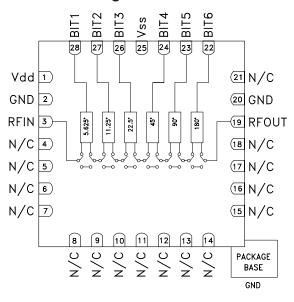


HMC649ALP6E

00 0415


GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 3 - 6 GHz

Typical Applications

The HMC649ALP6E is ideal for:

- EW Receivers
- Weather & Military Radar
- Satellite Communications
- Beamforming Modules
- Phase Cancellation

Functional Diagram

Features

Low RMS Phase Error: 4° Low Insertion Loss: 8 dB High Linearity: +40 dBm Positive Control Logic

360° Coverage, LSB = 5.625°

28 Lead QFN Leadless SMT Package: 36mm²

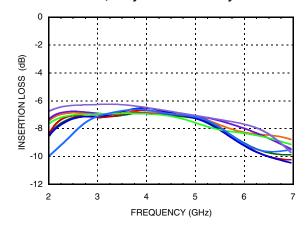
General Description

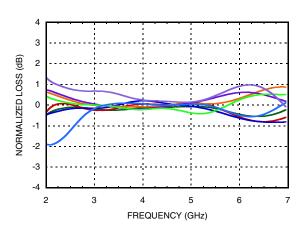
The HMC649ALP6E is a 6-bit digital phase shifter which is rated from 3 to 6 GHz, providing 360 degrees of phase coverage, with a LSB of 5.625 degrees. The HMC649ALP6E features very low RMS phase error of 4 degrees and extremely low insertion loss variation of ±0.5 dB across all phase states. This high accuracy phase shifter is controlled with positive control logic of 0/+5V The HMC649ALP6E is housed in a compact 6x6 mm plastic leadless SMT package and is internally matched to 50 Ohms with no external components.

Electrical Specifications

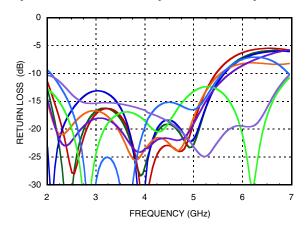
 $T_A = +25^{\circ}$ C, Vss= -5V, Vdd= +5V, control Voltage = 0/ +5V, 50 Ohm System

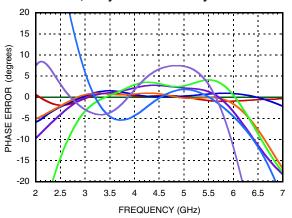
Parameter		Min.	Тур.	Max.	Units
Frequency Range		3		6	GHz
Insertion Loss*			8	10.5	dB
Input Return Loss*			13		dB
Output Return Loss*			10		dB
	3.0 -5.5 GHz 5.5 -6.0 GHz		±5 -10	+15 / -25 +15 / -32	deg
RMS Phase Error			4		deg
Insertion Loss Variation*			±0.5		dB
Input Power for 1 dB Compression			31		dBm
Input Third Order Intercept			40		dBm
Control Voltage Current			35	250	μΑ
Bias Control Current			5	15	mA

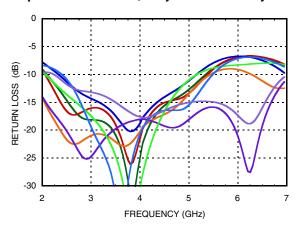

^{*}Note: Major Ctatas Chaun

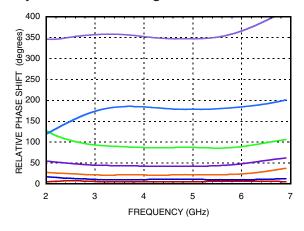


GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 3 - 6 GHz


Insertion Loss, Major States Only

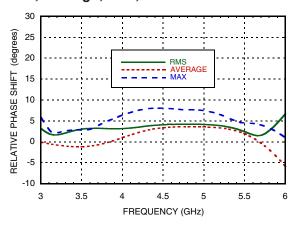

Normalized Loss, Major States Only

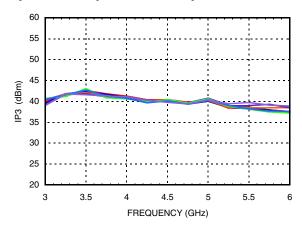

Input Return Loss, Major States Only


Phase Error, Major States Only

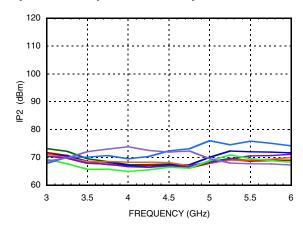
Output Return Loss, Major States Only

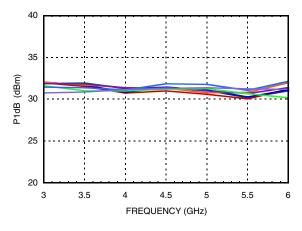
Relative Phase Shift Major States Including All Bits

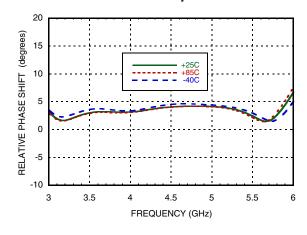

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

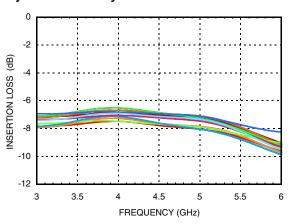


GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 3 - 6 GHz


Relative Phase Shift, RMS, Average, Max, All States

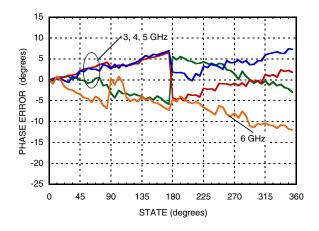

Input IP3, Major States Only


Input IP2, Major States Only


Input P1dB, Major States Only

RMS Phase Error vs. Temperature

Insertion Loss vs. Temperature, Major States Only



GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 3 - 6 GHz

Phase Error vs. State

Bias Voltage & Current

Vdd	Idd
5.0	5.4mA
Vss	Iss
-5.0	5.4mA

Control Voltage

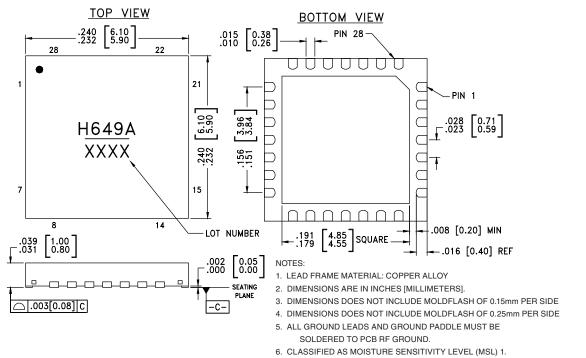
State	Bias Condition	
Low (0)	0 to 0.2 Vdc	
High (1)	Vdd ±0.2 Vdc @ 35 μA Typ.	

Absolute Maximum Ratings

	1
Input Power (RFIN)	32 dBm (T= +85 °C)
Bias Voltage Range (Vdd)	-0.2 to +12V
Bias Voltage Range (Vss)	+0.2 to -12V
Channel Temperature (Tc)	150 °C
Thermal Resistance (channel to ground paddle)	200 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class1A (Passed 250V)

Truth Table

Control Voltage Input				Phase Shift (Degrees)			
Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	RFIN - RFOUT	
0	0	0	0	0	0	Reference*	
1	0	0	0	0	0	5.625	
0	1	0	0	0	0	11.25	
0	0	1	0	0	0	22.5	
0	0	0	1	0	0	45.0	
0	0	0	0	1	0	90.0	
0	0	0	0	0	1	180.0	
1	1	1	1	1	1	354.375	


Any combination of the above states will provide a phase shift approximately equal to the sum of the bits selected. *Reference corresponds to monotonic setting

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 3 - 6 GHz

Outline Drawing

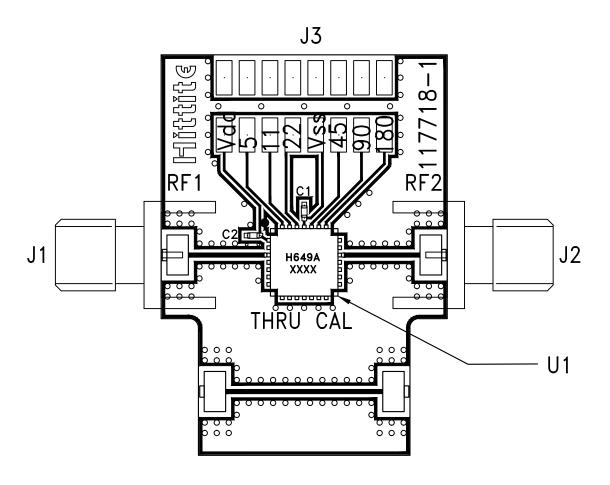
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC649ALP6E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 ^[1]	H649A XXXX

^[1] Max peak reflow temperature of 260 °C

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vdd	Voltage Supply	
2, 20	GND	These pins and exposed ground paddle must be connected to RF/DC ground.	○ GND =
3	RFIN	This port is DC coupled and matched to 50 Ohms.	RFIN O
4 - 18, 21	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
19	RFOUT	This port is DC coupled and matched to 50 Ohms.	○ RFOUT
22 - 24 26 - 28	BIT6, BIT5, BIT4, BIT3, BIT2, BIT1	Control Input. See truth table and control voltage tables.	
25	Vss	Voltage Supply	


^{[2] 4-}Digit lot number XXXX

Evaluation PCB

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 3 - 6 GHz

List of Materials for Evaluation PCB EV1HMC649ALP5 [1][3]

Item	Description	
J1 - J2	PCB Mount SMA RF Connector	
J3	Header 2mm, 16 pins	
C1, C2	1000pF, 0402 pkg	
U1	HMC649ALP6E 6-Bit Digital Phase Shifter	
PCB [2]	117718 Evaluation PCB	

- [1] Reference this number when ordering complete evaluation PCB
- [2] Circuit Board Material: Rogers 4350
- [3] Please refer to part's pin description and functional diagram for pin out assignments on evaluation board.

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.