

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918

Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

DIGI POT 12 Click

PID: MIKROE-5656

DIGI POT 12 Click is a compact add-on board that contains a digitally controlled potentiometer. This board features the AD5142A, a dual-channel, 256-position nonvolatile digital potentiometer from Analog Devices. On this Click board $^{\text{TM}}$, two digitally I2C-controlled potentiometers are realized with end-to-end resistance of $10\text{K}\Omega$ and wiper resistance of only 40Ω . The DIGI POT 12 Click can be used in potentiometer and linear gain modes. This Click board $^{\text{TM}}$ makes the perfect solution for the development of mechanical potentiometer replacements, voltage-to-current conversions, gain and offset adjustment, and many other applications.

How does it work?

DIGI POT 12 Click is based on the AD5142A, a dual-channel, 256-position nonvolatile digital potentiometer from Analog Devices. The resistor wiper position is determined by the RDAC register contents, that act as a scratchpad register, allowing unlimited changes of resistance settings. The scratchpad register can be programmed with any position setting using the standard I2C interface by loading the 16-bit data word. The nominal resistance of the RDAC between terminals A and terminals B (RAB) is $10 \mathrm{K}\Omega$ with 8-bit RDAC latch data decoded to select one of the 256 possible wiper settings. When a desired position is found, this value can be stored in the onboard EEPROM memory; thus, the wiper position is always restored for subsequent power-ups. The EEPROM data can be read back, written independently, and protected by software.

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
ISO 14001: 2015 certification of environmental management system.
OHSAS 18001: 2008 certification of occupational health and safety management system.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918

Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

www.mikroe.com

This Click board™ communicates with MCU through a standard 2-Wire I2C interface and operates at Standard (100KHz) and Fast (400KHz) data transfer modes. The I2C address can be selected via the ADDR SEL jumpers with 0 selected by default. There is an RST pin for resetting the digital potentiometers RDAC registers from EEPROM, with active LOW logic. In addition, this Click board™ comes with the INDEP SEL jumper that allows you to choose between the potentiometer and the linear gain setting mode, with the potentiometer mode set by default (0).

The linear gain setting mode of operation can control the potentiometer as two independent rheostats connected at a single point. Once the jumper is set, it can not be disabled by software. In addition, there is a burst mode in which multiple data bytes can be sent to the host MCU. The Shutdown mode places the RDAC in a zero power consumption while the data in EEPROM remains. There is no polarity constraint between the B, W, and A on both terminals, but they can not be higher than the VCC (5V maximum) nor lower than the VSS (0V).

This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

Specifications

Туре	Digital potentiometer
Applications	Can be used for the development of mechanical potentiometer replacements, voltage-to-current conversions, gain and offset adjustment, and many other applications
On-board modules	AD5142A - digital potentiometer from Analog Devices
Key Features	Dual-channel, 256-position resolution, $10k\Omega$ nominal resistance, I2C-compatible interface, nonvolatile memory stores wiper settings, 50 years of typical data retention, and more
Interface	I2C
Feature	ClickID

PILKTOE PRODUCES ENTIRE DEVELOPMENT POOICNAINS FOR All MAJOR MICROCONTROLLER ARCHITECTURES.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system. ISO 14001: 2015 certification of environmental management system. OHSAS 18001: 2008 certification of occupational health and safety management system.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918
Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

www.mikroe.com

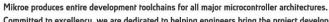
Compatibility	mikroBUS™
Click board size	M (42.9 x 25.4 mm)
Input Voltage	3.3V or 5V

Pinout diagram

This table shows how the pinout on DIGI POT 12 Click corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).

Notes	Pin	mikro™ BUS				Pin	Notes
	NC	1	AN	PWM	16	NC	
Reset	RST	2	RST	INT	15	NC	
ID COMM	CS	3	CS	RX	14	NC	
	NC	4	SCK	TX	13	NC	
	NC	5	MISO	SCL	12	SCL	I2C Clock
	NC	6	MOSI	SDA	11	SDA	I2C Data
Power Supply	3.3V	7	3.3V	5V	10	5V	Power Supply
Ground	GND	8	GND	GND	9	GND	Ground

Onboard settings and indicators


Label	Name	Default	Description
LD1	PWR	-	Power LED Indicator
JP1	VCC SEL	Left	Power/Logic Level Voltage Selection 3V3/5V: Left position 3V3, Right position 5V
JP2	INDEP SEL	Left	Operating Mode Selection 0/1: Left position 0, Right position 1
JP3-JP4	ADDR SEL	Left	I2C Address Selection 0/1: Left position 0, Right position 1

DIGI POT 12 Click electrical specifications

Description	Min	Тур	Max	Unit
Supply Voltage	3.3	-	5	V
Nominal Resistance	-	10	-	kΩ
Number of Taps	-	-	256	-
Resolution	8	-	-	bits

Software Support

We provide a library for the DIGI POT 12 Click as well as a demo application (example), developed using MIKROE <u>compilers</u>. The demo can run on all the main MIKROE <u>development boards</u>.

health and safety management system.

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918 Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com

Package can be downloaded/installed directly from NECTO Studio Package Manager (recommended), downloaded from our <u>LibStock™</u> or found on <u>Mikroe github account</u>.

www.mikroe.com

Library Description

This library contains API for DIGI POT 12 Click driver.

Key functions

- digipot12 set resistance DIGI POT 12 set the resistance function.
- digipot12 get resistance DIGI POT 12 get the resistance function.

Example Description

This library contains API for DIGI POT 12 Click driver. The demo application uses a digital potentiometer to change the resistance values of both channels.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager (recommended), downloaded from our <u>LibStock™</u> or found on <u>Mikroe github</u> account.

Other Mikroe Libraries used in the example:

- MikroSDK.Board
- MikroSDK.Log
- Click.DIGIPOT12

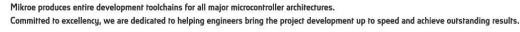
Additional notes and informations

Depending on the development board you are using, you may need <u>USB UART click</u>, <u>USB UART 2 Click</u> or <u>RS232 Click</u> to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MIKROE <u>compilers</u>.

mikroSDK

This Click board[™] is supported with mikroSDK - MIKROE Software Development Kit, that needs to be downloaded from the LibStock and installed for the compiler you are using to ensure proper operation of mikroSDK compliant Click board[™] demo applications.

For more information about mikroSDK, visit the official page.


Resources

mikroBUS™

mikroSDK

Click board™ Catalog

Click boards™

ISO 27001: 2013 certification of informational security management system.
ISO 14001: 2015 certification of environmental management system.
OHSAS 18001: 2008 certification of occupational health and safety management system.

Time-saving embedded tools

MIKROELEKTRONIKA D.O.O, Batajnički drum 23, 11000 Belgrade, Serbia VAT: SR105917343 Registration No. 20490918

Phone: + 381 11 78 57 600 Fax: + 381 11 63 09 644 E-mail: office@mikroe.com www.mikroe.com

ClickID

Downloads

DIGI POT 12 click example on Libstock

DIGI POT 12 click 2D and 3D files v100

AD5142A datasheet

DIGI POT 12 click schematic v100

Mikroe produces entire development toolchains for all major microcontroller architectures. Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

