

MOSFET – N-Channel, POWERTRENCH[®], SyncFET[™]

30 V, 14.8 A, 6.0 m Ω

FDMC7672S

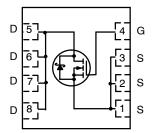
General Description

This FDMC7672S is produced using **onsemi**'s advanced POWERTRENCH process that has been especially tailored to minimize the on–state resistance. This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery packs.

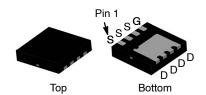
Features

- Max $R_{DS(on)} = 6.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 14.8 \text{ A}$
- Max $R_{DS(on)} = 7.1 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 12.4 \text{ A}$
- High Performance Technology for Extremely Low R_{DS(on)}
- Pb-Free, Halide Free and RoHS Compliant

Applications


- DC-DC Buck Converters
- Notebook Battery Power Management
- Load Switch in Notebook

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Symbol	Parameter	Value	Unit
V _{DS}	Drain to Source Voltage	30	٧
V _{GS}	Gate to Source Voltage	±20	٧
I _D	Drain Current: Continuous, T _C = 25°C Continuous, T _A = 25°C (Note 1a) Pulsed	18 14.8 45	A
E _{AS}	Single Pulse Avalanche Energy (Note 3)	60	mJ
P _D	Power Dissipation: T _C = 25°C T _A = 25°C (Note 1a)	36 2.3	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{DS}	R _{DS(ON)} MAX	I _D MAX
30 V	6.0 m Ω @ 10 V	14.8 A
	7.1 mΩ @ 4.5 V	

N-CHANNEL MOSFET

WDFN8 3.3 × 3.3, 0.65P CASE 511DQ (Option A)

MARKING DIAGRAM

A = Assembly Location XY = 2-Digit Date Code

KK = 2-Digit Lot Run Traceability Code

FDMC7672S = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMC7672S	WDFN8 (Pb-Free, Halide Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Downloaded from Arrow.com.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	3.5	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	53	

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
FF CHARA	ACTERISTICS		•	•	•	•
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	30	_	-	V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 10 mA, referenced to 25°C	-	12	_	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	-	-	1	mA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = 20 V, V _{DS} = 0 V	-	-	100	nA
N CHARA	CTERISTICS (Note 2)					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	1.2	1.6	3.0	V
$\Delta V_{GS(th)} / \Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 10 mA, referenced to 25°C	-	-6	_	mV/°C
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 14.8 A	-	5.0	6.0	mΩ
		V _{GS} = 4.5 V, I _D = 12.4 A	-	6.1	7.1	
		V _{GS} = 10 V, I _D = 14.8 A, T _J = 125°C	-	5.9	9.0	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 14.8 A	-	78	_	S
YNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	-	1895	2520	pF
C _{oss}	Output Capacitance		-	770	1025	pF
C _{rss}	Reverse Transfer Capacitance		-	85	130	pF
R_g	Gate Resistance	f = 1 MHz	-	1.2	3.2	Ω
WITCHING	CHARACTERISTICS	•				
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, I_D = 14.8 \text{ A}, V_{GS} = 10 \text{ V},$	-	11	21	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	-	4	10	ns
t _{d(off)}	Turn-Off Delay Time		-	26	42	ns
t _f	Fall Time		-	3	10	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V, V _{DD} = 15 V, I _D = 14.8 A	-	30	42	nC
		$V_{GS} = 0 \text{ V to } 4.5 \text{ V, } V_{DD} = 15 \text{ V,}$ $I_D = 14.8 \text{ A}$	-	14	20	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 15 V, I _D = 14.8 A	-	5.3	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	V _{DD} = 15 V, I _D = 14.8 A	_	4.0	_	nC

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS						
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 14.8 A (Note 2)	-	0.8	1.3	V
		V _{GS} = 0 V, I _S = 1.9 A (Note 2)	-	0.5	1.2	
t _{rr}	Reverse Recovery Time	I _F = 14.8 A, di/dt = 300 A/μs	_	29	45	ns
Q _{rr}	Reverse Recovery Charge		_	28	44	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

 a) 53°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 125°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. E_{AS} of 60 mJ is based on starting $T_{J} = 25^{\circ}C$, L = 1 mH, $I_{AS} = 11$ A, $V_{DD} = 27$ V, $V_{GS} = 10$ V. 100% test at L = 3 mH, $I_{AS} = 4.8$ A.

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

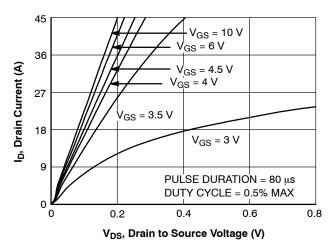


Figure 1. On-Region Characteristics

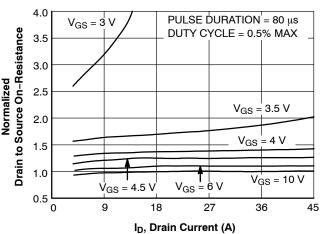


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

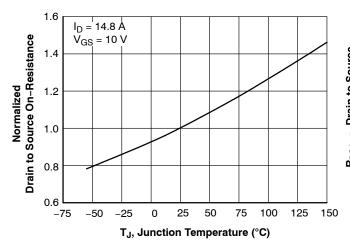


Figure 3. Normalized On–Resistance vs. Junction Temperature

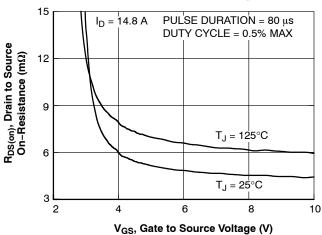


Figure 4. On-Resistance vs. Gate to Source Voltage

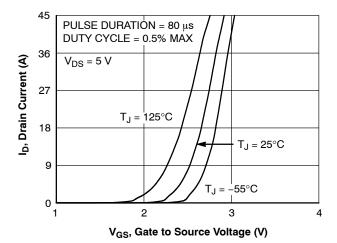


Figure 5. Transfer Characteristics

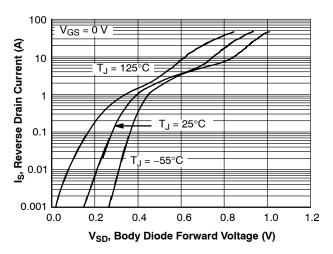
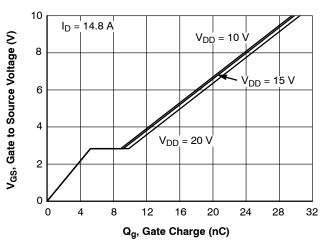
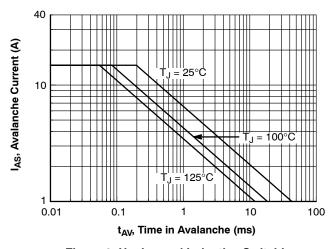



Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$



5000

To action of the second of the second

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs. Drain to Source Voltage

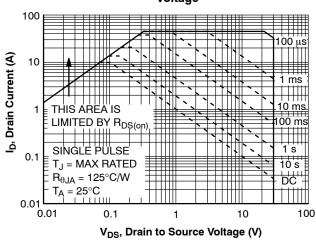


Figure 9. Unclamped Inductive Switching Capability

Figure 10. Forward Bias Safe Operating Area

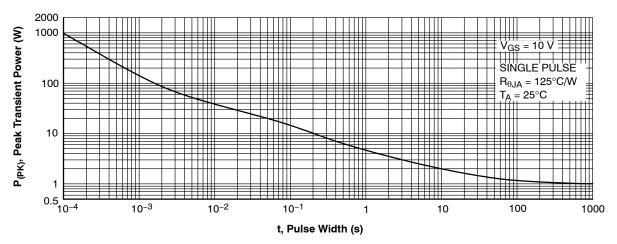


Figure 11. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

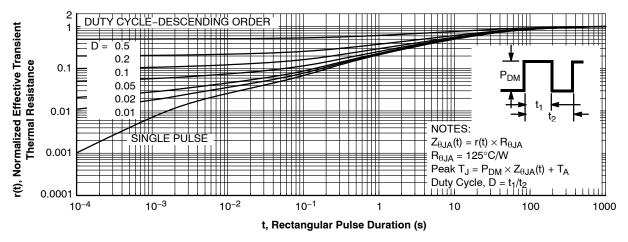


Figure 12. Junction-to-Ambient Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (continued)

SyncFET Schottky Body Diode Characteristics

onsemi's SyncFET process embeds a Schottky diode in parallel with POWERTRENCH MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 13 shows the reverse recovery characteristic of the FDMC7672S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

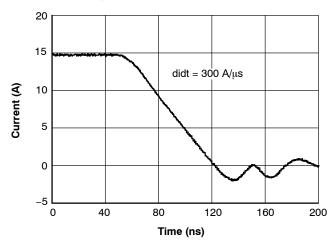


Figure 13. SyncFET Body Diode Reverse Recovery Characteristics

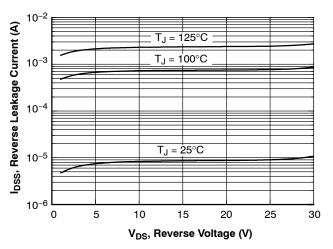
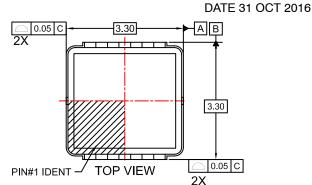
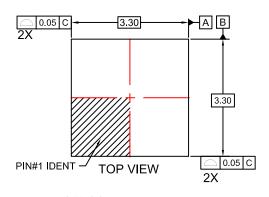
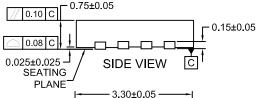
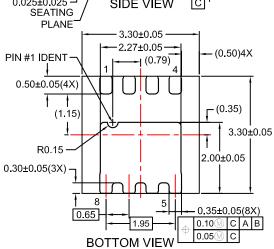


Figure 14. SyncFET Body Diode Reverse Leakage vs. Drain-Source Voltage

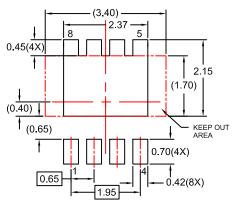

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

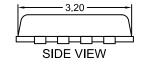

SyncFET is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

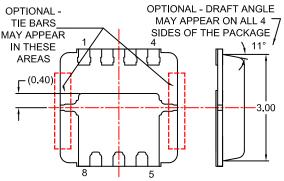



WDFN8 3.3x3.3, 0.65P

CASE 511DQ ISSUE O





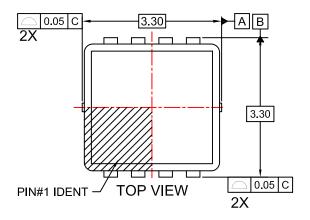


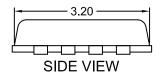
(OPTION A)

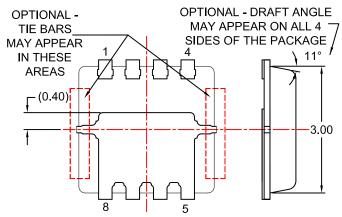
ALL DIMENSIONS AS PER OPTION A
UNLESS SPECIFIED
BOTTOM VIEW
(OPTION B)

RECOMMENDED LAND PATTERN

DOCUMENT NUMBER: 98AON13648G


Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.


PAGE 1 OF 2


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

WDFN8 3.3x3.3, 0.65P CASE 511DQ ISSUE O

DATE 31 OCT 2016

ALL DIMENSIONS AS PER OPTION A
UNLESS SPECIFIED
BOTTOM VIEW
(OPTION C)

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-240.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN
- E. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. BURRS OR MOLD FLASH SHALL NOT EXCEED 0.10MM.

DOCUMENT NUMBER:	98AON13648G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

