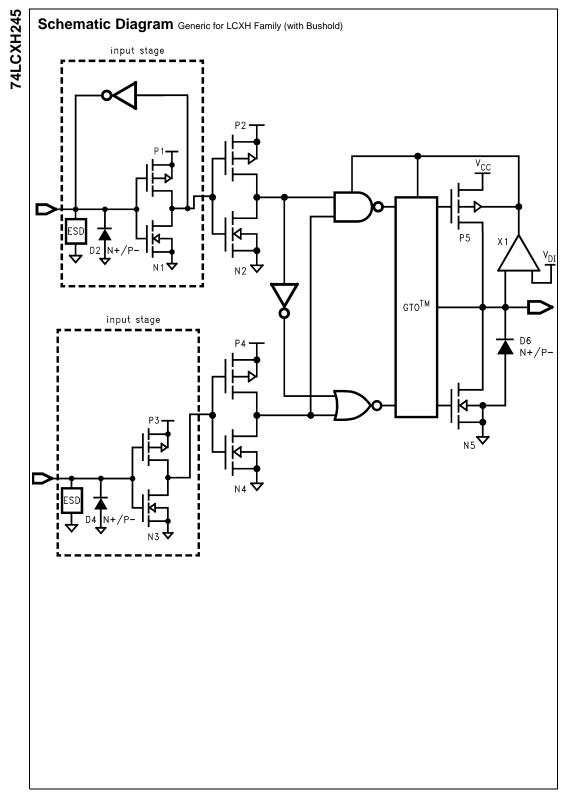
AC Electrical Characteristics

		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$						
Symbol	Parameter	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC} =	= 2.7V	V _{CC} = 2	$2.5V \pm 0.2V$	Units
		C _L = 50 pF		C _L = 50 pF		C _L = 30 pF		
		Min	Max	Min	Max	Min	Max	-
t _{PHL}	Propagation Delay	1.5	7.0	1.5	8.0	1.5	8.4	ns
t _{PLH}	A _n to B _n or B _n to A _n	1.5	7.0	1.5	8.0	1.5	8.4	
t _{PZL}	Output Enable Time	1.5	8.5	1.5	9.5	1.5	10.5	
t _{PZH}		1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PLZ}	Output Disable Time	1.5	7.5	1.5	8.5	1.5	9.0	ns
t _{PHZ}		1.5	7.5	1.5	8.5	1.5	9.0	ns
t _{OSHL}	Output to Output Skew		1.0					ns
t _{OSLH}	(Note 8)		1.0					115

Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

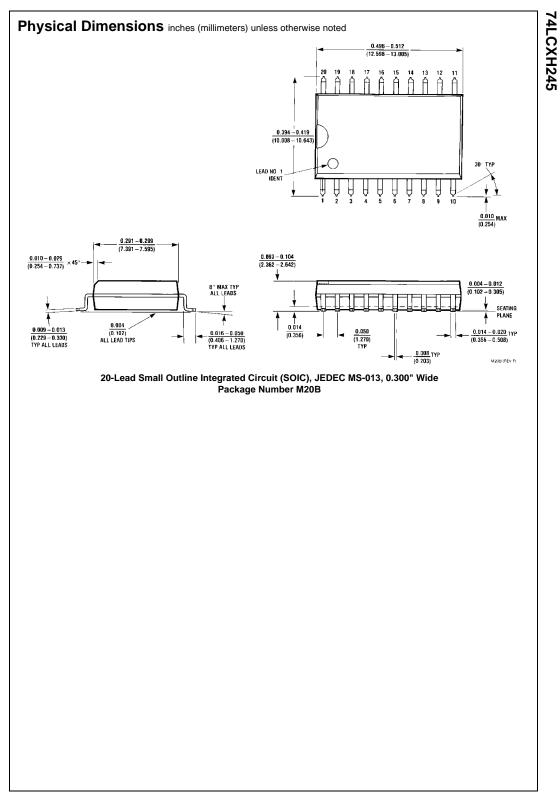

Dynamic Switching Characteristics

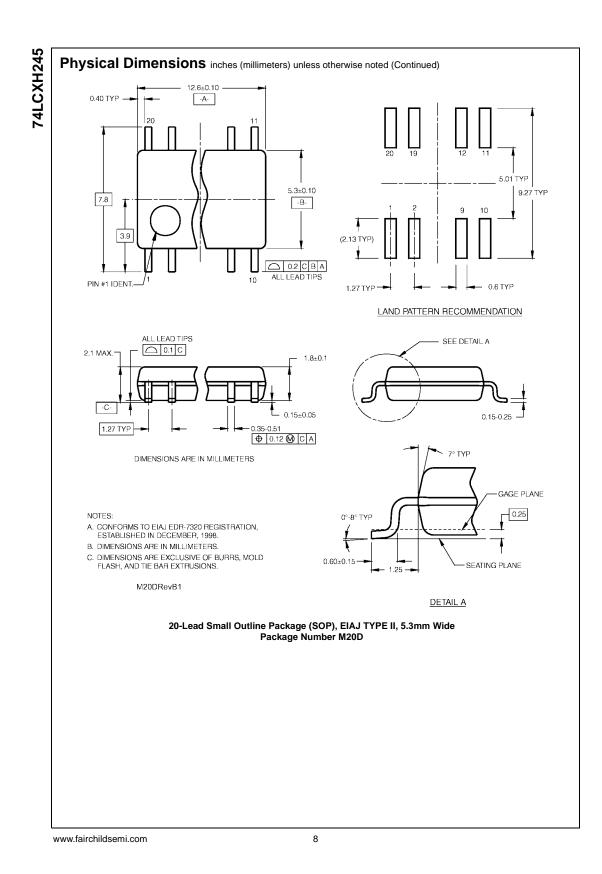
Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C	Units
Cymbol	T arameter			Typical	onita
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	-0.6	v

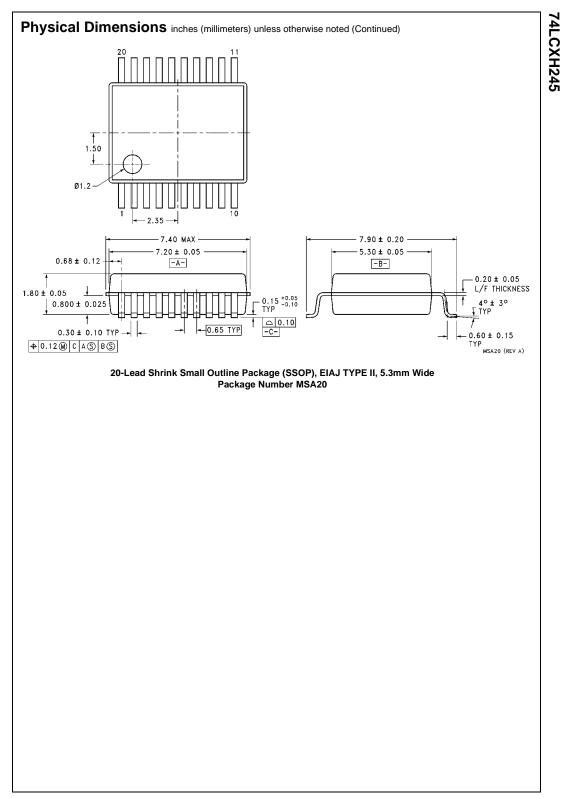

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10 MHz	25	pF

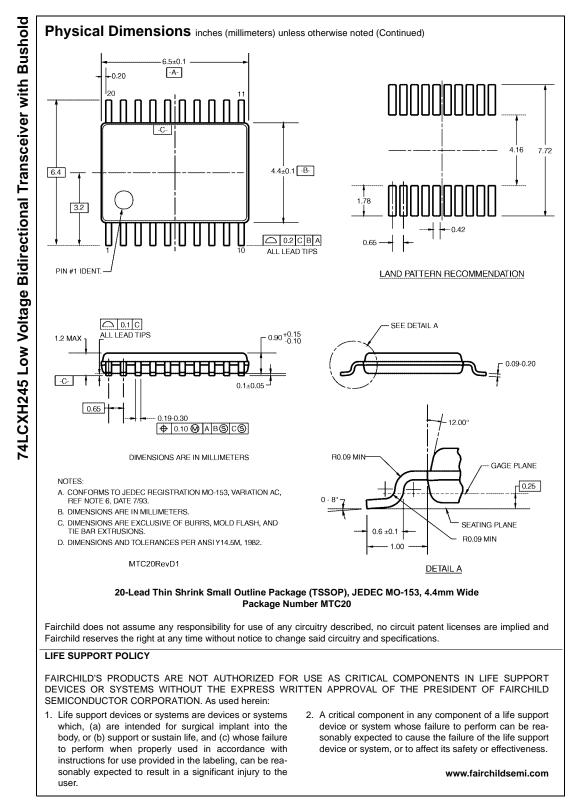
www.fairchildsemi.com




www.fairchildsemi.com



www.fairchildsemi.com


6

9

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC