

Voltage Regulator – Low Dropout, Reset, Sense

5.0 V, 100 mA

NCV4949C

The NCV4949C is a monolithic integrated 5.0 V voltage regulator with a very low dropout and additional functions such as reset and an uncommitted voltage sense comparator.

It is designed for supplying microcontroller/microprocessor controlled systems particularly in automotive applications. The NCV4949C has improved reset behavior for lower input and output It is designed for supplying microcontroller/microprocessor controlled systems particularly in automotive applications. The NCV4949C has improved reset behavior for lower input and output voltage levels.

Features

- Operating DC Supply Voltage Range 5.5 V to 40 V
- High Precision Output Voltage 5.0 V ±1%
- Output Current Capability Up to 100 mA
- Very Low Dropout Voltage Less Than 0.4 V
- Reset Circuit Sensing The Output Voltage
- Programmable Reset Pulse Delay
- Voltage Sense Comparator
- Fault Protection, +60 V Peak Transient Voltage, -40 V Reverse Voltage, Short Circuit, Thermal Overload
- NCV Prefix for Automotive and Other Applications Requiring Site and Change Control
- These are Pb-Free Devices

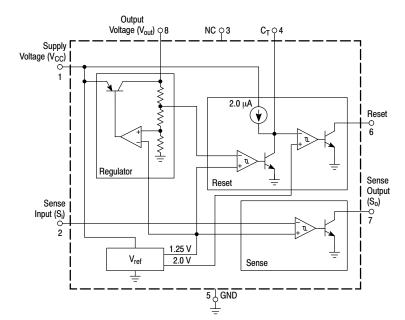
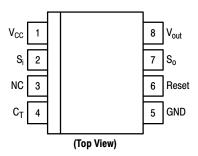
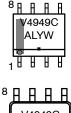


Figure 1. Representative Block Diagram



SOIC-8 D SUFFIX CASE 751-07



SOIC-8 EP PD SUFFIX CASE 751AC

PIN CONNECTIONS

MARKING DIAGRAMS

A = Assembly Location

L = Wafer Lot

Y = Year

W = Work Week

■ = Pb-Free Device

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

PIN FUNCTION DESCRIPTION

Symbol	SO-8 Pin#	SO-8 EP	Description
V _{CC}	1	1	Supply Voltage
Si	2	2	Input of Sense Comparator
C _T	4	4	Reset Delay Capacitor
GND	5	5	Ground
Reset	6	6	Output of Reset Comparator
So	7	7	Output of Sense Comparator
V _{out}	8	8	Main Regulator Output
NC	3	3	No Connect
EPAD	_	EPAD	Connect to Ground potential or leave unconnected

MAXIMUM RATINGS

Symbol	Rating	Min	Max	Unit
V _{CC}	DC Operating Supply Voltage	5.5	40	V
V _{CC}	Input to Regulator	-40	45	V
V _{CC TR}	Transient Supply Voltage (Note 1)	-	60	V
V _{out} I _{out}	Output	-0.5 -10	20 Internally Limited	V mA
V _{SI} I _{SI}	Sense Input	-40 -1.0	45 1.0	V mA
V _{SO} I _{SO}	Sense Output	-0.3 -5.0	7.0 5.0	V mA
V _{Reset} I _{Reset}	Reset Output	-0.3 -5.0	7.0 5.0	V mA
V _{CT} I _{CT}	Reset Delay	-0.3 Internally Limited	7.0 Internally Limited	V mA
_	ESD Protection at any pin Human Body Model Machine Model	- -	4000 400	V
TJ	Operating Junction Temperature Range	-40	+150	°C
T _{STG}	Storage Temperature Range	-50	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Test Conditions (Typical Values)		Unit	
	Note 2	Note 3	Note 4	
SOIC-8 Junction-to-Lead (Ψ_{JLx6} θ_{JL6}) Junction-to-Ambient ($R_{\theta \text{JA}}$, θ_{JA})	65.6 169.4	62 147.6	61 127.2	°C/W
SOIC–8 EP Junction–to–Lead (Ψ_{JL6} , θ_{JL6}) Junction–to–Ambient ($R_{\theta JA}$, θ_{JA})	36.1 109.2	32.1 91.1	27.4 71.9	°C/W

^{2. 1} oz. Copper, 100 mm sq. Copper area, 1.5 mm thick FR-4.

LEAD TEMPERATURE SOLDERING REFLOW (Note 5)

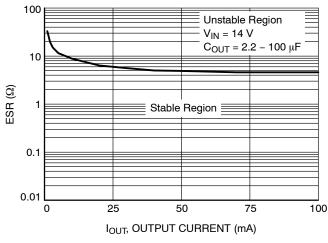
Symbol	Rating	Min	Max	Unit
Tsld	Reflow (SMD styles only) lead free 60 – 150 sec above 217, 40 sec max at peak	-	260	°C
MSL	Moisture Sensitivity Level (SOIC-8)	tivity Level (SOIC-8) Level 1		
MSL	Moisture Sensitivity Level (SOIC-8EP)	Sensitivity Level (SOIC-8EP) Level 2		

^{5.} Per IPC / JEDEC J-STD-020C.

^{1.} Load Dump Test B (with centralized load dump suppression) according to ISO16750-2 standard. Guaranteed by design. Not tested in production. Passed Class C according to ISO16750-1.

^{3. 1} oz. Copper, 200 mm sq. Copper area, 1.5 mm thick FR-4.

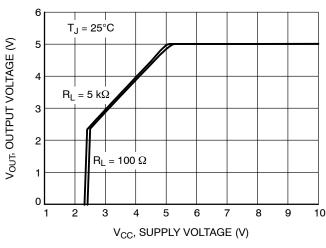
^{4. 1} oz. Copper, 500 mm sq. Copper area, 1.5 mm thick FR-4.


$\textbf{ELECTRICAL CHARACTERISTICS} \ \ (V_{CC} = 14 \ V, -40 ^{\circ}C < T_{J} < 150 ^{\circ}C, \ \, \text{unless otherwise specified.})$

Symbol	Characteristic	Min	Тур	Max	Unit
V _{out}	Output Voltage (T _J = 25°C, I _{out} = 1.0 mA)	4.95	5.0	5.05	V
V_{out}	Output Voltage (6.0 V < V _{CC} < 28 V, 1.0 mA < I _{out} < 50 mA)	4.9	5.0	5.1	V
V _{out}	Output Voltage (V _{CC} = 35 V, t < 1.0 s, 1.0 mA < I _{out} < 50 mA)	4.9	5.0	5.1	V
V_{drop}	Dropout Voltage				V
	I _{out} = 10 mA	-	0.08	0.25	
	I _{out} = 50 mA	-	0.18	0.40	
	I _{out} = 100 mA	-	0.22	0.50	
V _{IO}	Input to Output Voltage Difference in Undervoltage Condition	-	0.12	0.4	٧
	(V _{CC} = 4.0 V, I _{out} = 35 mA)				
Reg _{line}	Line Regulation (6.0 V < V _{CC} < 28 V, I _{out} = 1.0 mA)	-	1.0	20	mV
Reg _{load}	Load Regulation (1.0 mA < I _{out} < 100 mA)	-	1.0	30	mV
I _{Lim}	Current Limit				mA
	V _{out} = 4.5 V	105	320	400	
	$V_{out} = 0 V$	-	220	-	
I _{QSE}	Quiescent Current (I _{out} = 0.3 mA, T _J < 100°C)	-	120	260	μΑ
lQ	Quiescent Current (I _{out} = 100 mA)	_	-	5.0	mA
RESET					
V _{Resth}	Reset Threshold Voltage	-	4.5	-	V
V _{Resth,hys}	Reset Threshold Hysteresis				mV
	@ T _J = 25°C	50	100	200	
	@ $T_J = -40 \text{ to } +125^{\circ}\text{C}$	50	-	300	
t _{ResD}	Reset Pulse Delay (C _T = 100 nF, t _R ≥[]00 μs)	55	100	180	ms
t _{ResR}	Reset Reaction Time (C _T = 100 nF)	-	5.0	30	μs
V_{ResL}	Reset Output Low Voltage (R _{Reset} = 10 kΩ to V _{out} , V _{CC} ≥ 3.0 V)	-	-	0.3	V
I _{ResH}	Reset Output High Leakage Current (V _{Reset} = 5.0 V)	-	-	1.0	μΑ
V _{CTth}	Delay Comparator Threshold	-	2.0	-	٧
V _{CTth, hys}	Delay Comparator Threshold Hysteresis	-	100	-	mV
SENSE					
V _{SOth}	Sense Low Threshold (V _{SI} Decreasing = 1.5 V to 1.0 V)	1.16	1.25	1.35	V
V _{SOth,hys}	Sense Threshold Hysteresis	20	100	200	mV
V _{SOL}	Sense Output Low Voltage ($V_{SI} \le 1.16 \text{ V}, V_{CC} \ge 3.0 \text{ V}, R_{SO} = 10 \text{ k}\Omega \text{ to } V_{out}$)	-	-	0.4	V
I _{SOH}	Sense Output Leakage (V _{SO} = 5.0 V, V _{SI} ≥ 1.5 V)	-	-	1.0	μΑ
I _{SI}	Sense Input Current	-1.0	0.1	1.0	μΑ
THERMAL SH	UTDOWN				
T _{SD}	Thermal Shutdown Temperature (I _{out} = 1 mA) (Note 6)	150	-	200	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Values based on design and/or characterization.


TYPICAL CHARACTERISTICS

5.04 $V_{CC} = 14 \text{ V}$ 5.03 $I_{OUT} = 1.0 \text{ mA}$ V_{OUT}, OUTPUT VOLTAGE (V) 5.02 5.01 5.00 4.99 4.98 4.97 4.96 40 120 -40 80 160 T_J, JUNCTION TEMPERATURE (°C)

Figure 2. ESR Stability Border vs. Output Current

Figure 3. Output Voltage vs. Junction Temperature

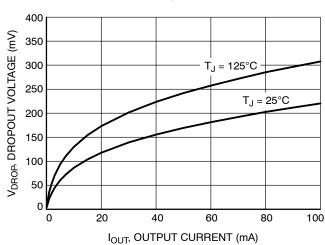


Figure 4. Output Voltage vs. Supply Voltage

Figure 5. Dropout Voltage vs. Output Current

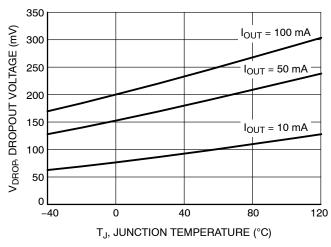


Figure 6. Dropout Voltage vs. Junction Temperature

Figure 7. Quiescent Current vs. Output Current

TYPICAL CHARACTERISTICS (continued)

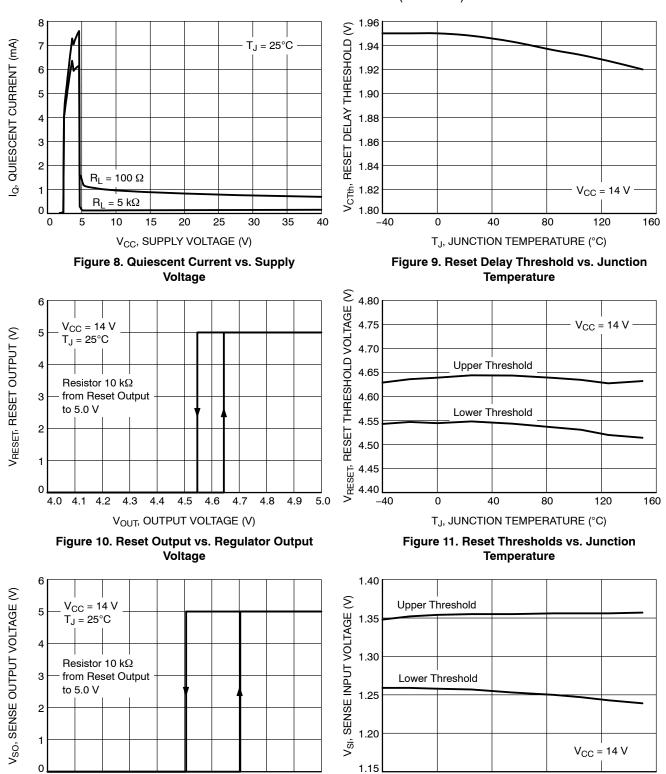


Figure 12. Sense Output vs. Sense Input Voltage

V_{SI}, SENSE INPUT VOLTAGE (V)

1.3

1.2

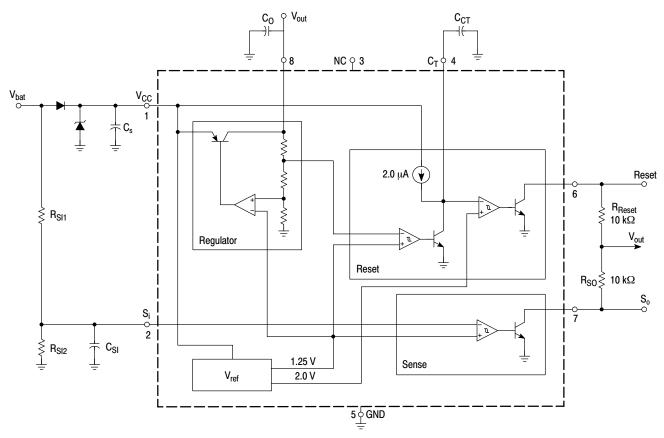
Figure 13. Sense Thresholds vs. Junction Temperature

T_J, JUNCTION TEMPERATURE (°C)

80

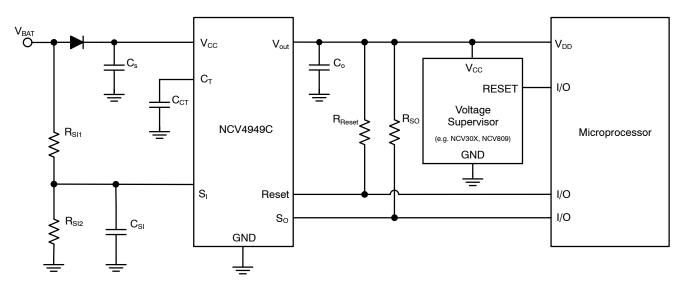
120

160


40

1.5

-40


1.0

APPLICATION INFORMATION

NOTE: 1. For good dynamic performance: $C_s \ge 1.0~\mu\text{F},~C_O \ge 4.7~\mu\text{F},~ESR < 4.5~\Omega$ at 10 kHz

Figure 14. Application Schematic

NOTE: The NCV4949C is not developed in compliance with ISO26262 standard. If application is safety critical then the above application diagram shown in Figure 15 can be used.

Figure 15. Application Diagram

OPERATING DESCRIPTION

The NCV4949C is a monolithic integrated low dropout voltage regulator. Several outstanding features and auxiliary functions are implemented to meet the requirements of supplying microprocessor systems in automotive applications. It is also suitable in other applications where the included functions are required. The modular approach of this device allows the use of other features and functions independently when required.

Voltage Regulator

The voltage regulator uses a lateral PNP transistor as a regulating element. With this structure, very low dropout voltage at currents up to 100 mA is obtained. The dropout operation of the standby regulator is maintained typically down to 2.5 V input supply voltage.

A typical curve showing the standby output voltage as a function of the input supply voltage is shown in Figure 17.

The current consumption of the device (quiescent current) is less than 200 μA .

To reduce the quiescent current peak in the undervoltage region and to improve the transient response in this region, the dropout voltage is controlled. The quiescent current as a function of the supply input voltage is shown in Figure 18.

Short Circuit Protection:

The maximum output current is internally limited. In case of short circuit, the output current is foldback current limited as described in Figure 16.

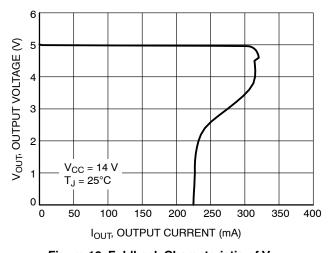


Figure 16. Foldback Characteristic of Vout

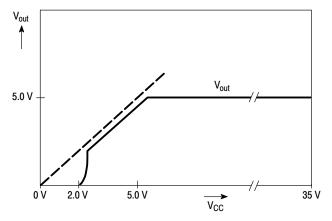


Figure 17. Output Voltage vs. Supply Voltage

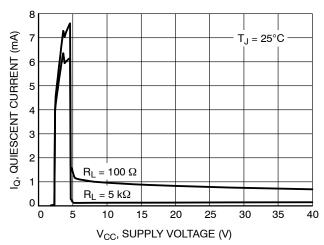


Figure 18. Quiescent Current vs. Supply Voltage

Reset Circuit

The block circuit diagram of the reset circuit is shown in Figure 19.

The reset circuit supervises the output voltage. The reset threshold of 4.5 V is defined by the internal reference voltage and standby output divider.

The reset pulse delay time t_{RD} , is defined by the charge time of an external capacitor C_T :

$$t_{RD} = \frac{C_T \times 2.0 \text{ V}}{2.0 \, \mu A}$$

The reaction time of the reset circuit originates from the discharge time limitation of the reset capacitor C_T and is proportional to the value of C_T . The reaction time of the reset circuit increases the noise immunity.

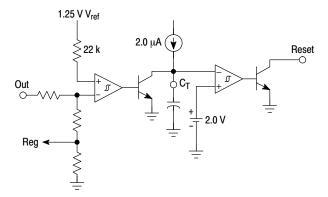


Figure 19. Reset Circuit

Output voltage drops below the reset threshold only marginally longer than the reaction time results in a shorter reset delay time.

The nominal reset delay time will be generated for output voltage drops longer than approximately 50 µs. The typical reset output waveforms are shown in Figure 20.

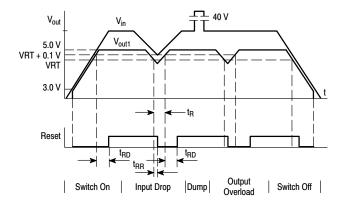


Figure 20. Typical Reset Output Waveforms

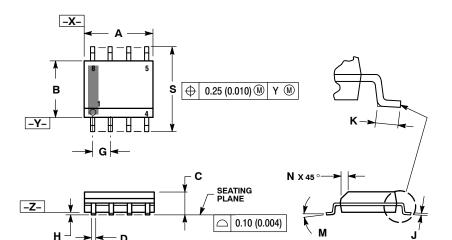
Sense Comparator

The sense comparator compares an input signal with an internal voltage reference of typical 1.25 V. The use of an external voltage divider makes this comparator very flexible in the application.

It can be used to supervise the input voltage either before or after a protection diode and to provide additional information to the microprocessor such as low voltage warnings.

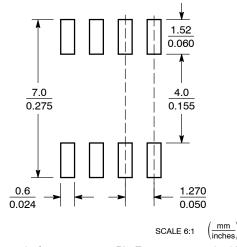
ORDERING INFORMATION

Device	Package	Shipping [†]
NCV4949CDR2G	SOIC-8 (Pb-Free)	2,500 / Tape & Reel
NCV4949CPDR2G	SOIC-8 EP (Pb-Free)	2,500 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

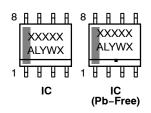
SOIC-8 NB CASE 751-07 **ISSUE AK**

DATE 16 FEB 2011


XS

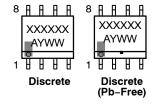
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INC	INCHES		
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27 BSC		0.050 BSC			
Н	0.10	0.25	0.004	0.010		
7	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
М	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		


SOLDERING FOOTPRINT*

0.25 (0.010) M Z Y S

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot

= Year = Work Week W

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

ww

= Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE
STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	PIN 1. COLLECTOR, DIE #1 2. BASE, #1
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 9. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN
3. V10UT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22:	7. DRAIN 1 8. MIRROR 1 STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

NOTES 4&5

Н

e

TOP VIEW

SIDE VIEW

BOTTOM VIEW

△ 0.10 C D

NOTES 4&5 0.10 C D

8X b NOTES 3&7 **♦** 0.25**№** C A-B D

0.10 C

SEATING

PLANE

NOTE 6

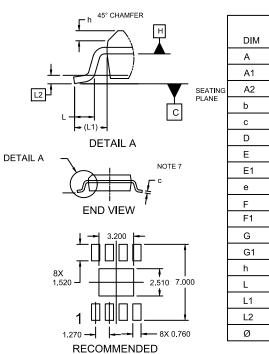
8

Е

NOTE 6 B

0.20 C D

NOTE 8


SOIC-8 EP CASE 751AC **ISSUE E**

DATE 05 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.004 IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- 4. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 PER SIDE. DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.010 mm PER SIDE.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM.
 DIMENSIONS D AND E1 ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 6. DATUMS A AND B ARE TO BE DETERMINED AT DATUM H.
- 7. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 TO 0.25 FROM THE LEAD TIP.
- 8. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

MILLIMETERS			
MIN.	NOM	MAX.	
1.35	1.55	1.75	
	0.05	0.10	
1.35	1.50	1.65	
0.31	0.41	0.51	
0.17	0.21	0.23	
4.90 BSC			
6.00 BSC			
3.90 BSC			
	1.27 BSC		
2.24	2.72	3.20	
	0.20 REF		
1.55	2.03	2.51	
	0.46 REF		
0.25	0.38	0.50	
0.40	0.84	1.27	
	1.04 REF		
	0.25 REF		
0°	4°	8°	
	MIN. 1.35 1.35 0.31 0.17 2.24 1.55 0.25	MIN. NOM 1.35 1.55 0.05 1.35 1.50 0.31 0.41 0.17 0.21 4.90 BSC 6.00 BSC 3.90 BSC 1.27 BSC 2.24 2.72 0.20 REF 1.55 2.03 0.46 REF 0.25 0.38 0.40 0.84 1.04 REF	

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D."

MOUNTING FOOTPRINT*

GENERIC MARKING DIAGRAM*

XXXXXX = Specific Device Code = Assembly Location

= Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present and may be in either location. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON14029D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 EP		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

