MOSFET – N-Channel, SUPERFET® II, Easy-Drive

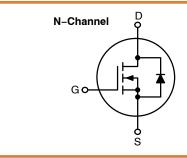
600 V, 20.6 A, 190 mΩ

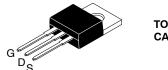
FCP190N60E, FCPF190N60E

Description

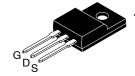
SUPERFET II MOSFET is **onsemi**'s brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SUPERFET II MOSFET easy-drive series offers slightly slower rise and fall times compared to the SUPERFET II MOSFET series. Noted by the "E" part number suffix, this family helps manage EMI issues and allows for easier design implementation. For faster switching in applications where switching losses must be at an absolute minimum, please consider the SUPERFET II MOSFET series.

Features


- 650 V @ $T_J = 150$ °C
- Typ. $R_{DS(on)} = 160 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 63 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 178 pF)
- 100% Avalanche Tested
- An Integrated Gate Resistor
- RoHS Compliant


Applications

- LCD / LED / PDP TV Lighting
- Solar Inverter
- AC-DC Power Supply


V _{DS}	R _{DS(ON)} MAX	I _D MAX	
600 V	190 mΩ @ 10 V	20.6 A*	

^{*}Drain current limited by maximum junction temperature.

TO-220-3LD CASE 340AT

TO-220 Fullpack, 3-Lead / TO-220F-3SG CASE 221AT

MARKING DIAGRAM

XXX190N60E = Device Code (XXX = FCP, FCPF)

A = Assembly Location YWW = Date Code (Year & Week)

ZZ = Assembly Lot

ORDERING INFORMATION

Device	Package	Shipping
FCP190N60E	TO-220	800 Units / Tube
FCPF190N60E	TO-220F	1000 Units / Tube

MOSFET MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol		Parameter	FCP190N60E	FCPF190N60E	Unit
V_{DSS}	Drain to Source Voltage		6	600	
V_{GSS}	Gate to Source Voltage	-DC	±	±20 ±30	
		-AC (f > 1 Hz)	±		
I _D	Drain Current	– Continuous (T _C = 25°C)	20.6	20.6*	Α
		– Continuous (T _C = 100°C)	13.1	13.1*	
I _{DM}	Drain Current	- Pulsed (Note 1)	61.8	61.8*	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		4	400	
I _{AR}	Avalanche Current (Note 1)		4	4.0	
E _{AR}	Repetitive Avalanche Energy (Note 1)		2	2.1	
dv/dt	MOSFET dv/dt		1	100	
	Peak Diode Recovery dv/dt (Note 3)		2	20	
P_{D}	Power Dissipation	(T _C = 25°C)	208	39	W
		-Derate above 25°C	1.67	0.31	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		–55 to	-55 to +150	
T_L	Maximum Lead Temperat 1/8" from Case for 5 Seco	d Temperature for Soldering, 300 e for 5 Seconds		°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. *Drain current limited by maximum junction temperature.

1. Repetitive rating: pulse–width limited by maximum junction temperature.

2. $I_{AS} = 4 \text{ A}$, $V_{DD} = 50 \text{ V}$, $R_{G} = 25 \Omega$, starting $T_{J} = 25^{\circ}\text{C}$.

3. $I_{SD} \le 10 \text{ A}$, $di/dt \le 200 \text{ A}/\mu\text{s}$, $V_{DD} \le BV_{DSS}$, starting $T_{J} = 25^{\circ}\text{C}$.

THERMAL CHARACTERISTICS

Symbol	Parameter	FCP190N60E	FCPF190N60E	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max.	0.6	3.2	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	62.5	

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS				•	
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 10 \text{ mA}, T_J = 25^{\circ}\text{C}$	600	_	_	V
		V _{GS} = 0 V, I _D = 10 mA, T _J = 150°C	650	<u> </u>	-	
ΔBV_{DSS}	Breakdown Voltage Temperature Coefficient	I _D = 10 mA, referenced to 25°C	-	0.67	-	V/°C
ΔT_J	Coefficient					
BV _{DS}	Drain to Source Avalanche Breakdown Voltage	V _{GS} = 0 V, I _D = 20 A	-	700	_	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 600 V, V _{GS} = 0 V	-	_	1	μΑ
		V _{DS} = 480 V, T _C = 125°C	-	2.8	-	
I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	-	_	±100	nA
ON CHARA	CTERISTICS				•	
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.5	_	3.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 10 A	-	0.16	0.19	Ω
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 10 A	-	20	-	S
DYNAMIC (CHARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	-	2385	3175	pF
C _{oss}	Output Capacitance]	-	1795	2396	pF
C _{rss}	Reverse Transfer Capacitance	1	-	110	165	pF
C _{oss}	Output Capacitance	V _{DS} = 380 V, V _{GS} = 0 V, f = 1 MHz	_	42	-	pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 480 V, V _{GS} = 0 V	-	178	-	pF
Q _{g(tot)}	Total Gate Charge at 10 V	V _{DS} = 380 V, I _D = 10 A, V _{GS} = 10 V	-	63	82	nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)	-	10	-	nC
Q_{gd}	Gate to Drain "Miller" Charge]	_	24	-	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	5	-	Ω
SWITCHING	G CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 300 \text{ V}, I_D = 10 \text{ A}, V_{GS} = 10 \text{ V},$	-	23	56	ns
t _r	Turn-On Rise Time	$R_G = 4.7 \Omega$ (Note 4)	-	14	38	ns
t _{d(off)}	Turn-Off Delay Time]	_	101	212	ns
t _f	Turn-Off Fall Time]	_	15	40	ns
DRAIN-SO	URCE DIODE CHARACTERISTICS					
I _S	Maximum Continuous Drain to Source Diode Forward Current			_	20.2	Α
I _{SM}	Maximum Pulsed Drain to Source Diode	Forward Current	-	-	60.6	Α
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 10 A	-	-	1.2	V
t _{rr}	Reverse Recovery Time	V_{GS} = 0 V, I_{SD} = 10 A, dI_F/dt = 100 A/ μ s	-	308	-	ns
Q _{rr}	Reverse Recovery Charge	1	-	4.8	-	μС

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

ID, Drain Current (A)

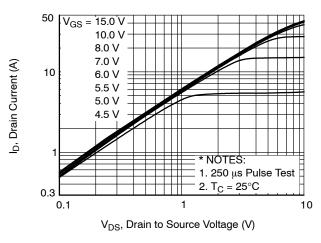


Figure 1. On-Region Characteristics

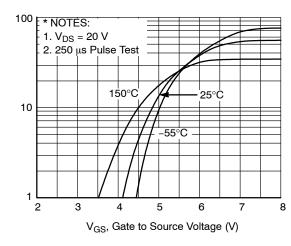


Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

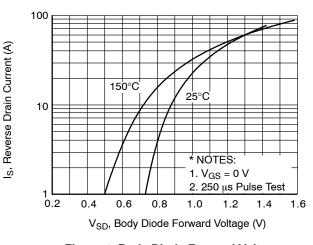


Figure 4. Body Diode Forward Voltage Variation vs. Source Current And Temperature

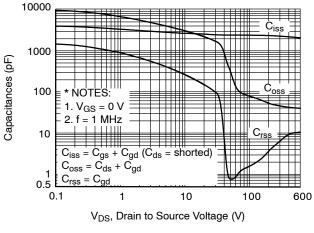


Figure 5. Capacitance Characteristics

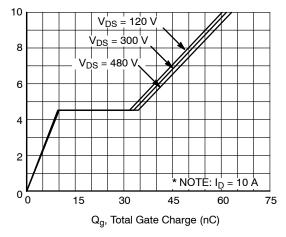


Figure 6. Gate Charge Characteristics

V_{GS}, Gate to Source Voltage (V)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

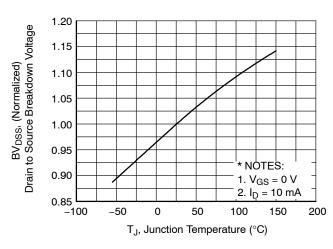


Figure 7. Breakdown Voltage Variation vs. Temperature

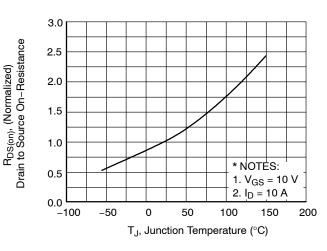


Figure 8. On-Resistance Variation vs. Temperature

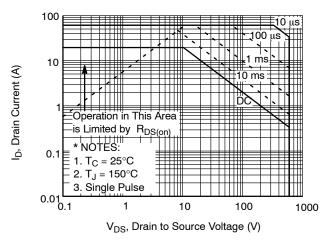


Figure 9. Maximum Safe Operating Area for FCP190N60E

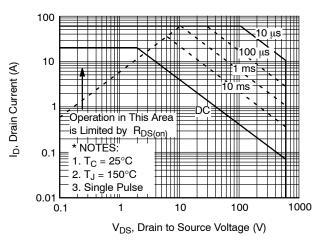


Figure 10. Maximum Safe Operating Area for FCPF190N60E

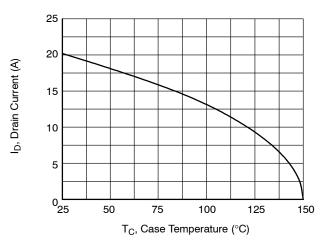


Figure 11. Maximum Drain Current vs. Case Temperature

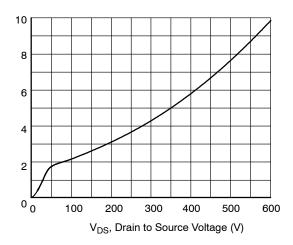


Figure 12. E_{OSS} vs. Drain to Source Voltage

E_{oss}, (μJ)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

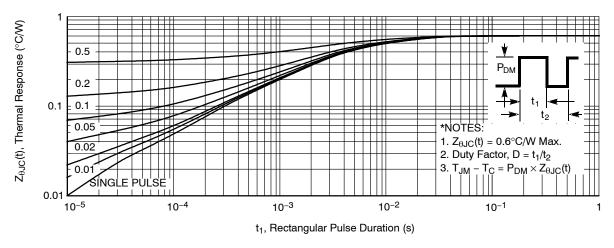


Figure 13. Transient Thermal Response Curve for FCP190N60E

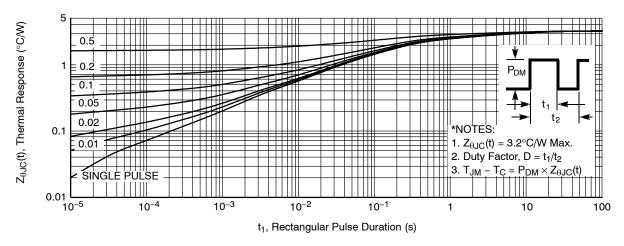


Figure 14. Transient Thermal Response Curve for FCPF190N60E

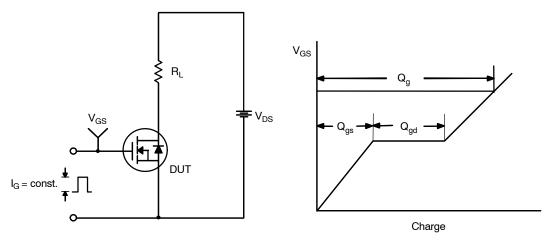


Figure 15. Gate Charge Test Circuit & Waveform

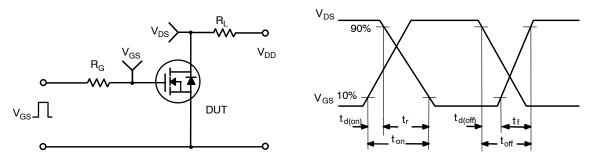


Figure 16. Resistive Switching Test Circuit & Waveforms

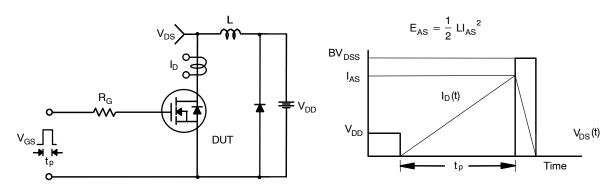
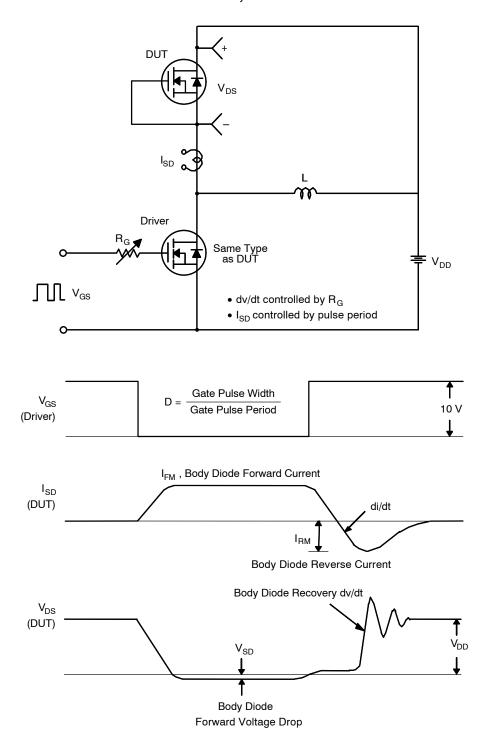
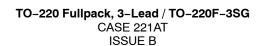
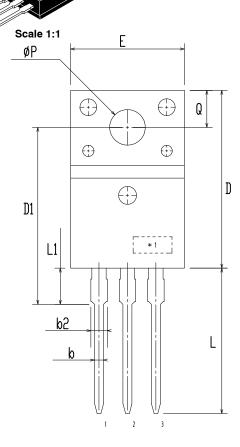
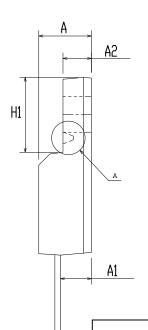
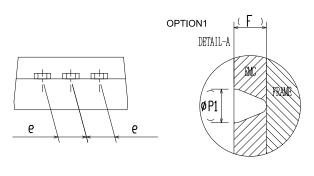


Figure 17. Unclamped Inductive Switching Test Circuit & Waveforms


Figure 18. Peak Diode Recovery dv/dt Test Circuit & Waveforms


SUPERFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



DATE 19 JAN 2021

DIM	MIL	LIMITERS	
ויונע	MIN	NDM	MAX
Α	4.50	4.70	4.90
A1	2.56	2.76	2.96
A2	2.34	2.54	2.74
b	0.70	0.80	0.90
b2	*	2	1.47
С	0.45	0.50	0.60
D	15.67	15.87	16.07
D1	15.60	15.80	16.00
E	9.96	10.16	10.36
е	2.34	2.54	2.74
F	2	0.84	2
H1	6.48	6.68	6.88
L	12.78	12.98	13.18
L1	3.03	3.23	3.43
ØΡ	2.98	3.18	3.38
ø P1	~	1.00	~
Q	3,20	3.30	3.40

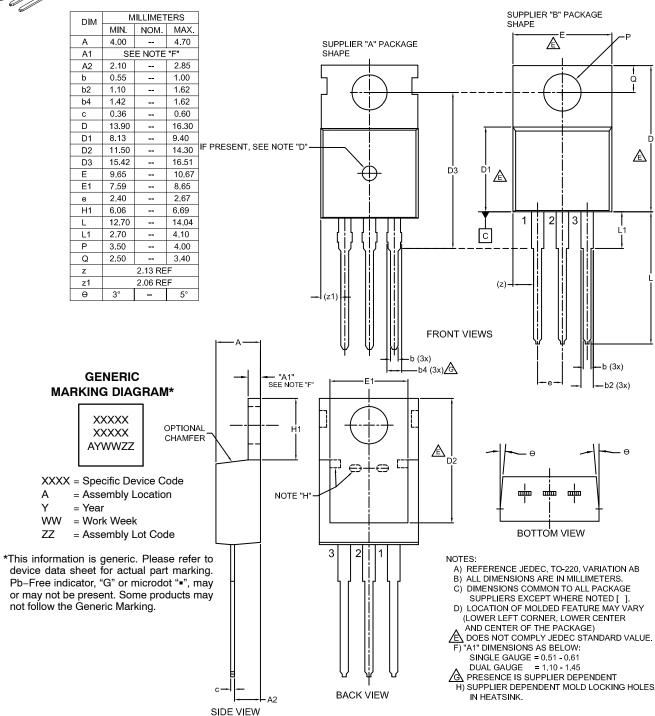
NOTES:

- A. DIMENSION AND TOLERANCE AS ASME Y14.5-2009
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUCSIONS.

C

C. OPTION 1 - WITH SUPPORT PIN HOLE OPTION 2 - NO SUPPORT PIN HOLE

DOCUMENT NUMBER:		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220 FULLPACK, 3-LEAD / TO-220F-3SG		PAGE 1 OF 1	


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DIM MIN. A 4.00 A1 SE A2 2.10 b 0.55

TO-220-3LD CASE 340AT ISSUE B

DATE 08 AUG 2022

DOCUMENT NUMBER:	98AON13818G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

