

NAU8325 DataSheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of Audio Product Line based system design.

Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

1 Contents

1		COI	NTE	NTS	2
	1.1		List	of Figures	5
	1.2		List	of Tables	6
2		GEI	NER	AL DESCRIPTION	7
3		PIN	СО	NFIGURATION	8
4		PIN	DE	SCRIPTIONS	9
5		SYS	STE	M DIAGRAM	10
	5.1		Refe	erence System Diagram	10
6		BLC	СК	DIAGRAM	11
7		FUN	NCT	IONAL DESCRIPTION	12
	7.1		Inpu	ıts	12
	7.2		Out	puts	12
	7.3			tal Interfaces	
	7.4		Pow	ver Supply	12
	7.5		Pow	ver-On-and-Off Reset	13
	7.6		Volt	age Reference (VREF)	13
	7.7		DAC	C Soft Mute	14
	7.8		Con	npanding	14
	7.9		Har	dware and Software Reset	15
	7.10	0	Clo	cking and Sample Rates	15
	7	7.10.	1	Clock Control and Detection	15
	7	7.10.	2	Automatic Power Control and Mute.	16
	7	7.10.	3	Disabling Clock Detection	18
	7	7.10.	4	Sample and Over Sampling Rates	18
	7.11	1	Auto	omatic Level Control	21
	7	7.11.	1	ALC Operation	21
	7	7.11.	2	ALC Parameter Definitions	22
	7.12	_		ice Protection	
	7.13			ver-up and Power-Down Control	
	7.14			ass Capacitors	
	7.15	5	Prin	ted Circuit Board Layout Considerations	
		7.15.		PCB Layout Notes	
	7.16			ers	
		7.16.		Class D without Filters	
		7.16.		Class D with Filters	
8				OL AND STATUS REGISTERS	
	8.1		•	tal Control Interface	
		3.1.1		2-Wire Protocol Convention	
IVI	ar 29	9, 2(J24	Page 2 of 54	Rev 2.8

8.1	1.2 2-Wire Write Operation	28
8.1	1.3 2-Wire Read Operation	29
8.2	Digital Audio Interface	30
8.2	2.1 Right-Justified Audio Data	31
8.2	2.2 Left-Justified Audio Data	31
8.2	2.3 I2S Audio Data	31
8.2	2.4 TDM Left-Justified Audio Data	
8.2	2.5 TDM I2S Audio Data	32
8.2	2.6 PCM A Audio Data	33
8.2	2.7 PCM B Audio Data	33
8.2	2.8 PCM Time Slot Audio Data	34
8.2	2.9 PCM Time Offset Audio Data	34
8.3	Control and Status Registers	36
НА	ARDWARE _RST	36
so	DFTWARE_RST	36
DE	EVICE_ID	36
CL	K_CTRL	36
EN	VA_CTRL	36
INT	TERRUPTMASK	36
INT	T_CLR_ STATUS	37
IRO	QOUT 37	
IO_	_CTRL37	
PD	DM_CTRL	38
PD	DM_LCH_EDGE	38
PD	DM_MODE	38
TD	DM_CTRL	38
128	S_PCM_ CTRL1	38
128	S_PCM_ CTRL2	39
LE	FT_ TIME_SLOT	39
RIC	GHT_ TIME_SLOT	39
HP	PF_CTRL	39
MU	JTE_ CTRL	39
DA	AC_VOLUME	40
De	ebug Read 1	40
De	ebug Read 2	40
De	ebug Read 3	40
DA	\C_CTRL1	41
DA	AC_CTRL2	41
AL	.C_CTRL1	41

	ALC_CTRL2	. 41
	ALC_CTRL3	. 42
	ALC_CTRL4	. 42
	CLK_DET_ CTRL	. 43
	TEST STATUS	. 43
	ANALOG_ READ	. 43
	MIXER_CTRL	. 43
	MISC_CTRL	. 43
	BIAS_ADJ	. 44
	ANALOG_ CONTROL _1	. 44
	ANALOG_ CONTROL_2	. 45
	ANALOG_ CONTROL_3	. 45
	ANALOG_ CONTROL_4	. 45
	ANALOG_ CONTROL_5	. 45
	ANALOG_CONTROL_6	. 46
	CLIP_CTRL	. 46
9	ELECTRICAL CHARACTERISTICS	.47
9.	1 Absolute Maximum Ratings	. 47
9	2 Operating Conditions	. 47
9	3 Electrical Parameters	. 47
9	4 Digital I/O Parameters	. 49
10	PACKAGE SPECIFICATION	.50
11	ORDERING INFORMATION	.52
12	REVISION HISTORY	.53
IMP	ORTANT NOTICE	.54

1.1 List of Figures

Figure 1	Pin Configuration of NAU8325 (TOP VIEW)	8
Figure 2	NAU8325 Simplified System Diagram	10
Figure 3	NAU8325 Block Diagram	11
Figure 4	VREF Circuitry	13
Figure 5	NAU8325 Clock Detection Circuit	16
Figure 6	PWRUPEN startup sequence.	17
Figure 7	Automatic Level Control	21
Figure 8	ALC Operation	22
Figure 9	ALC using Hold time	23
Figure 10	NAU8325 Speaker Connections without Filter	25
Figure 11	NAU8325 Speaker Connections with Ferrite Bead Filters	26
Figure 12	NAU8325 Speaker Connections with LC Filters	26
Figure 13	NAU8325 Speaker Connections with Low-Pass Filters	26
Figure 14	Valid START Condition	28
Figure 15	Valid Acknowledge	28
Figure 16	Valid STOP Condition	28
Figure 17	Slave Address Byte, Control Address Byte, and Data Byte	29
Figure 18	2-Wire Write Sequence	29
Figure 19	2-Wire Read Sequence	30
Figure 20	Right-Justified Audio Data	31
Figure 21	Left-Justified Audio Data	31
Figure 22	I2S Audio Data	32
Figure 23	TDM Left-Justified Audio Data	32
Figure 24	TDM I2S Audio Data	33
Figure 25	PCM A Audio Data	33
Figure 26	PCM B Audio Data	34
Figure 27	PCM Time Slot Audio Data	34
Figure 28	PCM Time Offset Audio Data	35
Figure 29	NAU8325 Package Specification	50
Figure 30	NAU8325 Wettable Package Specification	51

1.2 List of Tables

Table 1	Pin Descriptions for the NAU8325	9
Table 2	VREF Output Impedance Selection	
Table 3	Range of Input Clocks	
Table 4	Sampling and Over Sampling Rates (Ranges 1-3)	18
Table 5	Sampling and Over Sampling Rates (Range 4)	18
Table 6	Effective MCLK/FS Ratios	19
Table 7	High-Pass Filter Cut-Off Frequencies	27
Table 8	Digital Audio Interface Mode Settings	30

2 GENERAL DESCRIPTION

The NAU8325 is a stereo high efficiency filter-free Class-D audio amplifier, which is capable of driving a 4Ω load with up to 3.0W output power. This device provides I2C control and I2S audio input with low standby current and fast start-up time.

The NAU8325 is ideal for the portable applications of battery drive, as it has advanced features like 80dB PSRR, 90% efficiency, ultra-low quiescent current (i.e. 2.1mA at 3.7V for 2 channels) and superior EMI performance. NAU8325 is available in QFN-20 package.

Key Features

- Low SPK VDD Quiescent Current:
 - o 2.1mA at 3.7V for 2 channels
 - 3.2mA at 5V for 2 channels
- Gain Setting with 2 wire interface
 - o 22dB to -62dB (plus mute)
- Powerful Stereo Class-D Amplifier:
 - o 2ch x 3.0W (4Ω @ 5V, 10% THD+N)
 - 2ch x 1.32W (4Ω @ 3.7V, 1% THD+N)
 - 2ch x 1.72W (8Ω @ 5V, 10% THD+N)
 - 2ch x 0.75W (8Ω @ 3.7V, 1% THD+N)
- Low Output Noise: 18 μV_{RMS} @0dB gain
- 80dB PSRR @217Hz
- Low Current Shutdown Mode
- Click-and Pop Suppression
- Package is Halogen-free, RoHS-compliant and TSCA-compliant

Applications

- Notebooks / Tablet PCs
- Personal Media Players / Portable TVs
- MP3 Players
- Portable Game Players
- Digital Camcorders

3 PIN CONFIGURATION

The NAU8325 package is shown in Figure 1.

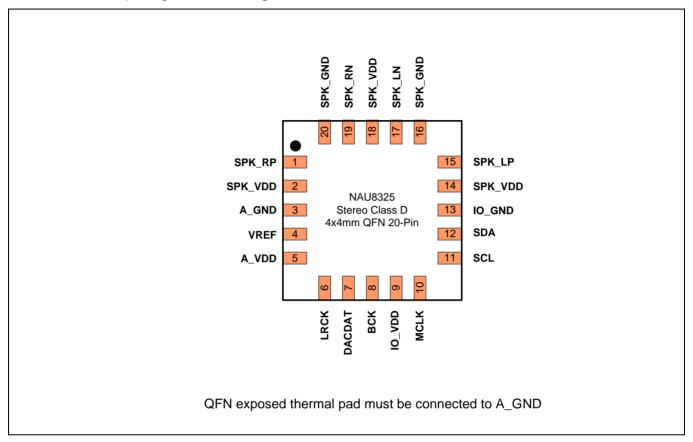


Figure 1 Pin Configuration of NAU8325 (TOP VIEW)

Part Number	art Number Dimension Package		Package Material
NAU8325YG	4mm x 4mm	QFN-20	Green
NAU8325WG	4mm x 4mm	Wettable QFN-20	Green

4 PIN DESCRIPTIONS

Pin descriptions for the NAU8325 are provided in **Table 1**.

Table 1 Pin Descriptions for the NAU8325

Pin#	Name	Type, (Supply Domain)	Description		
1	SPK_RP	Analog Output	Right Speaker positive output		
2	SPK_VDD	Supply	Supply speaker Driver		
3	A_GND	Supply	Ground for Analog		
4	VREF	Analog Output	Analog Voltage Reference		
5	A_VDD	Supply	Analogue supply		
6	LRCK	Digital Input	I2S I/F Frame clock		
7	DACDAT	Digital Input	I2S I/F DAC digital audio data		
8	ВСК	Digital Input	I2S I/F bit clock		
9	IO_VDD	Supply	Digital I/F Power supply		
10	MCLK	Digital Input	Master clock		
11	SCL	Digital I/O	I2C clock		
12	SDA	Digital I/O	I2C data		
13	IO_GND	Supply	Digital Ground		
14	SPK_VDD	Supply	Supply speaker Driver		
15	SPK_LP	Analog Output	Left Speaker positive output		
16	SPK_GND	Supply	Ground for speaker driver		
17	SPK_LN	Analog Output	Left Speaker negative output		
18	SPK_VDD	Supply	Supply speaker Driver		
19	SPK_RN	Analog Output	Right Speaker negative output		
20	SPK_GND	Supply	Ground for speaker driver		
21	Ex-Pad	Analog Input	Thermal Tab (must be connected to A_GND)		

5 SYSTEM DIAGRAM

5.1 Reference System Diagram

A basic system reference diagram is provided in Figure 2.

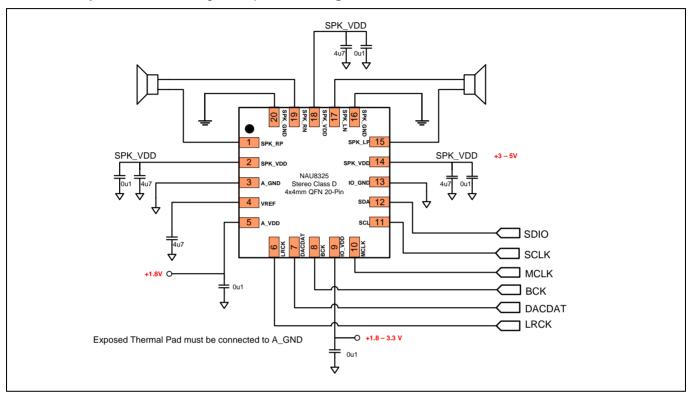


Figure 2 NAU8325 Simplified System Diagram

6 BLOCK DIAGRAM

A Block Diagram for the NAU8325 is provided in Figure 3.



Figure 3 NAU8325 Block Diagram

7 FUNCTIONAL DESCRIPTION

This chapter provides detailed descriptions of the major functions of the NAU8325 Amplifier.

7.1 Inputs

The NAU8325 provides digital inputs to acquire and process audio signals with high fidelity and flexibility. The audio input path is from an I2S/PCM Interface. Additionally, the NAU8325 has a two wire serial interface for control input.

7.2 Outputs

The NAU8325 Stereo Class-D PWM Amplifier has a gain range from 0dB to 22dB, and is powered by a separate power supply SPK_VDD, which can go up to 5V. This amplifier is capable of delivering up to 3.0W into a 4Ω load with a 5V supply.

7.3 Digital Interfaces

Command and control of the device is accomplished by using a Serial Control Interface. The simple, but highly flexible, 2-wire Serial Control Interface is compatible with I2C protocol. Audio data is passed to the device through a serial data interface compatible with industry standard I2S and PCM devices.

7.4 Power Supply

This NAU8325 has been designed to operate reliably under a wide range of power supply conditions and Power-On/Power-Off sequences. SPK_VDD, A_VDD and IO_VDD can all operate independently of one another. However, the Electro Static Detection (ESD) protection diodes between the supplies impact the application of the supplies. Because of these diodes, the following conditions need to be met:

IO VDD
$$>$$
 A VDD -0.6 V

7.5 Power-On-and-Off Reset

The NAU8325 includes a Power-On-and-Off Reset circuit on-chip. The circuit resets the internal logic control at A_VDD supply power-up and this reset function is automatically generated internally when power supplies are too low for reliable operation. Reset threshold is 1.3 V for A_VDD during a power-on ramp and 0.8 V for A_VDD during a power-down ramp. It should be noted that these values are much lower than the required voltage for normal operation of the chip.

The reset is held ON while the power levels A_VDD is below the threshold. Once the power level rises above the threshold, the reset is released. Once the reset is released, the registers are ready to be written to.

The preferred power-up sequence is for SPK_VDD and IO_VDD to come up first followed by A_VDD. The preferred power-down sequence is for A_VDD to power down first.

NOTE: It is also important that all the registers should be kept in their reset state for at least 6 µsec.

An additional internal RC filter-based circuit is added which helps the circuit to respond for fast ramp rates (~3 µsec) and to generate the desired reset period width (~3 µsec at typical corner). This filter is also used to eliminate supply glitches which can generate a false reset condition, typically 50 nsec.

For reliable operation, it is recommended to write to register **REG0X00** upon power-up. This will reset all registers to the known default state.

NOTE: When A_VDD is below the power-on reset threshold, the digital IO pins will go to a tri-state condition. IO_VDD is not involved in power-on reset function. It is preferred IO_VDD is available before A VDD to ensure no glitches occur on SCL/SDA but it is not essential.

7.6 Voltage Reference (VREF)

The NAU8325 includes a mid-supply, reference circuit that produces voltage close to A_VDD/2 that is decoupled to A_GND through the VREF pin by means of an external bypass capacitor. Because VREF is used as a reference voltage for the NAU8325, a large capacitance is required to achieve good power supply rejection at low frequency, typically 4.7 μ F is used. The Reference Voltage circuitry is shown in **Figure 4**.

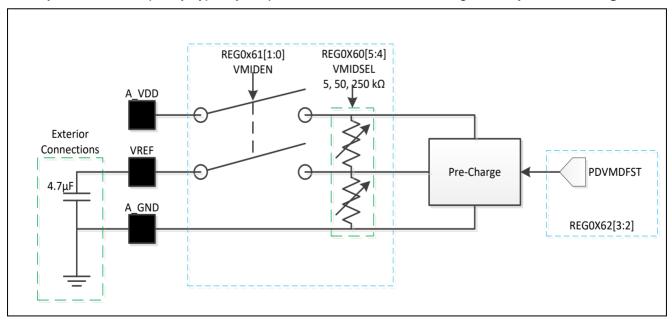


Figure 4 VREF Circuitry

The output impedance can be set using VMID SEL REG0X60[5:4]. Refer to Table 2.

Table 2 VREF Output Impedance Selection

Mar 29, 2024 Page 13 of 54 Rev 2.8

VMID_SEL REG0X60[5:4]	VREF Resistor Selection	VREF Impedance
00	Open, no resistor selected	Open, no impedance installed
01	50 kOhm	2 5 kOhm
10	250 kOhm	125 kOhm
11	5 kOhm	2.5 kOhm

APPLICATION NOTES:

- Larger capacitances can be used but increase the rise time of VREF and delay the line output signal.
- Due to the high impedance of the VREF pin, it is important to use a low-leakage capacitor.

7.7 DAC Soft Mute

The Soft Mute function ramps down the DAC digital volume to zero when it is enabled by **SMUTE_EN REG0X12[15]**. When disabled, the volume increases to the register-specified volume level for each channel. This function is beneficial for using the DAC without introducing pop-and-click sounds. When **DACEN_SM REG0X12[13]** is set to '1', the volume will ramp up to the register-specified volume level if the DAC path has been enabled by setting **DACEN REG0X4[3:2**]. The volume goes down to zero directly if the DAC path is disabled.

7.8 Companding

Companding is used in digital communication systems to optimize Signal-to-Noise Ratios (SNR) with reduced data bit rates using non-linear algorithms. The NAU8325 supports the two main telecommunications companding standards -- A-Law and μ -Law -- in both transmit and receive directions. The A-Law algorithm is primarily used in European communication systems; the μ -Law algorithm is primarily used in North American, Japanese, and Australian communications systems.

Companding converts 14 bits (μ -Law) or 13 bits (A-Law) to 8 bits using non-linear quantization resulting in 1 sign bit, 3 exponent bits and 4 mantissa bits. This option can be enabled for the DAC using the **DACCM0 REG0X0D[15:14]** registers. When the Companding Mode is enabled, **CMB8_0 REG0X0D[10]** must be enabled for 8-bit operation. This will disable the word length selection in **WLEN0 REG0X0D[3:2]** for this port and allow the companding functions to use an 8-bit word length.

The compression equations set by the ITU-T G.711 Standard and implemented in the NAU8325 Amplifier are provided here for reference:

μ-Law

$$F(x) = \frac{\ln(1 + \mu \times |x|)}{\ln(1 + \mu)},$$
 -1 < x < 1
 $\mu = 255$

A-Law

$$F(x) = \frac{A \times |x|}{(1 + \ln(A))}, \qquad 0 < x < \frac{1}{A}$$

$$F(x) = \frac{(1 + \ln(A \times |x|))}{(1 + \ln(A))}, \qquad \frac{1}{A} \le x \le 1$$

$$A = 87.6$$

7.9 Hardware and Software Reset

The NAU8325 and all of its control registers can be reset to initial default power-up conditions by writing any value to **REG0X00** *once* using the control interface. Writing to any other valid register address terminates the reset condition, but all registers will be set to their power-on default values. This is typically done during hardware reset.

The NAU8325 can be reset to initialized power-up conditions by writing any value to **REG0X01** *twice* using the control interface. Writing to **REG0X01** will reset the NAU8325, but all registers values will be unaffected. This is typically done during operation to quickly force NAU8325 in the known initialized startup state.

7.10 Clocking and Sample Rates

The internal clocks for the NAU8325 are derived from a common internal clock source. This master system clock can set directly by the MCLK input or it can be generated from a clock multiplier using the MCLK as a reference.

The following sections illustrate how the various register settings can be used to adjust/select the MCLK_SRC and DAC_CLK clock frequencies.

7.10.1 Clock Control and Detection

The NAU8325 includes a Clock Detection circuit that can be used to enable and disable the audio paths, based on an initialized audio path setting. Enable the audio path through the I2C Interface; but, the actual power up/down can be gated by the clock detection circuit. The block diagram of the clock detection circuit is shown in **Figure 5**.

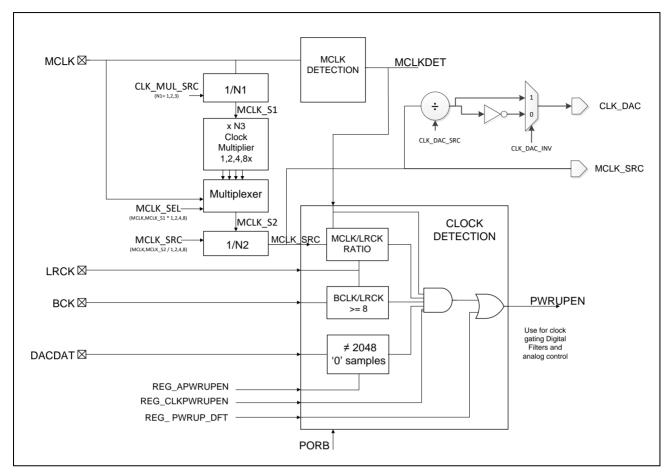


Figure 5 NAU8325 Clock Detection Circuit

Clock Detection by the NAU8325 uses the MCLK, BCK, LRCK and DACDAT to control the PWRUPEN signal and set the clock divider ratios.

7.10.2 Automatic Power Control and Mute.

Clock detection and automatic power control in the NAU8325 is enabled by setting **REG_CLKPWRUPEN** = 0 (default) and meeting three or four conditions, depending on the configuration. If all conditions are met, the PWRUPEN signal will be asserted to 1. If any of the conditions are not met, the PWRUPEN signal is set to 0.

The conditions for generating the PWRUPEN signal are:

- 1) The NAU8325 has custom logic clock detection circuits that detect if MCLK is present. Upon MCLK detection, the detector output MCLKDET goes to 1. When the MCLK disappears, MCLKDET goes back to 0. Up to 1 µsec is required to detect MCLK and the MCLK release time is about 50 µsec.
- The clock detection logic also needs to detect the ratio MCLK_SRC/LRCK of 256, 400 or 500.
- 3) The clock detection logic also needs to detect the BCLK to make sure data is present. There needs to be at least 8 BCLK cycles per Frame Sync.
- 4) If REG_APWRUPEN is set to '1', the clock detection will require non-zero samples on any channel in order to enable the output power up signal. Any non-zero sample will be sufficient. After power up if 2048 zero samples are detected on both channels the PWRUPEN signal is asserted to '0'. If REG_APWRUPEN is set to '0', this function does not control the PWRUPEN signal.

The PWRUPEN signal is capable of controlling all the analog power consuming blocks such as the Class D driver, the VMID block, the DAC and bias generation. The register **ANALOG_CONTROL_1** determines which blocks are controlled by PWRUPEN.

When PWRUPEN goes high an internal sequence is triggered to bring up analog functions. This includes an analog MUTE to allow stabilization of internal analog blocks, followed by a soft unmute of the DAC. The analog MUTE time is determined by **REG_MUTE_CTRL.ANA_MUTE** and is between 430us and 4ms. The soft mute ramps the gain on the DAC input from MUTE to DAC_VOLUME at a rate determined by **REG_MUTE_CTRL.UNMUTE_CTL**. This register can disable the soft unmute, or ramp the gain at 32 or 512 MCLK_SRC periods per gain step. For the 512 setting, the soft unmute takes 256 * 512 * Tmclk seconds to reach 0dB (10ms for 12.288MHz MCLK_SRC). This ensures pop free startup of the amplifier. An example of this startup is shown in figure below.

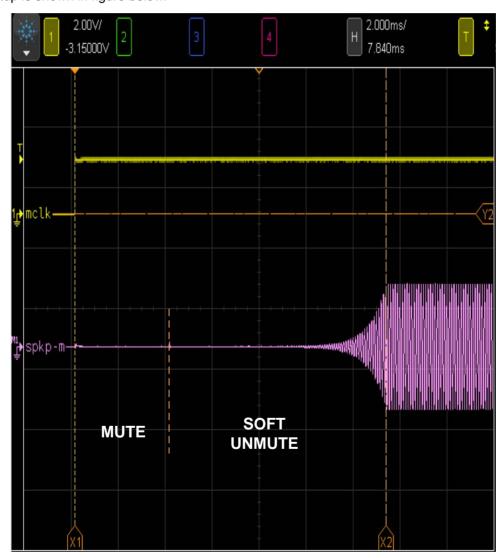


Figure 6 PWRUPEN startup sequence.

Before reaching the DAC the incoming PCM signal is processed by a digital signal path. To ensure complete flushing and transient free audio of this path it is recommended that 2048 zero samples are sent to the device before stopping clocks. The DAC soft mute function is also beneficial for eliminating any audio transients from audio path.

The preferred operating scenario is as follows:

- 1) Initialize I2C registers at power up;
- 2) Start clocks.
- 3) Send 1-14ms of zero samples (optional)
- 4) Play sound.
- 5) Send 2048 zero samples at the end of a sound file to prevent transients.
- 6) Stop the clocks.
- 7) Repeat 2) onwards when required.

In addition to power up control there is an AUTO_MUTE feature. If **REG_MUTE_CTRL.AUTO_MUTE** is set then when 2048 zero samples are detected the PWM driver is MUTED. Upon reception of further data the driver is UNMUTED immediately. This mode has no delay apart from the group delay of audio signal path, but also does not have the same power saving benefits as the automatic power control feature described above.

7.10.3 Disabling Clock Detection

Clock detection in the NAU8325 is disabled by setting **REG_CLKPWRUPEN** to 1. In this state, PWRUPEN is no longer controlled by the enabling conditions listed above, but is set to 1. However, the MCLKDET and clock dividers are still active.

The range of the input clocks is shown in **Table 3**.

Table 3 Range of Input Clocks

Signal	Min	Max
Frame Synch (FS) (kHz)	8	96
Master Clock MCLK (MHz)	2.048	24.576

7.10.4 Sample and Over Sampling Rates

Possible Sample Rate and MCLK_SRC selections are shown in **Table 4** and **Table 5**. Note that **REG_SRATE REG 0X40** must be programmed to identify the target sample rate.

Table 4 Sampling and Over Sampling Rates (Ranges 1-3)

REG_SRATE												
	Range 1 000				Range 2 001				Range 3 010			
MCLK_SRC/FS Ratio	FS ((kHz)		(_SRC Hz)	FS (kHz)	II	(_SRC Hz)	FS (I	kHz)	MCLK_S	SRC (MHz)
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
256	8	12	2.048	3.072	16	24	4.096	6.144	32	48	8.192	12.288
400	8	12	3.2	4.8	16	24	6.4	9.6	32	48	12.8	19.2
500	8	12	4	6	16	24	8	12	32	48	16	24

Table 5 Sampling and Over Sampling Rates (Range 4)

REG_SRATE						
MCLK_SRC/FS	Range 4	011				

Ratio	FS ((kHz)		(_SRC Hz)
	Min	Max	Min	Max
256	64	96	16,384	24,576
400	64	96	25.6	38.4
500	64	96	32	48

The MCLK SRC frequency is defined as:

F_MCLK_SRC = F_MCLK / N2 when MCLK_SEL = 0

 $F_MCLK_SRC = N3 \times F_MCLK / (N1 \times N2)$ when $MCLK_SEL \neq 0$

Where N1 & N2 are selectable to 1, 2, 3, 4, 5, 6 or 7 and N3 is selectable to 1, 2, 4 & 8.

The only internal MCLK_SRC/FS ratios allowed are: 256, 400 & 500. The clock divider or multiplier in register 0x03 needs to be setup to achieve one these three possible ratios.

Given N1=N2=1, effective MCLK/FS ratios can be achieved with the clock multiplier, as shown in **Table 6**.

Table 6 Effective MCLK/FS Ratios

MCLK_SRC/FS ratio	Clock Multiplier (MCLK_SEL REG0x03)	Effective ratio MCLK/FS
256	8	32
400	8	50
500	8	62.5
256	4	64
400	4	100
500	4	125
256	2	128
400	2	200
500	2	250
256	1	256
400	1	400
500	1	500

For MCLK_SRC/FS ratios of 256 the Over Sampling Ratio (OSR) can be set in register 0x29 to: 32, 64, 128 & 256. Note that the DAC clock needs to be set to the matching values in register 0x03 CLK_DAC_SRC.

For MCLK_SRC/FS ratios of 400 & 500 the Over Sampling Ratio (OSR) is fixed to 100. For MCLK_SRC/FS ratios of 400 the DAC clock divider needs to be set to ½ in register 0x03. For MCLK_SRC/FS ratios of 500 the DAC clock divider is automatically set to 1/5.

Mar 29, 2024 Page 19 of 54 Rev 2.8

For example if MCLK is provided as 256* Fs, then N2=1 and MCLK_SEL = 0 will set MCLK_SRC as the correct 256*Fs. If MCLK proved is 512*Fs, then N2=2 and MCLK_SEL = 0 will set MCLK_SRC as the correct 256*Fs.

In addition to MCLK_SRC, the clock to the DAC must be configured correctly. For MCLK_SRC/FS ratios of 256 the Over Sampling Ratio (OSR) can be set via DAC_RATE in register REG29 to: 32, 64, 128 & 256. The DAC clocks need to be set to its corresponding value in register 0x03 given by:

F_DAC_CLK = F_MCLK_SRC * CLK_DAC_SRC

And

F_DAC_CLK = DAC_RATE * Fs

CLK_DAC_SRC is 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$ and is set to match the desired sample rate Fs and the DAC oversampling setting DAC_RATE in REG29.

.

For MCLK_SRC/FS ratios of 400 & 500 the Over Sampling Ratio (OSR) is fixed to 100. For MCLK_SRC/FS ratios of 400 the DAC clock divider needs to be set to ¼ in register 0x03. For MCLK_SRC/FS ratios of 500 the ADC & DAC clock dividers are automatically set to 1/5.

7.11 Automatic Level Control

The digital Automatic Level Control (ALC) function supports the DAC digital audio path of the NAU8325. This can be used to manage the gain to optimize the signal level at the output of the Class-D Amplifier by automatically amplifying input signals that are too small or automatically decreasing the amplitude signals that are too loud. **Figure 7** illustrates the relationship of the ALC to other major functions of the NAU8325.

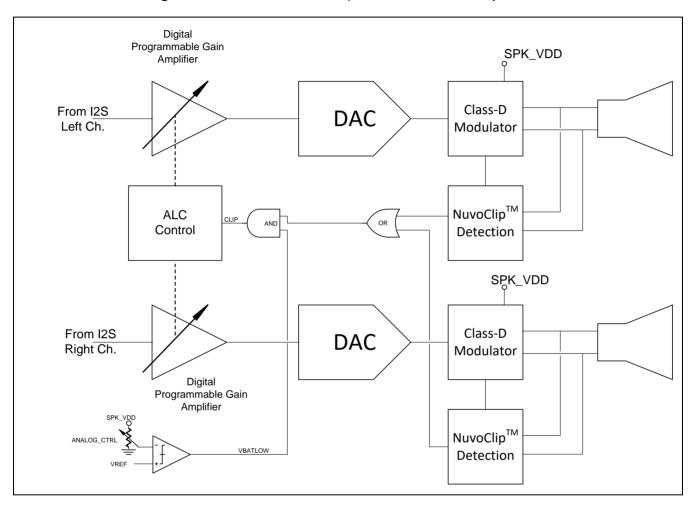


Figure 7 Automatic Level Control

7.11.1 ALC Operation

The DAC digital audio path of the NAU8325 is supported by a digital Automatic Level Control (ALC) function. The ALC can perform as a peak limiter as the ALC can automatically reduce the output level when the output is clipping. Clipping can occur at high output levels when the speaker supply voltage drops due to a battery having a low charge or IR drops between supply and the NAU8325. Each channel (Left and Right) has a dedicated clip detection circuit. The clip detection signals of both channels are combined (OR'ed) and gated (AND) by a low battery indicator before it is fed into the ALC. The ALC controls both the left and right channel gain simultaneously in order to keep the stereo balance.

A clip detection signal is provided by the clip detection circuit as soon as the input signal is clipping at its peak levels. The ALC block then ramps down the gain at the pre-programmed ALC Attack Time rate. This continues until the clipping detection no longer detects a clipping signal or until the maximum gain decrement per clipping event is reached. When the clipping is no longer occurring, the ALC gain is held for

the hold time. The ALC gain is then ramped up to the target following the pre-programmed ALC Release Time rate

7.11.2 ALC Parameter Definitions

- ALC Minimum Gain (ALCMIN): This sets the minimum allowed gain during all modes of ALC operation. This is useful to keep the ALC operating range close to the desired range for a given application scenario.
- ALC Attack Time (ALCATK): Attack time refers to how quickly a system responds to a clipping event. Typically, attack time is much faster than decay time.
- ALC Decay Time (ALCDCY): Decay time refers to how quickly a system responds after the hold time.

 Typically, decay time is much slower than attack time. When no more clipping events occur, the gain will increase at a rate determined by this parameter.
- ALC Hold Time (ALCHLD): Hold time refers to the duration of time when no action is taken. This is typically to avoid undesirable sounds that can happen when an ALC responds too quickly to a changing input signal. In the NAU8325, the hold time value is the duration from the last clipping event before there is an actual gain increase during the decay time.
- CLIP_GAINADJUST sets the maximum gain decrease per clipping event. During a clipping even the gain decreases by 0.250dB (1-1/64) per attack time step until the clipping event no longer occurs or the maximum gain reduction limit set in CLIP_GAINADJUST has been reached or the ALC Minimum Gain is reached.

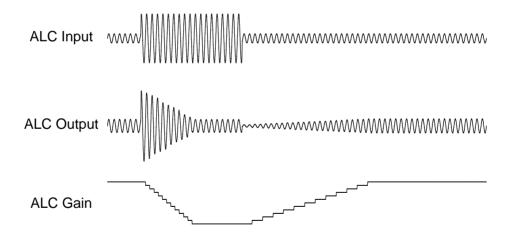


Figure 8 ALC Operation

The waveform below shows the operation of the ALC hold delay time.

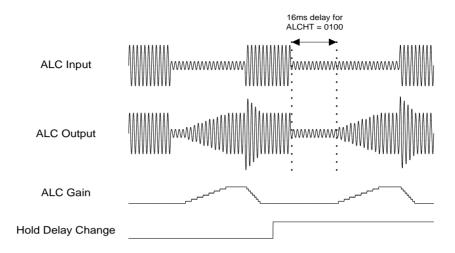


Figure 9 ALC using Hold time

7.12 Device Protection

The NAU8325 includes the following types of device protection:

- Over Current Protection (OCP)
- Under Voltage Lock Out (UVLO)
- Over Temperature Protection (OTP)
- Clock Termination Protection (CTP)

Over Current Protection is provided in the NAU8325. If a short circuit is detected on any of the pull-up or pull-down devices on the output drivers for at least 14µs, the output drivers will be disabled for 100ms. The output drivers will then be re-enabled and checked for a short circuit again. If the short circuit is still present for another 14µs, the cycle will repeat until the short circuit has been fixed. The short circuit threshold is set at 2.1A.

Under Voltage Lock Out (UVLO) provides Supply Under Voltage Protection in the NAU8325 If the SPK_VDD drops under 2.1V, the output drivers are disabled, however, the NAU8325 control circuitry will still operate. This is useful to help avoid the battery supply voltage dropping before the host processor can safely shutdown the devices on the system. If the SPK_VDD drops below 1.4V, the internal power-on-reset will activate and put the class-D driver in power down state.

Over Temperature Protection (OTP) is provided in the event of thermal overload. When the device internal junction temperature reaches 130°C, the NAU8325 will disable the output drivers. Once the device cools down to a safe operating temperature (115°C) for at least 100us, the output drivers will be reenabled.

Clock Termination Protection (CTP) is provided in the NAU8325. If the clock stops running, the NAU8325 automatically shuts down the Class-D driver if Clock Detection is enabled.

7.13 Power-up and Power-Down Control

When the supply voltage ramps up, the internal power on reset circuit is triggered. At this time, all internal circuits will be set to the power-down state. The device can be enabled by initializing the registers and starting the clocks. Upon starting the clocks, the device will go through an internal power-up sequence in order to minimize 'pops' on the speaker output. The complete power-up sequence requires about 14 msec. The device will power down in about 30 μ sec, when the clocks are stopped.

NOTE: It is important to keep the input signal at zero amplitude or enable the mute condition in order to minimize 'pops' when the clocks are stopped.

7.14 Bypass Capacitors

Bypass capacitors are required to remove the AC ripple on the VDD pins. The value of these capacitors depends on the length of the VDD trace. In most cases, 10 μ F and 0.1 μ F are sufficient to achieve good performance.

7.15 Printed Circuit Board Layout Considerations

Good Printed Circuit Board (PCB) layout and grounding techniques are essential to achieve good audio performance. It is better to use low-resistance traces as these devices are driving low impedance loads. The resistance of the traces has a significant effect on the output power delivered to the load. In order to dissipate more heat, use wide traces for the power and ground lines.

7.15.1 PCB Layout Notes

The Class-D Amplifier is a high power switching circuits that can cause Electro Magnetic Interference (EMI) when poorly connected. Therefore, care must be taken to design the PCB eliminate Electro Magnetic Interference (EMI), reduce IR drops, and maximize heat dissipation.

The following notes are provided to assist product design and enhance product performance:

- Use a GND plane, preferably on both sides, to shield clocks and reduce EMI
- Maximize the copper to the GND pins and have solid connections to the plane
- Planes on A_VDD, IO_VDD & SPK_VDD are optional
- The SPK_VDD connection needs to be a solid piece of copper
- Use thick copper options on the supply layers if cost permits
- Keep the speaker connections short and thick. Do not use VIAs
- Use a small speaker connector like a wire terminal block (Phoenix Contact)
- Keep the VREF capacitor close to the pin
- For better heat dissipation, use VIAs to conduct heat to the other side of the PCB
- Do not use VIA's to connect SPK_LP, SPK_LN, SPK_RP & SPK_RN to U1. Use a direct top layer copper connection to the pins. Thick copper is preferred.
- Use large or multiple parallel VIAs to decoupling capacitors when connecting to a ground plane
- The digital IO lines can be shielded between power planes

7.16 Filters

The NAU8325 is designed for use without any filter on the output line. However, the NAU8325 may be used with or without various types of filters, depending on the needs of the application.

7.16.1 Class D without Filters

The NAU8325 is designed for use without any filter on the output line. That means the outputs can be directly connected to the speaker in the simplest configuration. This type of filter-less design is suitable for portable applications where the speaker is very close to the amplifier. In other words, this is preferable in applications where the length of the traces between the speaker and amplifier is short. **Figure 10** illustrates this simple configuration.

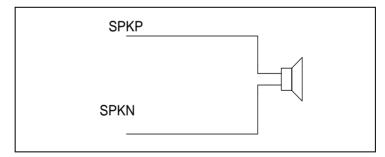


Figure 10 NAU8325 Speaker Connections without Filter

7.16.2 Class D with Filters

In some applications, shorter trace lengths are not possible because of speaker size limitations and other layout reasons. In these applications, long traces will cause EMI issues. Several types of filter circuits are available to reduce the EMI effects. These are Ferrite Bead Filters, LC filters, Low-Pass LCR Filters, and High-Pass Filters.

Ferrite Bead Filters are used to reduce high-frequency emissions. The characteristic of a Ferrite Bead Filter is such that it offers higher impedance at high frequencies. For better EMI performance, select a Ferrite Bead Filter which offers the highest impedance at high frequencies, so that it will attenuate the signals at higher frequencies. The typical circuit diagram using a Ferrite Bead Filter for each output to the speaker is shown **Figure 11**.

NOTE: Usually, the ferrite beads have low impedance in the audio range, so they will act as pass-through filters in the audio frequency range.

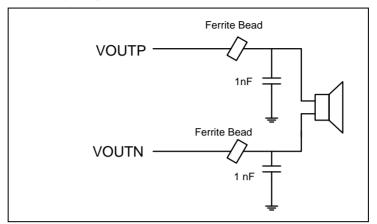


Figure 11 NAU8325 Speaker Connections with Ferrite Bead Filters

LC Filters are used to suppress low-frequency emissions. The diagram in **Figure 12** shows the NAU8325 outputs connected to the speaker with an LC Filter circuit. R_L is the resistance of the speaker coil.

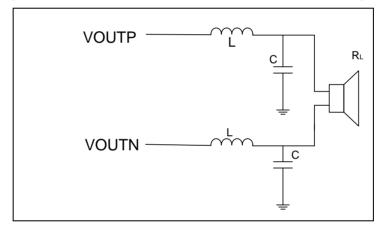


Figure 12 NAU8325 Speaker Connections with LC Filters

Low-Pass LCR Filters may also be useful in some applications where long traces or wires to the speakers are used. **Figure 13** shows the speaker connections using standard Low-Pass LCR Filters.

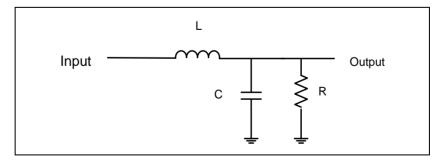


Figure 13 NAU8325 Speaker Connections with Low-Pass Filters

The following equations apply for critically damped ($\zeta = 0.707$) standard Low-Pass LCR Filters:

$$2\pi fc = \frac{1}{\sqrt{(LC)}}$$
 fc is the cut-off frequency

$$\zeta = 0.707 = \frac{1}{2R} * \sqrt{\frac{L}{C}}$$

NOTE: The L and C values for differential configuration can be calculated by duplicating the single-ended configuration values and substituting RL = 2R.

High-Pass Filters may also be useful in some applications. There is a High-Pass Filter for each DAC Channel. The High-Pass Filters may be enabled by setting **DAC_HPF_EN REGOX11[15]**. The High-Pass Filter has two operation modes that apply to both channels simultaneously. In the Audio Mode, the filter is a simple first-order DC blocking filter, with a cut-off frequency of 3.7 Hz. In the Application-Specific Mode, the filter is a second-order audio frequency filter, with a programmable cut-off frequency. The programmable filter mode may be enabled by setting **DAC_HPF_APP REGOX11[14]**.

Table 7 identifies the cut-off frequencies with different sample rates.

Table 7 High-Pass Filter Cut-Off Frequencies

HPFCUT	Sample Rate in KHz (FS)													
	REG_SRA 3'b00		REG_S 3'b(SRATE= b010	REG_SRATE= 3'b011							
	8	12	16	24	32	48	64	96						
000	87	130	87	130	87	130	87	130						
001	103	155	103	155	103	155	103	155						
010	132	198	132	198	198 132 198		132	198						
011	165	248	165	248	165	248	165	248						
100	207	311	207	311	207	311	207	311						
101	265	398	265	398	265	398	265	398						
110	335	503	335	503	335	503	335	503						
111	409	614	409	614	409	614	409	614						

8 Control and Status Registers

The NAU8325 includes an I2C Control Interface as well as an I2S/PCM Audio Interface. The following sections describe the Control and Audio Interfaces and registers.

8.1 Digital Control Interface

The NAU8325 uses a 2-wire I2C Interface for command and control. The I2C Slave address is 0x21.

The 2-wire bus is a bidirectional serial bus protocol. This protocol defines any device that sends data onto the bus as a transmitter (or master), and the receiving device as the receiver (or slave). The NAU8325 can functions only as a slave device on the 2-wire interface.

8.1.1 2-Wire Protocol Convention

To initiate communication, all 2-Wire interface operations must begin with a START condition, which is a HIGH-to-LOW transition of SDA while SCL is HIGH.

Following a START condition, the master must output a device address byte consisting of a 7-bit device address, and a Read/Write control bit in the LSB of the address byte. To read from the slave device, the R/W bit must be set to 1. To initiate a write to the slave device, the R/W bit must be 0. If the device address matches the address of a slave device, the slave will output an acknowledgement bit.

An acknowledge (ACK), is a software convention used to indicate a successful data transfer. To allow for the ACK response, the transmitting device releases the SDA bus after transmitting eight bits and during the ninth clock cycle, the receiver (slave) pulls the SDA line LOW to acknowledge the reception of the eight bits of data.

To terminate a read/write session, all 2-Wire interface operations must end with a STOP condition, which is a LOW to HIGH transition of SDA while SCL is HIGH. A STOP condition at the end of a read or write operation places the device in a standby mode.

Application Notes:

The NAU8325 is permanently programmed with 0x21 "0100001" as the Device Address.

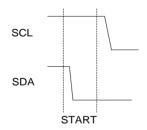


Figure 14 Valid START Condition

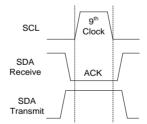


Figure 15 Valid Acknowledge

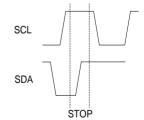


Figure 16 Valid STOP Condition

8.1.2 2-Wire Write Operation

A Write operation consists of a three-byte instruction followed by one or more data bytes as seen in Figure 17. These instructions consist of the Address byte and two Control Address bytes that precede the START condition and are followed by the STOP condition. Figure 18 shows the data bus and the corresponding clock cycles.

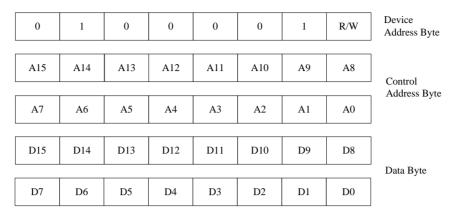


Figure 17 Slave Address Byte, Control Address Byte, and Data Byte

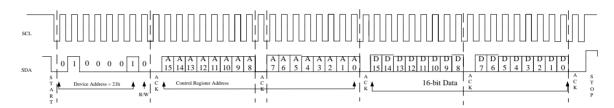


Figure 18 2-Wire Write Sequence

8.1.3 2-Wire Read Operation

A Read operation consists of the three-byte Write instruction followed by a Read instruction of one or more data bytes. The bus master initiates the operation issuing the following sequence: a START condition, Device Address byte with the R/W bit set to "0", and a Control Register Address byte. This indicates to the NAU8325 which of its control registers is going to be accessed.

After this, the NAU8325 will respond with an ACK as it accepts the Control Register Address that the master is transmitting to it. After the Control Register Address has been sent, the master will send a second START condition and Device address but with R/W = 1.

After the NAU8325 recognizes its Device Address the second time, it will transmit an ACK followed by a two byte value containing the 16 bits of data in the NAU8325 control registers requested by the master. During this phase, the master generates an ACK with each byte of data transferred.

After the two bytes have been transmitted, the master will send a STOP condition ending the read phase. If no STOP condition is received, the NAU8325 will automatically increment the target Control Register Address and then start sending the two bytes of data for the next register in the sequence. This will continue as long as the master continues to send ACK signals. Once the target register reaches 0xFFFF, it will send the associated data then roll over to 0x0000 and continue as before.

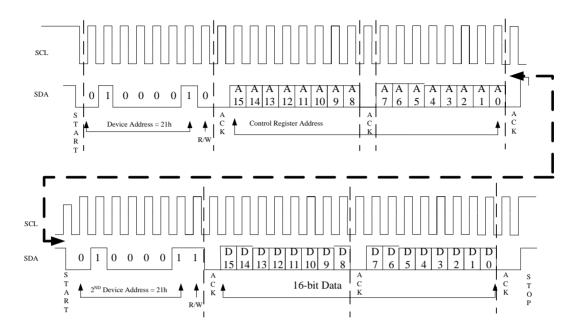


Figure 19 2-Wire Read Sequence

8.2 Digital Audio Interface

The NAU8325 is an I2S slave device. In Slave Mode, an external controller supplies BCK (bit clock) and LRCK (the frame synchronization or FS signal). Data is latched on the rising edge of BCK.

The NAU8325 has two DAC channels.

The NAU8325 supports five port data lengths: 8, 16, 20, 24, and 32 bits by setting **I2S_PCM_ CTRL1 WLEN0 REG0XD[4:2]** The chip also supports 8-bit word length for Companding Mode operation by setting **I2S_PCM_ CTRL1 CMB8_0 REG0XD** to 1.

The NAU8325 supports audio formats: I2S, Right Justified, Left Justified, TDM I2S, TDM Left Justified, PCM A, PCM B, PCM Offset, and PCM Time Slot.

When operated in the TDM I2S or TDM Left Justified mode and in all PCM modes, the NAU8325 supports 8-channel data transmission on DAC path simultaneously. **TDM_CTRL TDM REG0XC[15]** should be set = 1 if using TDM I2S or TDM Left Justified modes.

PCM Mode	I2S_PCM_CTRL1 AIFMT0 REG0XD[1:0]	I2S_PCM_CTRL1 LRP0 REG0XD[6]	I2S PCM CTRL2 PCM TS ENO REGOXE[10]	TDM_CTRL PCM_OFFSET MODE_CTRL REG0XC[14]
Right Justified	00	0	0	0
Left Justified	01	0	0	0
I2S	10	0	0	0
PCM A	11	0	0	0
РСМ В	11	1	0	0
PCM Offset	11	Don't care	0	1
PCM Time Slot	11	Don't care	1	0

Table 8 Digital Audio Interface Mode Settings

Mar 29, 2024 Page 30 of 54 Rev 2.8

8.2.1 Right-Justified Audio Data

In Right-Justified Mode, the LSB is clocked on the last BCLK rising edge before the FS transitions. When FS is HIGH, Channel 0 data is transmitted; when FS is LOW, Channel 1 data is transmitted. This can be seen in **Figure 20**.

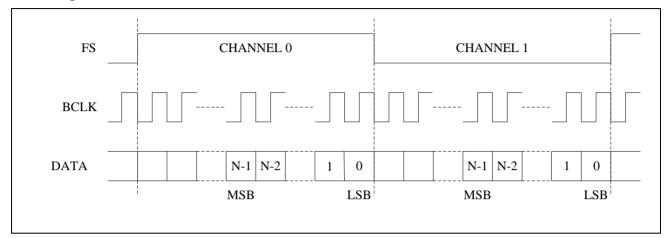


Figure 20 Right-Justified Audio Data

8.2.2 Left-Justified Audio Data

In Left-Justified Mode, the MSB is clocked on the first BCLK rising edge after the FS transitions. When FS is HIGH, Channel 0 data is transmitted; when FS is LOW, Channel 1 data is transmitted. This can be seen in **Figure 21**.

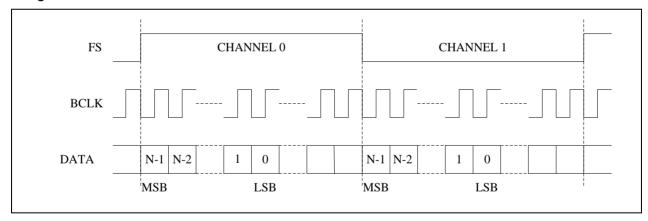


Figure 21 Left-Justified Audio Data

8.2.3 I2S Audio Data

In I2S Mode, the MSB is clocked on the second BCLK rising edge after the FS transitions. When FS is LOW, Left Channel data is transmitted; when FS is HIGH, Right Channel data is transmitted. This can be seen in **Figure 22.**

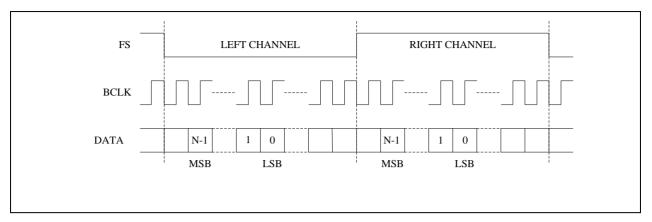


Figure 22 I2S Audio Data

8.2.4 TDM Left-Justified Audio Data

In TDM Left-Justified Mode, the MSB is clocked on the first BCLK rising edge after the FS transitions. When FS is LOW, Channel 1 data is transmitted, then Channel 3, 5, and 7 data are transmitted; when FS is HIGH, Channel 0 data is transmitted, then Channel 2, 4, and 6 data are transmitted. This is shown in **Figure 23**.

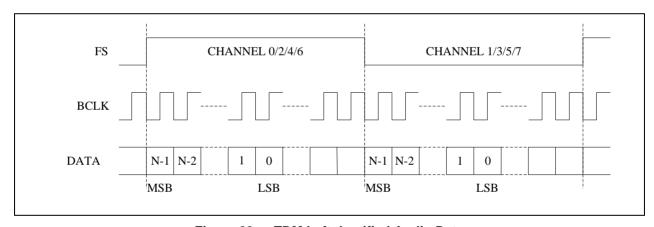


Figure 23 TDM Left-Justified Audio Data

8.2.5 TDM I2S Audio Data

In I2S Mode, the MSB is clocked on the second BCLK rising edge after the FS transitions. When FS is LOW, Channel 0 data is transmitted, then Channel 2, 4, and 6 data are transmitted; when FS is HIGH, Channel 1 data is transmitted, then Channel 3, 5, and 7 data are transmitted. This is shown in **Figure 24.**

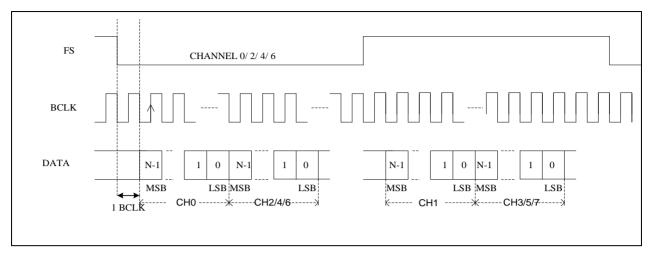


Figure 24 TDM I2S Audio Data

8.2.6 PCM A Audio Data

In PCM A Mode, Channel 0 data is transmitted first, followed sequentially by Channel 1, 2, and 3, 4, 5, 6, and 7 data immediately after. The Channel 0 MSB is clocked on the second BCLK rising edge after the FS pulse rising edge, and the subsequent channel's MSB is clocked on the next BCLK after the previous channel's LSB. This is shown in **Figure 25.**

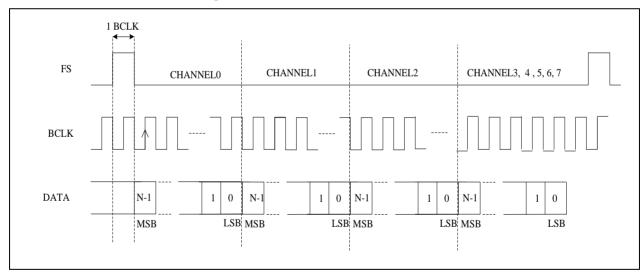


Figure 25 PCM A Audio Data

8.2.7 PCM B Audio Data

In PCM B Mode, Channel 0 data is transmitted first, followed immediately by Channel 1, 2, and 3, 4, 5, 6, and 7 data immediately after. The Channel 0 MSB is clocked on the first BCLK rising edge after the FS pulse rising edge, and the Channel 1 MSB is clocked on the next BCLK after the Channel 0 LSB. This is shown in **Figure 26**.

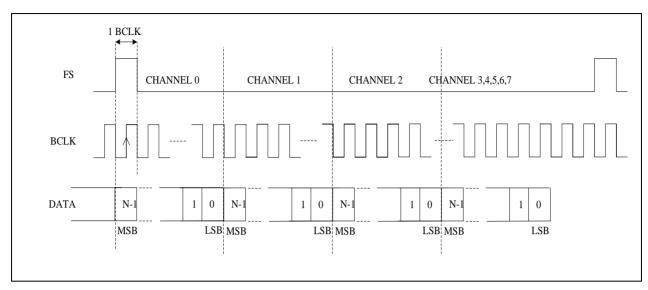


Figure 26 PCM B Audio Data

8.2.8 PCM Time Slot Audio Data

PCM Time Slot Mode is used to delay the time at which the DAC data is clocked into the device. This can be useful when multiple NAU8325 chips or other devices share the same audio bus. This will allow the audio from the chips to be delayed around each other without interference.

Normally, the DAC data is clocked immediately after the Frame Sync (FS); however, in PCM Time Slot Mode, the audio data can be delayed by setting LEFT_ TIME_SLOT TSLOT_L0 REG0XF[9:0] and RIGHT_ TIME_SLOT TSLOT_R0 REG0X10[9:0] for the left and right channels, respectively. I2S_PCM_ CTRL2 PCM_TS_ EN0 REG0XE[10] needs to be set to 1. These delays can be seen before the MSB in Figure 27.

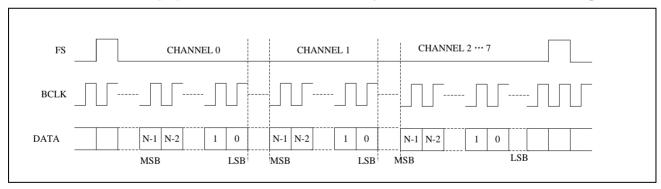


Figure 27 PCM Time Slot Audio Data

8.2.9 PCM Time Offset Audio Data

PCM Time Offset Mode is used to delay the time at which the DAC data are clocked. This increases the flexibility of the NAU8325 for use in a wide range of system designs. One key application of this feature is to enable multiple NAU8325 chips or other devices to share the audio data bus, thus enabling more than four channels of audio. This feature may also be used to swap channel data, or to cause multiple channels to use the same data. TDM_CTRL PCM_ OFFSET_ MODE_CTRL REGOXC[14] must be set to 1 for this application.

Normally, the DAC data is clocked immediately after the Frame Sync (FS). In this mode, audio data is delayed by a delay count specified in the device control registers. The Channel 0 MSB is clocked on the BCLK rising edge defined by the delay count set in **LEFT_ TIME_SLOT TSLOT_L0 REG0XF[9:0]**. The subsequent channel's MSB is clocked on the next BCLK after the LSB of the previous channel. This can be seen in **Figure 28**.

Mar 29, 2024 Page 34 of 54 Rev 2.8

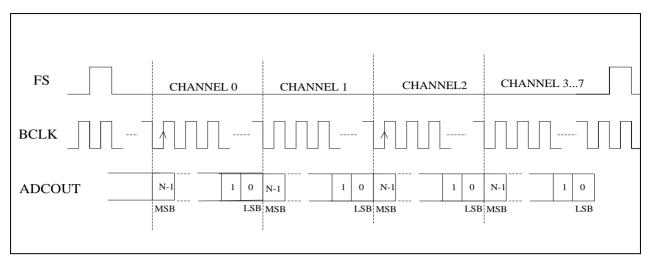


Figure 28 PCM Time Offset Audio Data

Symbol	Description	Min	Тур	Max	Unit
T _{BCK}	BCLK Cycle Time (Slave Mode)	35			ns
Твскн	BCLK High Pulse Width (Slave Mode)	20			ns
T _{BCKL}	BCLK Low Pulse Width (Slave Mode)	50			ns
T _{FSS}	Fs to CLK Rising Edge Setup Time (Slave Mode)	20			ns
T _{FSH}	BCLK Rising Edge to Fs Hold Time (Slave Mode)	40			ns
T _{RISE}	Rise Time for All Audio Interface Signals			TBD	ns
T _{FALL}	Fall Time for All Audio Interface Signals			TBD	ns
T _{DIS}	ADCIN to BCLK Rising Edge Setup Time	15			ns
T _{DIH}	BCLK Rising Edge to DACIN Hold Time	15			ns
T _{DOD}	Delay Time from SCLK Falling Edge to ADCOUT (Master Mode)			20	ns
	Delay Time from SCLK Falling Edge to ADCOUT (Slave Mode)			30	ns

Table 9 Digital Audio Interface Timing Parameter

BCLK=3.072MHz, Fs=48KHz, 64Bit, VDD 2.5 -5.25V, Room Temperature

8.3 Control and Status Registers

	Bit																		
#	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
0	HARDWARE _RST	RESET_N1																	Hardware Reset (Write any value <i>once</i> to reset all the registers.)
1	SOFTWARE_ RST	RESET_N_ SOFT_PRE																	Software Reset (Write any value <i>twice</i> to reset all internal states without resetting the config registers.)
		I2C_DEVICE_I D																	I2C Slave Address
2	DEVICE_ID	REG_SI_REV																	Silicon Revision
		Default	0	0	1	0	0	0	0	1	1	1	1	1	0	0	1	0	0x21F2 Read Only
		CLK_DAC_ INV																	DAC Clock Inversion In Analog Domain Enable Control 0 = Disable (DEFAULT) 1 = Enable
		CLK_DAC_ SRC																	Scaling Divider For DAC Clock From CODEC_SRC 00 = 1
		CLK_MUL_SR C (N1)																	Select The Reference Clock for Internal Clock Multiplier (Input: MCLK input pin; Output: MCLK_S1 00 = MCLK input pin 01 = MCLK input pin/2 10 = MCLK input pin/3 11 = off
3	CLK_CTRL	MCLK_SEL (N3)																	Select a Clock from Outputs of Clock Multiplier Output: MCLK_S2 (Requires Reg 0x65 to be set to enable 4x & 8x multipliers When the clock multiplier is used, it is recommended to set N1 to '10' or '01' to reduce jitter and duty cycle sensitivity. It is also recommended to use a DAC_RATE of 64 or 100 when the clock multiplier is used.) 000 = MCLK input PIN 001 = MCLK_S1 010 = 2*MCLK_S1 011 = 4*MCLK_S1** 100 = 8*MCLK_S1** 11x = MCLK off
		MCLK_SRC (N2)																	Scaling MCLK_S2 for Dystem MCLK Input: MCLK_S2; Output: MCLK_SRC 000: MCLK_S2 001: MCLK_S2/2 010: MCLK_S2/4 011: MCLK_S2/8 100: MCLK input pin
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		DACEN_L																	DAC Left Channel Enable Control 0 = Disable (DEFAULT) 1 = Enable
4	ENA_CTRL	DACEN_R																	DAC Right Channel Enable 1 = ON 0 = OFF
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
	5 INTERRUPTM ASK	OCP_OR_ OTP_ SHTDWN1_ INTP_MASK																	OCP/OTP Shutdown Interrupt Mask Enable Control (Over Current/Over Temperature Shutdown) 0 = Unmask (DEFAULT) 1 = Mask the Interrupt
5		CLIP_INTP_ MASK																	Clip Interrupt Mask 0 = Unmask 1 = Mask the Interrupt
		LOVDDDET _INTP_MASK																	Low Voltage Detection Interrupt Mask 0 = Unmask 1 = Mask the Interrupt

										В	it								
#	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		PWRUPEN_ INTP_MASK	J	*	3			U											Power Up Interrupt Mask 0 = Unmask 1 = Mask the Interrupt
		OCP_OR_ OTP_ SHTDWN1 INT_DIS																	OCP/OTP Shutdown Interrupt Disable 0 = Enable 1 = Disable
		CLIP_INT_ DIS																	Clip Interrupt Disable 0 = Enable 1 = Disable
		LOVDDDETB_I NT_DIS																	Low Voltage Detection Interrupt Disable 0 = Enable 1 = Disable
		PWRUPEN_ INT_DIS																	Power Up Interrupt Disable 0 = Enable 1 = Disable
		Default	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0x007f
6	INT_CLR_ STATUS	INT_CLR_ STATUS																	Interrupt Clear Status Write Operation: Write bits [6:0] 1s to clear the corresponding Interrupt Status. Read Operation: REG6 [6:0] RD_INT_STATUS Bit4 = Over Current/Over Temperature Shutdown Bit3 = Clip Bit2 = Low Voltage Detection Bit0 = Power Up
		Default	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Read/Write
9	IRQOUT	IRQoutSEL																	IRQ Output Function Select 0000 = IRQ (default) 0001 = SDB 0010 = OSC_CLK 0011 = MUTEB 0100 = SHUTDWNDRVRR 0101 = PWRDOWN1B_D 0110 = PDOSCB 0111 = TMTALARM 1000 = SHUTDWNDRVRL 1001 = MCLK 1010 = MCLK 1010 = MCLKDET 1011 = TALARM 1100 = SHORTL 1101 = SHORTR 1110 = PWRUPEN 1111 = TMDET
		DEM_DITH																	Dither on SD Integrator Feedback 1 = 2x dither level (recommended setting)
		GAINZI3																	Gain of CRFB 3 rd Integrator. Leave 0.
		GAINZI2																	Gain of O3 CRFB 2 nd Integrator. Leave 0x000
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000 (Recommended 0x0080)
		IRQ_PL																	Default IRQ Logic 0 = Active Low 1 = Active High
		IRQ_PS																	IRQ Pin Pull Select 0 = Pull Down 1 = Pull Up
Α	IO_CTRL	IRQ_PE																	IRQ Pin Pull Enable 0 = Disable 1 = Enable
		IRQ_DS																	IRQ Current Drive Select 0 = Low 1 = High
		IRQ_OE																	IRQ Output Enable 0 = Disable 1 = Enable

										В	it								
#	Function	Name	1 5	1 4	1 3	1 2	1	1	9	8	7	6	5	4	3	2	1	0	Description
		IRQ_PIN_DEBU G_MODE BCLK_DS						<u> </u>											Specific Signal Using IRQoutSEL to The IRQ Pin 0: Disable this test function 1: Enabled the test function that output the Reserved. Keep at 0
		LRC_DS																	Reserved. Keep at 0
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
В	PDM_CTRL	PDM_LCH_ED GE																	In PDM Mode 0 = Left Channel in Falling Edge, Right Channel in Rising Edge 1 = Left Channel in Rising Edge, Right Channel in Falling Edge PDM Mode Enable
		PDM_MODE																	0 = Disable 1 = Enable
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		TDM																	TDM Enable 0 = Disable 1 = Enable (not for I2S. I2S by definition is not TDM)
		PCM_ OFFSET_ MODE_CTRL																	PCM Offset Control in TDM 0 = Disable 1 = Enable
С	TDM_CTRL	DAC_LEFT_SE L																	DAC Left Channel Source in TDM Mode 12S : 000 : from Slot 0 001 : from Slot 2 010 : from Slot 4 011 : from Slot 6
		DAC_RIGHT_S EL																	DAC Right Channel Source in TDM Mode 12S :
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		DACCM0																	DAC Companding Mode Control 00 = Off (normal linear operation) 01 = Reserved 10 = μ-Law Companding 11 = A-law Companding
		CMB8_0																	8-bit Word Enable for Companding Mode 0 = Normal operation (no Companding) 1 = 8-bit operation for Companding Mode μ Law Offset
		UA_OFFSET																	μ Law Orrset 0 = 1s complement 1 = 2s complement Bit Clock Phase Inversion Option for BCLK
D	I2S_PCM_ CTRL1	ВСР0																	0 = Normal phase 1 = Input logic sense inverted
		LRP0																	PCMA and PCMB Left/Right Word Order 0 = Right Justified/Left Justified/I2S/PCMA Mode 1 = PCMB Mode Enable: MSB is valid on 1st rising edge of BCLK after rising edge of FS
		DACPSHS0																	0 = Normal mode 1 = Swap left and right channel
		WLEN0												:					Port Word Length of Audio Data Stream (24-bits Default) 000 = 16-bit word length 001 = 20-bit word length

										В	it								
#	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
			3	4	3		<u>'</u>	U											010 = 24-bit word length 011 = 32-bit word length (not for Right Justified) 100 = 8-bit word length
		AIFMT0																	Port Audio Interface Data Format (Default setting is I2S) 00 = Right Justified 01 = Left Justified 10 = Standard I2S Format 11 = PCMA or PCMB Audio Data Format
		Default	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0x000a
		Reserved																	Reserved to 0
		PCM_TS_ EN0																	PCM Time Slot Enable 0 = Only PCM_A_MODE or PCM_B_MODE (STEREO Only) can be used when PCM Mode is selected 1 = Time slot function enable for PCM Mode
E	I2S_PCM_ CTRL2	Reserved																	Reserved to 0
	OTKLZ	PCM8BIT0																	PCM 8-Bit Word Length 0 = Use I2S_PCM_ CTRL1 WLEN0 to select Word Length 1 = PCM Select 8-bit word length
		RESERVED																	RESERVED
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		Reserved																	
F	LEFT_	DIS_FS_ SHORT_DET																	Short Frame Sync Detection Logic Enable 0 = Enable 1 = Disable Left Channel PCM Time Slot Start Value
	TIME_SLOT	TSLOT_L0 Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	Or PCM TDM Offset Mode Slot Start Value 0-63: legal values. 64-1023: reserved 0x0000
		Delauit	-			0	0	0	Ü	U	Ů	U	U	Ů	Ů	U	U	U	Right Channel PCM Time Slot Start Value
10	RIGHT_ TIME_SLOT	TSLOT_R0																	Or unused for PCM TDM Offset Mode. 0-63: legal values. 64-1023: reserved
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		DAC_HPF_ EN																	DAC High Pass Filter Enable 0 = Disable 1 = Enable
		DAC_HPF_ APP																	DAC High Pass Filter Application Mode
11	HPF_CTRL	DAC_HPF_ FCUT																	DAC High Pass Filter Cut Off Frequency 000: 130 Hz 001: 155 Hz 010: 198 Hz 011: 248 Hz 100: 311 Hz 101: 398 Hz 110: 503 Hz 111: 614 Hz
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		SOFT_MUTE																	Soft Mute Enable 0 = Gradually increase DAC volume to volume register setting 1 = Gradually lower DAC volume to zero
		RESERVED												_					RESERVED
12	MUTE_CTRL	DACEN_SM																	DACEN Soft Mute 0= disable soft mute 1= enables DAC volume ramping up of a channel on a rising edge of when it is turned on.
	MOIE_CIRL	RESERVED																	RESERVED
		DAC_ZC_EN																	DAC Zero Crossing Enable
		UNMUTE_CTL																	Power-up Soft Unmute Control x0: No soft digital unmute on PWRUPEN and MUTEB events 01:512 MCLK per step soft unmute 11: 32 MCLK per step soft unmute
		ANA_MUTE																	Analog MUTE Time on Power up. 00: ~430us
	l .	l .														L	l		333000

										В	it								
#	Function	Name	1	1	1	1	1	1	9	8	7	6	5	4	3	2	1	0	Description
			5	4	3	2	1	0	J		•		9		J	_	•		01: ~860us 10: ~1.7ms 11: ~4ms AUTO_MUTE
		AUTO_MUTE																	O: Enable Mute driver after detection of 2048 zero samples. 1: disables AUTO_MUTE function.
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x2000
		DAC_ VOLUME_R																	DAC Right Channel Volume Control Expressed as gain or attenuation in 0.5 dB steps 0xff = +6 dB 0xfe = +5.5 dB 0xfd = +5dB V 0xf3 = 0dB V 0x53 = -80 dB 0x52 = Reserved 0x01 = Reserved 0x00 = Mute
13	DAC_VOLUM E	DAC_ VOLUME_L																	DAC Left Channel Volume Control Expressed as gain or attenuation in 0.5 dB steps 0xff = +6 dB 0xfe = +5.5 dB 0xfd = +5dB V 0xf3 = 0dB V 0x53 = -80 dB 0x52 = Reserved V 0x01 = Reserved 0x00 = Mute
		Default	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1	0xf3f3
		Reserved																	Reserved
		OSR100																	Reads '1' when OSR=100x
		MIPS500																	Indicates '1' when MCLK_SRC/FS=500
		SHUTDWNDRV RR																	
1D	Debug Read 1	SHUTDWNDRV	_																
וטו																			
	Debug Keau 1	RL																	
	Debug Read 1	RL MUTEB																	
	Debug Nead 1	RL MUTEB PDOSCB POWERDOWN 1B_D																	
	Debug Read 1	RL MUTEB PDOSCB POWERDOWN	X	x	x	x	x	x	x	x	x	x	x	x	x	X	x	x	Read Only
	Debug Read 1	RL MUTEB PDOSCB POWERDOWN 1B_D Default Right Channel	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	Read Only
1F		RL MUTEB PDOSCB POWERDOWN 1B_D Default	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	Read Only
1F	Debug Read 2	RL MUTEB PDOSCB POWERDOWN 1B_D Default Right Channel Volume Left Channel Volume																	
1F		RL MUTEB PDOSCB POWERDOWN 1B_D Default Right Channel Volume Left Channel Volume Default	x		x		x	X	x	x		x	x	x	X	X		x	Read Only
1F		RL MUTEB PDOSCB POWERDOWN 1B_D Default Right Channel Volume Left Channel Volume Default Reserved																	Read Only Reserved
1F		RL MUTEB PDOSCB POWERDOWN 1B_D Default Right Channel Volume Left Channel Volume Default Reserved PGAL_GAIN																	Read Only Reserved ALC Gain
1F		RL MUTEB PDOSCB POWERDOWN 1B_D Default Right Channel Volume Left Channel Volume Default Reserved PGAL_GAIN CLIP																	Read Only Reserved
		RL MUTEB PDOSCB POWERDOWN 1B_D Default Right Channel Volume Left Channel Volume Default Reserved PGAL_GAIN																	Read Only Reserved ALC Gain
1F		RL MUTEB PDOSCB POWERDOWN 1B_D Default Right Channel Volume Left Channel Volume Default Reserved PGAL_GAIN CLIP SCAN_MODE SDB																	Read Only Reserved ALC Gain
	Debug Read 2	RL MUTEB PDOSCB POWERDOWN 1B_D Default Right Channel Volume Left Channel Volume Default Reserved PGAL_GAIN CLIP SCAN_MODE																	Read Only Reserved ALC Gain
	Debug Read 2	RL MUTEB PDOSCB POWERDOWN 1B_D Default Right Channel Volume Left Channel Volume Default Reserved PGAL_GAIN CLIP SCAN_MODE SDB																	Read Only Reserved ALC Gain
	Debug Read 2	RL MUTEB PDOSCB POWERDOWN 1B_D Default Right Channel Volume Left Channel Volume Default Reserved PGAL_GAIN CLIP SCAN_MODE SDB TALARM																	Read Only Reserved ALC Gain

										В	it								
#	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		Default	X			X		Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Read Only
		DISABLE_ DEM																	DAC DEM Disable 0 = Normal 1 = Disable DEM Control Leave default.
		DEM_DLY_N																	DAC DEM Delay Enable 0 = Enable 1 = Disable
29	DAC_CTRL1	Reserved CIC_GAIN_																	Reserved, Default 1 DAC Output Fine Tuning
		ADJ																	DAC Oversample Rate Selection
		DAC_RATE																	000 = 64
		Default	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0x0081
		DEM_ DITHER																	Set Probability of DEM Dithering Set probability of first order DEM dithering. Each level increments probability by 1/16 0000 = No dithering 0001 = 1/16 0010 = 1/8 0011 = 3/16 0100 = 1/4 0101 = 5/16 0110 = 3/8 0111 = 7/16 1000 = 1/2 1001 = 9/16 1010 = 5/8 1011 = 11/16 1100 = 3/4 1101 = 13/16 1110 = 7/8 1111 = 15/16
2A	DAC_CTRL2	SDMOD_ DITHER																	Number of Bits of Dithering on SD Modulator Each level increments dithering by 1 bit 0000 = No dithering 0001 = 1 0010 = 2 0011 = 3 0100 = 4 0101 = 5 0110 = 6 0111 = 7 1000 = 8 1001 = 9 1010 = 10 1011 = 11 1100 = 12 1101 = 13 1110 = 14 1111 = 15
		DACPL																	DAC Output Polarity 0 = Non-Inverted 1 = Inverted
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		Reserved																	Reserved
		ALC_ZC																	ALC Zero Cross Detection 0 = Disabled 1 = Enabled
		Reserved																	Reserved, keep at '0'
2C	ALC_CTRL1	SCLEN																	Slow Timer Clock Enable. This bit is used as a timeout for the ALC gain update in zero crossing mode but the input signal never zero crossing It can prevent the ALC gain never update in the never zero crossing situation in zero crossing mode. 0 = Disable 1 = Enable
		ALCMINGAIN			•											4	4	•	Minimum ALC Gain Setting 000 = -1dB 001 = -2dB 010 = -4dB 011 = -6dB 100 = -8dB 101 = -10dB 110 = -12dB 111 = -14dB
		Default	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0x000e
2D	ALC_CTRL2	ALCDCY																	ALC Decay Timer (0.25 dB/ adjust step) 0000 = 500 μsec/step 1000 = 128 msec/step 0001 = 1 msec/step 1001 = 256 msec/step

										В	it								
#	Function	Name	1	1 4	1	1 2	1	1	9	8	7	6	5	4	3	2	1	0	Description
															 .				0010 = 2 msec/step 1010 = 512 msec/step 0011 = 4 msec/step 1011 = 1024 msec/step 0100 = 8 msec/step 1100 - 1111 = Reserved 0101 = 16 msec/step 0110 = 32 msec/step 0111 = 64 msec/step
		ALCATK																	ALC Attack Timer (0.25dB/ adjust step) 0000 = 2 µsec/step
		ALCHLD																	ALC Hold Time Before Automated Gain Increase 0000 = 0.00 msec 0001 = 2.00 msec 0010 = 4.00 msec 0011 = 8.00 msec 0100 = 16.00 msec 0100 = 32.00 msec 0110 = 64.00 msec 0111 = 128.00 msec 1000 = 256.00 msec 1001 = 512.00 msec 1010 - 1111 = 1000.00 msec
		Default	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0x8400 ALC Enable
		ALC_EN																	0 = ALC/Limiter disabled (fixed gain) 1 = ALC/Limiter enabled
2E	ALC_CTRL3	Reserved																	Reserved, keep at '0'
		Reserved																	Reserved, keep at '0'
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		DRVRPWR																	Class-D Driver Power Control Test '0' (default) uses low power at low output levels '1' uses full power at low output levels
		LPGAZC																	Channel Input Zero Cross Detection Enable 0 = Gain changes to PGA register happen immediately (default) 1 = Gain changes to PGA happen pending zero crossing logic
2F	ALC_CTRL4	CLIP_ GAINADJUST																	Maximum Gain Adjustment During Any Clipping Event 000 = (default) no adjustment 001 = 0.5dB (2 steps) 010 = 1dB (4 steps) 011 = 2dB (8 steps) 100 = 3dB (12 steps) 101 = 4dB (16 steps) 110 = 5dB (20 steps) 111 = 6dB (24 steps)
		Reserved																	Reserved, keep at '0'
		LPGAGAIN																	Channel Input PGA Volume Control Setting becomes active when allowed by zero crossing and/or update bit features. 00 0000 = -15.75 dB 00 0001 = -15.5 dB Volume increases in 0.25 dB steps

										В	it								
#	Function	Name	1 5	1 4	1 3	1 2	1	1	9	8	7	6	5	4	3	2	1	0	Description
			<u></u>		<u> </u>		<u>'</u>	<u> </u>										.	10 0000 = 0.0dB default setting
																			11 1110 =0.25 dB
																			11 1111 = 0 dB
		Default	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0x003f
		REG_ APWRUPEN																	Power Up Enable 0 = DAC data does not gate power up signal. 1 = Clock detection will require non-zero samples in order to enable to output power-up signal.
		REG_ CLKPWRUPEN																	Clock Detection Module Enable 0 = Enable 1 = Disable
		REG_ PWRUP_DFT																	PWRUPEN When the Clock Detection Module is disabled, this is the default value for the PWRUPEN
40	CLK_DET_ CTRL	REG_SRATE																	Sample Rate Range Setting 000 = 8 - 12 k
		DISASBLE_BC LK_RATIO																	Set This Bit to Disable the BCLK/LRC ratio detection circuit in the clock detection logic (See Figure 5) 0 = Enable the BCLK/LRC ratio detection circuit (BCLK/LRC >= 8) 1 = Disable the BCLK/LRC ratio detection circuit
		REG_ MINMAX																	Register Min/Max Selection 0 = Choose the Divider Min 1 = Choose the Divider Max Leave default.
		Default	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0xa801
49	TEST	Reserved Reserved																	Reserved Reserved
0	STATUS	Default	Х	Х	X	Χ	Х	Х	Χ	Χ	X	X	Х	Χ	X	Х	Х	Х	Read Only
		SAR_TDC[0]																	Clock Multiplier SAR TDC bit 0
		SAR_TDC[1]																	Clock Multiplier SAR TDC bit 1
		SAR_TDC[2]																	Clock Multiplier SAR TDC bit 2
		SAR_TDC[3]																	Clock Multiplier SAR TDC bit 3
		SAR_TDC[4]				1													Clock Multiplier SAR TDC bit 4
		SAR_TDC[5]																	Clock Multiplier SAR TDC bit 5
		SAR_TDC[6]																	Clock Multiplier SAR TDC bit 6
	ANALOG	SAR_TDC[7]				1								1					Clock Multiplier SAR TDC bit 7
4A	READ	LOVDDDETB				1								1					VBAT Under Voltage Lockout When '0'
		R_Driver5																	Right Class-D Driver 5 Enabled When '1'
		MCLKDET																	MCLK Detected When '1'
		PWRUPEN																	Raw PWRUPEN Signal
		L_Driver2	-																Left Class-D driver 2 Enabled When '1'
		L_Driver3																	Left Class-D driver 3 Enabled When '1'
		L_Driver4																	Left Class-D driver 4 Enabled When '1'
		L_Driver5	V	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	Left Class-D driver 5 Enabled When '1'
		Default	Х	Х	Х	Х	Х	X	Х	Х	X	X	X	Х	Х	X	X	Х	
50	MIXER_CTRL	MIXER_OPTIO N																	Mixer Option 00 = bypass (default) 01 = (L+R)/2 10 = (L-R)/2 11 = (L-R)/2 on L output; (R-L)/2 on R output
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
55	MISC_CTRL																		Reserved, Keep at '0'

			_							В	it								
#	Function	Name	1 5	1 4	1	1 2	1	1	9	8	7	6	5	4	3	2	1	0	Description
		ANA_TEST																	Analog Test 001 = enable analog test
		RAM_TEST_ START																	Ram Test Control 0 = Disable 1 = Enable
																			Reserved. Keep at '0'
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
57	RESERVED																		RESERVED
		TESTDAC																	DAC Test only
		VMID_SEL																	VMIDEN Tie-Off Selection Options 00 = Open (default) 01 = 25 kOhm 10 = 125 kOhm 11 = 2.5 kOhm
60	BIAS_ADJ	BIASADJ																	PGA Master Bias Current Power Options 00 = normal operation (default) 01 = 9% reduced bias current from default 10 = 17% reduced bias current from default 11 = 11% increased bias current from default
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		VMIDEN																	VMIDEN Reference Enable 00 = VMID reference disabled 01 = VMID reference enable gated by PWRUPEN signal 10 = VMID reference disabled 11 = VMID reference enabled
		BIASEN																	Current BIAS Reference Enable 00 = BIAS reference disabled 01 = BIAS reference enable gated by PWRUPEN signal 10 = BIAS reference disabled 11 = BIAS reference enabled
		DACEN_Left																	Left Channel DAC Enable 00 = DAC disabled 01 = DAC enable gated by PWRUPEN signal 10 = DAC disabled 11 = DAC enabled
		DACCLKEN_Le ft																	Left Channel DAC Clock Enable 00 = DAC Clock disabled 01 = DAC Clock enable gated by PWRUPEN signal 10 = DAC Clock disabled 11 = DAC Clock enabled
61	ANALOG_ CONTROL_1	DACEN_Right																	Right Channel DAC Enable 00 = DAC disabled 01 = DAC enable gated by PWRUPEN signal 10 = DAC disabled 11 = DAC enabled
		DACCLKEN_Ri																	Right Channel DAC Clock Enable 00 = DAC Clock disabled 01 = DAC Clock enable gated by PWRUPEN signal 10 = DAC Clock disabled 11 = DAC Clock enabled
		CLASSDEN																	CLASS-D Enable 00 = CLASS-D disabled 01 = CLASS-D enable gated by PWRUPEN signal 10 = CLASS-D disabled 11 = CLASS-D enabled
		VMDFSTENB																	VMIDEN Reference Fast Power Up Circuit Disable 00 = VMIDEN reference fast power up circuit enabled with VMID reference enable 01 = VMIDEN reference fast power up circuit disabled with Class-D enable 10 = VMIDEN reference fast power up circuit enabled with VMID reference enable 11 = VMIDEN reference fast power up circuit disabled
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000

										В	it								
#	Function	Name	1 5	1 4	1	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		DACREFCAP						,											DAC Reference Voltage Decoupling Capacitor 00 = 0 Capacitors 01 = 1 Capacitor 10 = 2 Capacitors 11 = 3 Capacitors Leave default.
62	ANALOG_ CONTROL_2	DACTEST																	DAC Test DC Input Requires TESTDAC (Reg0x60) to be 1 00 = 0 V 01 = + Full Scale 10 = - Full Scale 11 = 0 V
		PWMMOD																	PWM Modulation Selection 0 = BDM Modulation 1 = Ternary Modulation
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		GAIN_C																	Class-D Fine GAIN Control GAIN_F + GAIN_C HEX '11 00001' 0x61 -6.9dB '10 00001' 0x41 -4.7dB '01 00001' 0x21 -2.4dB '00 00001' 0x01 +0.0dB '11 00010' 0x62 -0.5dB '10 00010' 0x42 +1.5dB '01 00010' 0x22 +3.6dB '00 00010' 0x02 +5.8dB
63	ANALOG_ CONTROL_3	GAIN_F																	'11 00100' 0x64 +6.1dB '10 00100' 0x44 +7.9dB '01 00100' 0x24 +9.8dB '00 00100' 0x04 +11.6dB '11 01000' 0x68 +13.7dB '10 01000' 0x48 +14.8dB '01 01000' 0x28 +16.0dB '00 01000' 0x08 +17.0dB '00 10000' 0x10 +21.9dB
		PD_R																	'11 11111' 0x7F mute Right Channel Power Down Control 0=Right Channel power on 1=power down Right Channel. Should only be set in initialization to avoid pops. Left Channel Power Down Control
		PD_L																	0=Right Channel power on 1=power down Left Channel. Should only be set in initialization to avoid pops.
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
	ANALOG_ CONTROL_4	CLASSD SLEW																	Class-D Driver Slew Rate Adjustment 00000000: Nominal Bit0=1: +25% for low signal levels Bit1=1: +25% for low signal levels Bit2=1: -25% for low signal levels Bit3=1: -25% for low signal levels Bit4=1: -25% for all signal levels Bit5=1: -25% for all signal levels Bit6=1: +25% for all signal levels Bit6=1: +25% for all signal levels Bit7=1: +25% for all signal levels
64	30.RTROL_4	CLASSD OCPP																	Class-D P-Driver Short Circuit Threshold Adjustment Leave at 0000
		CLASSD OCPN																	Class-D N-Driver Short Circuit Threshold Adjustment Leave at 0000
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
65	ANALOG_ CONTROL_5	MCLK4XEN																	4x MCLK Enable 0 = 4x MCLK Multiplier disabled 1 = 4x MCLK Multiplier enabled

										В	it								
#	Function	Name	1 5	1 4	1	1 2	1	1	9	8	7	6	5	4	3	2	1	0	Description
		MCLK8XEN																	8x MCLK Enable 0 = 8x MCLK Multiplier disabled 1 = 8x MCLK Multiplier enabled (Requires 0x65[0] to be set to '1')
		MCLK_Range																	Extend Clock Multiplier Input Range '0' = default range '1' = 2 x longer period (lower frequencies) Must be set to '1' if 8xMCLK is used
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
66	ANALOG_CO NTROL_6																		VDDSPK Clip Limiter Threshold. VBATLOW= '1' when VDDSPK goes below: '000' = 4.1V '001' = 3.9V '010' = 3.7V '011' = 3.5V '100' = 3.3V '101' = 3.1V '110' = 2.9V '111' = 2.7V VDDSPK Limiter Threshold Enable Enables comparator with threshold set in VBATTHRES 0 = Disable 1 = Enable Sets VBATLOW when VBATTHREN is disabled (VBATTHREN = '0') 0 = VBATLOW = '1'
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
69	CLIP_CTRL	ANTI_CLIP_EN																	Clip Function Enable 0 = Disable Clip detection 1 = Enable Clip detection
		Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
73	RDAC	CLK_DAC_ DELAY																	DAC Clock Delay Setting DAC clock delay setting (010 suggested value) 000 delay 0 nsec 100 delay 4 nsec 001 delay 1 nsec 101 delay -3 nsec 010 delay 2nsec 110 delay2 nsec 011 delay 3 nsec 111 delay -1 nsec
		DACVREFSEL																	DAC Reference Voltage Setting. Can be used for minor tuning of the output level. 0 0 VDDA (unregulated) 0 1 VDDA x 1.5/1.8 V 1 0 default: VDDA x 1.6/1.8 V 1 1 VDDA x 1.7/1.8 V
		Default	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0x0008

9 Electrical Characteristics

The tables in this chapter provide the various electrical parameters for the NAU8325 and their values.

9.1 Absolute Maximum Ratings

Parameter	Min	Max	Units
IO_VDD Digital I/O Supply Range	-0.3	4.0	V
SPK_VDD Battery Supply Range	-0.3	6.0	V
A_VDD Analog Supply Range	-0.3	2.2	V
Voltage Input Analog Range	A_GND - 0.3	A_VDD + 0.3	V
Voltage Input I/O Range	IO_GND - 0.3	IO_VDD + 0.3	V
Junction Temperature, T _J	-40	+150	°C
Storage Temperature	-65	+150	°C

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely influence product reliability and result in failures not covered by the warranty.

9.2 Operating Conditions

Recommended Operating Conditions

Condition	Symbol	Min	Typical	Max	Units
Battery Supply Range	SPK_VDD	2.50	4.2	5.50	V
Analog Supply Range	A_VDD	1.62	1.8	1.98	V
Digital I/O Supply Range	IO_VDD	1.62	3.0	3.6	V
Ground	A_GND/IO_GND		0		V
Industrial Operating Temperature		-40		+85	°C

CAUTION: The following conditions needed to be followed for regular operation: $SPK_VDD > A_VDD - 1.2V$; $IO_VDD > A_VDD - 0.6V$.

9.3 Electrical Parameters

Conditions: A_VDD = IO_VDD = 1.8V; SPK_VDD= 4.2V. $R_L = 8~\Omega + 33~\mu H$, f = 1kHz, 48kHz sample rate, MCLK=12.288MHz, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Typical	Limit	Units	
		A_VDD, all clocks off	2.0	10		
ISD	Shutdown Supply Current	IO_VDD, all clocks off	0.1	2	μΑ	
		SPK_VDD, all clocks off	0.2	4		
		A_VDD, clocks off, clock gating on	2.0		μΑ	
ISB	Standby Mode Supply Current	IO_VDD, clocks off, clock gating on	0.1		μΑ	
		SPK_VDD, clocks off, clock gating on	0.2		μΑ	
IDD		A_VDD, idle Channel	3.8		mA	

Symbol	Parameter	Conditions	Typical	Limit	Units
	Operating Mode Supply Current	IO_VDD, idle Channel	0.1		mA
	(stereo operation)	SPK_VDD, idle Channel	2.8		mA
		A_VDD, idle Channel	3.0		mA
IDDm	Operating Mode Supply Current (mono operation)	IO_VDD, idle Channel	0.1		mA
		SPK_VDD, idle Channel	1.6		mA
		Class-D Channel			
	SPK_VDD=4.2V RL = 8 Ohm + 33 μH and Total Harmonic Distortion+Noise (THD+N) = 1%, Gain=12dB	0.98		W	
D	Po Output Power	SPK_VDD=5V RL = 8 Ohm + 33 μH and Total Harmonic Distortion+Noise (THD+N) = 10%, Gain=18dB	1.72		W
Po		SPK_VDD=4.2V RL = 4 Ohm + 33 μH and Total Harmonic Distortion+Noise (THD+N) = 1%, Gain=12dB	1.77		W
		SPK_VDD=5V RL = 4 Ohm + 33 μH and Total Harmonic Distortion+Noise (THD+N) = 10%, Gain=12dB	3.08		W
THD+N	Total Harmonic Distortion + Noise	$R_L = 8~\Omega + 33~\mu H,~f = 1 kHz,~P_O = 0.5~W,~Gain = 12 dB$	0.01		%
eos	Output Noise	A-Weighted, 20Hz-20kHz, no Auto Mute or zero detection, no DAC input signal, gain = 0dB	18		μVrms
		A-Weighted, 20Hz-20kHz, no Auto Mute or zero detection, no DAC input signal, gain = 6dB	22		μVrms
	Power Supply Rejection Ratio (Note 1)	DC, SPK_VDD = 3.2V - 4.2V, amplifier voltage GAIN = 6dB	82		dB
PSRR		f _{RIPPLE} = 1020Hz, V _{RIPPLE} = 100mV _{P_P} amplifier voltage GAIN = 6dB	82	60	dB
		f _{RIPPLE} = 4kHz, V _{RIPPLE} = 100mV _{P_P} amplifier voltage GAIN = 6dB	77		dB
Fres	Frequency Response	F = 20Hz ~ 20KHz, 1Watt, R _L = 8 Ω + 33 μ H	+0.8/-0.3		dB
Vos	Output Offset Voltage	Idle Channel, Gain= 0dB	±1	±5	mV
Крор	Pop and Click Noise	A-weighted, Idle DAC input, Clock Gating, toggling clocks on/off, Gain= 6dB	0.03		mVrms
	. Sp and Short Holds	A-weighted, Idle DAC input, toggling between -120dBFs DAC In & 2048 zero samples, Gain= 6dB	0.03		mVrms

Symbol	Parameter	Conditions	Typical	Limit	Units	
Fsw	Switching Frequency	Average	300	400	kHz	
Class-D						
Neff	Power Efficiency	Output Power = 2 x 1W, SPK_VDD = 4.2 V	90		%	

Note 1: $PSRR = 20 \times LOG10(GAIN \times \Delta SPK_VDD/\Delta(SPKP-SPKN)) dB$

9.4 Digital I/O Parameters

Digital I/O

Parameter	Symbol	Comments/Conditions		Min	Max	Units
Input LOW level	VIL	IO_VDD = 1.8V			0.33*IO_VDD	V
input LOW level		IO_VDD = 3.3V			0.37*IO_VDD	ď
Input HIGH level	ViH	IO_VDD = 1.8V		0.67*IO_VDD		V
input in or novoi		IO_VDD = 3.3V		0.63*IO_VDD		٠
	Vон	I _{Load} = 1mA	IO_VDD=1.8V	0.9*IO_VDD		V
Output HIGH level			IO_VDD = 3.3V	0.95*IO_VDD		
Output LOW level	VoL ILoad= 1m	I _{Load} = 1mA	IO_VDD = 1.8V		0.1*IO_VDD	V
			IO_VDD=3.3V		0.05*IO_VDD	

10 Package Specification

The NAU8325 Stereo Class-D Amplifier is available in a small, QFN20L 4x4mm package, using 0.5 mm pitch, as shown in **Figure 29**.

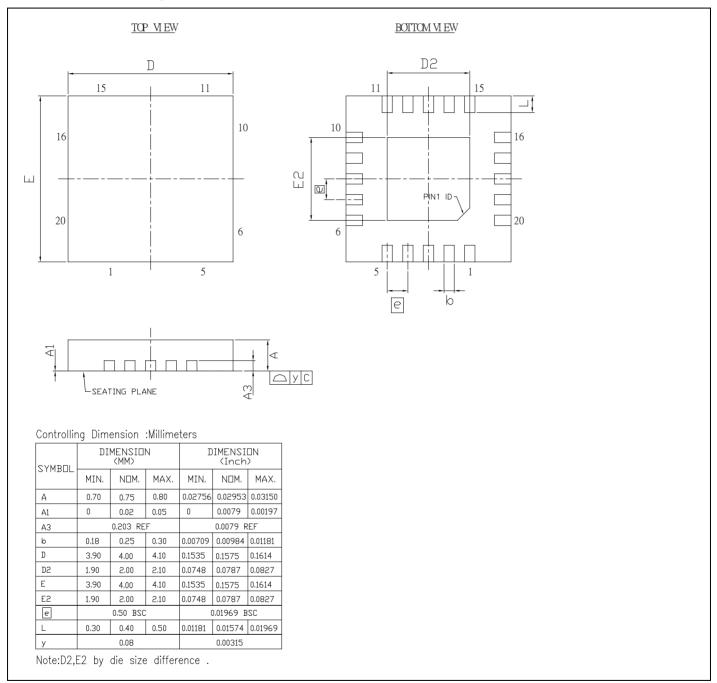
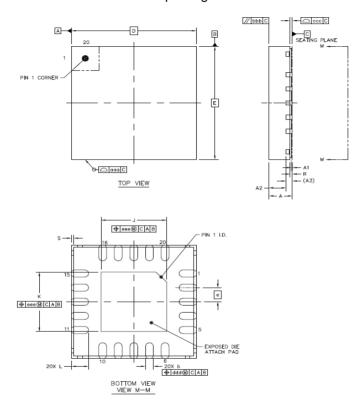



Figure 29 NAU8325 Package Specification

Wettable QFN20L 4x4mm package

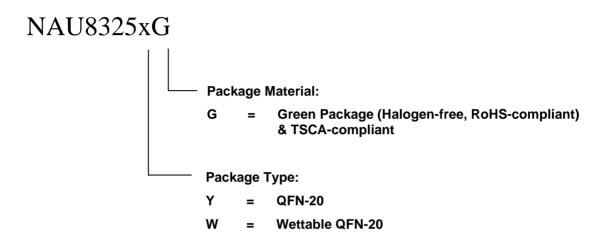

		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS		Α	0.7	0.75	0.8	
STAND OFF		A1	0	0.035	0.05	
MOLD THICKNESS		A2		0.55		
L/F THICKNESS		A3	0.203 REF			
LEAD WIDTH		b	0.2	0.25	0.3	
DODY CIZE	X	D	4 BSC			
BODY SIZE	Υ	E	4 BSC			
LEAD PITCH		е	0.5 BSC			
EP SIZE	X	J	2	2.1	2.2	
EP SIZE	Υ	K	2	2.1	2.2	
LEAD LENGTH		L	0.5	0.55	0.6	
PACKAGE EDGE TOLE	RANCE	aaa	0.1			
MOLD FLATNESS		bbb	0.1			
COPLANARITY		ccc	0.08			
LEAD OFFSET		ddd	0.1			
EXPOSED PAD OFFSE	eee	0.1				
HALF-CUT DEPTH	R	0.075				
HALF-CUT WIDTH		S			0.075	

Figure 30 NAU8325 Wettable Package Specification

11 ORDERING INFORMATION

Part Number	Dimension	Package	Package Material
NAU8325YG	4mm x 4mm	QFN-20	Green
NAU8325WG 4mm x 4mm		Wettable QFN-20	Green

12 REVISION HISTORY

REVISION	DATE	DESCRIPTION
1.0	Apr 04, 2018	Initial Release
1.1	Apr 10, 2018	Internal review Expand clock detection/auto power-down description. Final register map
1.2	Apr 13, 2018	Release to Alpha
1.3	May 18, 2018	Removing unused right-justified PCM modes. Modified digital gain settings to 6dB80dB Expand AUTO_MUTE description Update clock source description
1.4	Jun, 2018	Update MCLK_SRC/LRCK possible rations to include 400/500
1.5	Jul, 2018	Update I2C Slave Address to 0x21 Update electrical parameters
1.6	Oct, 2018	Update PDM description Update CLK_CTRL reg MCLK off. Update reg 0x02, 0x03, 0x4A, 0x63, 0x65 descriptions Update PSRR limits & gain
1.7	Oct, 2018	Update reg 0x0C, 0x0D for PCM options
1.8	Jan, 2019	Update 7.5 POR ANALOG_CTRL_3 PD bits for mono operation Silicon Rev to xF2
1.9	Feb, 2019	Update 9.3 Electrical characteristics for mono
2.0	Aug, 2019	Correct digits in I2C slave address in table Change VSS to GND consistent with pin names
2.1	Jun 16, 2020	Update format
2.2	Jun 1, 2021	Register 0x9 [7] description
2.3	Jun 21, 2021	Register 0x4 0x5 format correctioin Reg0x9 default setting value
2.4	Feb 28, 2022	Update Register Table Format
2.5	Feb 1, 2023	Update Halogen-free, RoHS-compliant and TSCA-compliant description
2.6	Oct 30, 2023	Update T _{DOD} description
2.7	Nov 9, 2023	Update Register Table
2.8	Mar 29, 2024	Add wettable QFN package

IMPORTANT NOTICE

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.