

N-channel 800 V, 0.95 Ω typ., 5 A MDmesh™ K5 Power MOSFET in a I²PAKFP package

Datasheet - production data

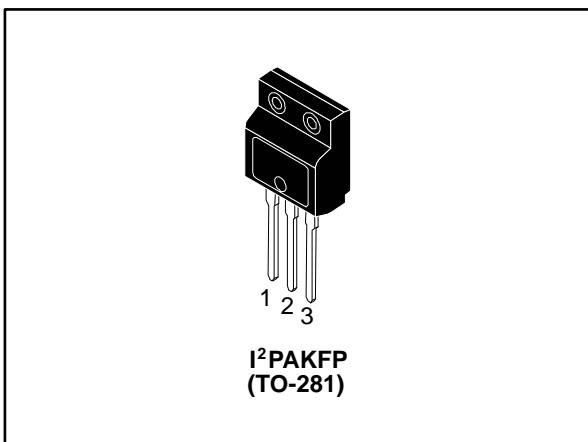


Figure 1: Internal schematic diagram

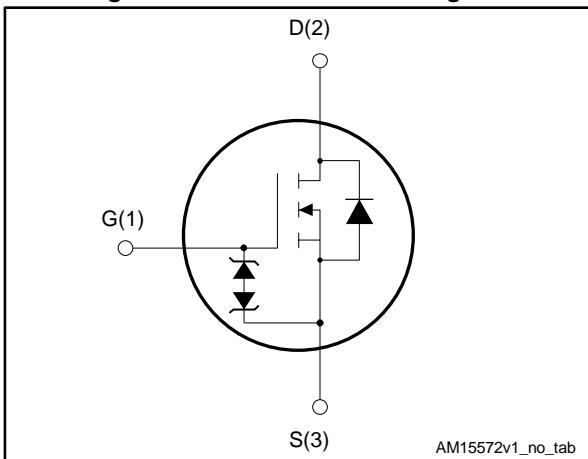


Figure 2: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STFI7LN80K5	800 V	1.15 Ω	5 A

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STFI7LN80K5	7LN80K5	I ² PAKFP (TO-281)	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
2.1	Electrical characteristics (curves)	6
3	Test circuits	8
4	Package information	9
4.1	I ² PAKFP (TO-281) package information	9
5	Revision history	11

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 30	V
$I_D^{(1)}$	Drain current (continuous) at $T_C = 25^\circ\text{C}$	5	A
$I_D^{(1)}$	Drain current (continuous) at $T_C = 100^\circ\text{C}$	3.4	A
$I_D^{(2)}$	Drain current (pulsed)	20	A
P_{TOT}	Total dissipation at $T_C = 25^\circ\text{C}$	25	W
V_{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink ($t=1\text{ s}$; $T_C=25^\circ\text{C}$)	2500	V
$dv/dt^{(3)}$	Peak diode recovery voltage slope	4.5	V/ns
$dv/dt^{(4)}$	MOSFET dv/dt ruggedness	50	
T_{stg}	Storage temperature	- 55 to 150	$^\circ\text{C}$
T_J	Operating junction temperature		

Notes:⁽¹⁾Limited by maximum junction temperature.⁽²⁾Pulse width limited by safe operating area.⁽³⁾ $I_{SD} \leq 5\text{ A}$, $di/dt 100\text{ A}/\mu\text{s}$; V_{DS} peak < $V_{(BR)DSS}$, $V_{DD} = 640\text{ V}$ ⁽⁴⁾ $V_{DS} \leq 640\text{ V}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$R_{thj-case}$	Thermal resistance junction-case	5	$^\circ\text{C}/\text{W}$
$R_{thj-amb}$	Thermal resistance junction-ambient	62.5	$^\circ\text{C}/\text{W}$

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I_{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	1.5	A
E_{AS}	Single pulse avalanche energy (starting $T_j = 25^\circ\text{C}$, $I_D = I_{AR}$, $V_{DD} = 50\text{ V}$)	200	mJ

2 Electrical characteristics

$T_C = 25^\circ\text{C}$ unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{(\text{BR})\text{DSS}}$	Drain-source breakdown voltage	$V_{\text{GS}} = 0 \text{ V}$, $I_D = 1 \text{ mA}$	800			V
I_{DSS}	Zero gate voltage drain current	$V_{\text{GS}} = 0 \text{ V}$, $V_{\text{DS}} = 800 \text{ V}$			1	μA
		$V_{\text{GS}} = 0 \text{ V}$, $V_{\text{DS}} = 800 \text{ V}$ $T_C = 125^\circ\text{C}$			50	μA
I_{GSS}	Gate body leakage current	$V_{\text{DS}} = 0 \text{ V}$, $V_{\text{GS}} = \pm 20 \text{ V}$			± 10	μA
$V_{\text{GS}(\text{th})}$	Gate threshold voltage	$V_{\text{DS}} = V_{\text{GS}}$, $I_D = 100 \mu\text{A}$	3	4	5	V
$R_{\text{DS}(\text{on})}$	Static drain-source on-resistance	$V_{\text{GS}} = 10 \text{ V}$, $I_D = 2.5 \text{ A}$		0.95	1.15	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
C_{iss}	Input capacitance	$V_{\text{DS}} = 100 \text{ V}$, $f = 1 \text{ MHz}$, $V_{\text{GS}} = 0 \text{ V}$	-	270	-	pF
C_{oss}	Output capacitance		-	22	-	pF
C_{rss}	Reverse transfer capacitance		-	0.5	-	pF
$C_{\text{o(er)}}^{(1)}$	Equivalent capacitance energy related	$V_{\text{DS}} = 0 \text{ to } 640 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$	-	17	-	nC
$C_{\text{o(tr)}}^{(2)}$	Equivalent capacitance time related		-	48	-	nC
R_g	Intrinsic gate resistance	$f = 1 \text{ MHz}$, $I_D = 0 \text{ A}$	-	7.5	-	Ω
Q_g	Total gate charge	$V_{\text{DD}} = 640 \text{ V}$, $I_D = 5 \text{ A}$ $V_{\text{GS}} = 10 \text{ V}$ See (Figure 15: "Test circuit for gate charge behavior")	-	12	-	nC
Q_{gs}	Gate-source charge		-	2.6	-	nC
Q_{gd}	Gate-drain charge		-	8.6	-	nC

Notes:

⁽¹⁾Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

⁽²⁾Time related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$t_{\text{d(on)}}$	Turn-on delay time	$V_{\text{DD}} = 400 \text{ V}$, $I_D = 2.5 \text{ A}$, $R_G = 4.7 \Omega$ $V_{\text{GS}} = 10 \text{ V}$ See (Figure 14: "Test circuit for resistive load switching times" and Figure 19: "Switching time waveform")	-	9.3	-	ns
t_r	Rise time		-	6.7	-	ns
$t_{\text{d(off)}}$	Turn-off delay time		-	23.6	-	ns
t_f	Fall time		-	17.4	-	ns

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
I_{SD}	Source-drain current		-		5	A
$I_{SDM}^{(1)}$	Source-drain current (pulsed)		-		20	A
$V_{SD}^{(2)}$	Forward on voltage	$I_{SD} = 5 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.6	V
t_{rr}	Reverse recovery time	$I_{SD} = 5 \text{ A}, di/dt = 100 \text{ A}/\mu\text{s}, V_{DD} = 60 \text{ V}$ See <i>Figure 16: "Test circuit for inductive load switching and diode recovery times"</i>	-	276		ns
Q_{rr}	Reverse recovery charge		-	2.13		μC
I_{RRM}	Reverse recovery current		-	15.4		A
t_{rr}	Reverse recovery time	$I_{SD} = 5 \text{ A}, di/dt = 100 \text{ A}/\mu\text{s}$ $V_{DD} = 60 \text{ V}, T_j = 150 \text{ }^\circ\text{C}$ See <i>Figure 16: "Test circuit for inductive load switching and diode recovery times"</i>	-	402		ns
Q_{rr}	Reverse recovery charge		-	2.79		μC
I_{RRM}	Reverse recovery current		-	13.9		A

Notes:

(1) Pulse width limited by safe operating area

(2) Pulsed: pulse duration = 300 μs , duty cycle 1.5%

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

2.2 Electrical characteristics (curves)

Figure 2: Safe operating area

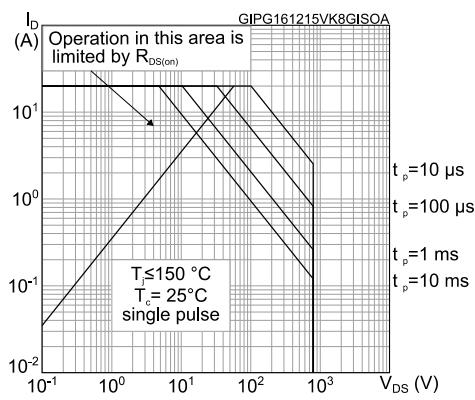


Figure 3: Thermal impedance

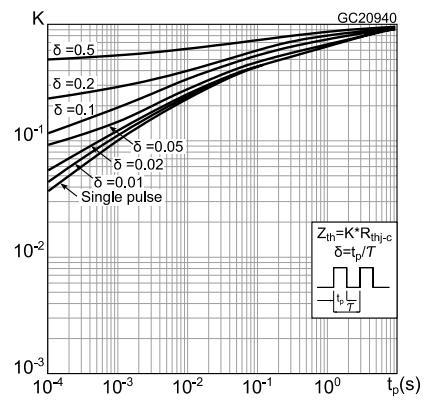


Figure 4: Output characteristics

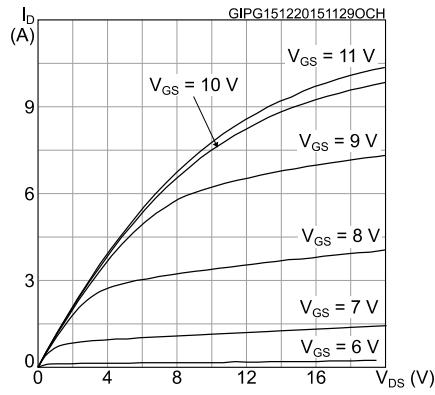


Figure 5: Transfer characteristics

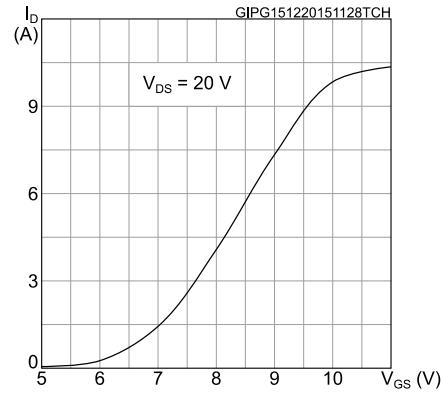


Figure 6: Gate charge vs gate-source voltage

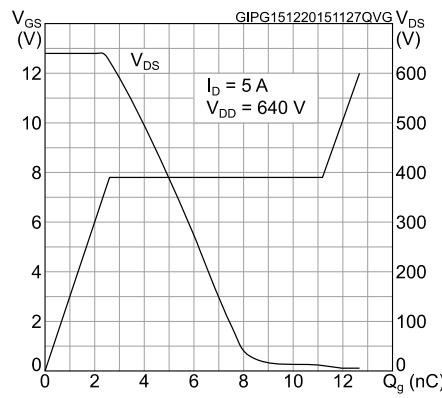


Figure 7: Static drain-source on-resistance

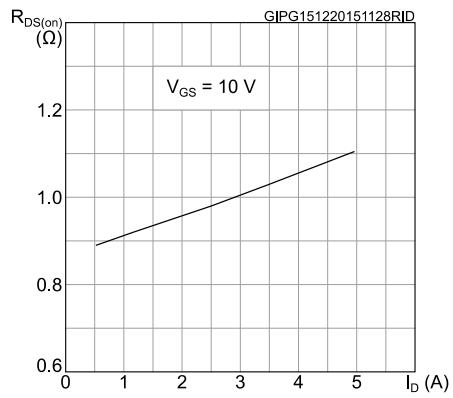


Figure 8: Capacitance variations

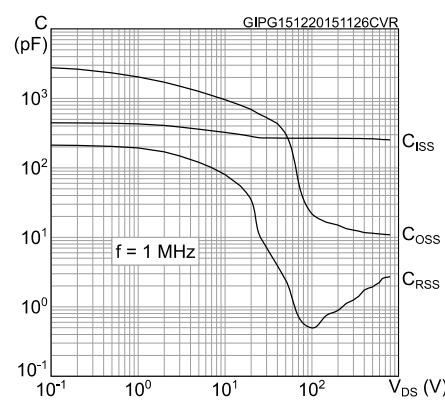


Figure 9: Normalized gate threshold voltage vs temperature

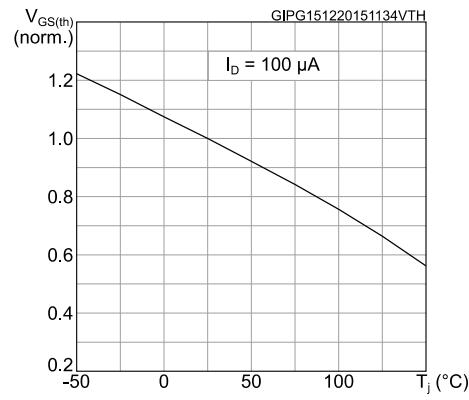
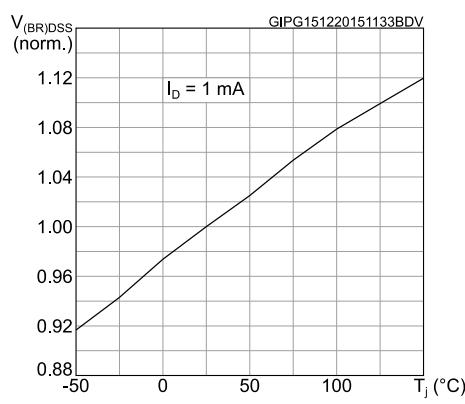


Figure 10: Normalized V_{(BR)DSS} vs temperature

Figure 11: Normalized on-resistance vs temperature

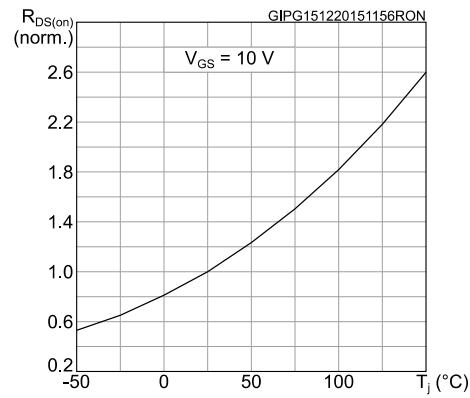


Figure 12: Source-drain diode forward characteristics

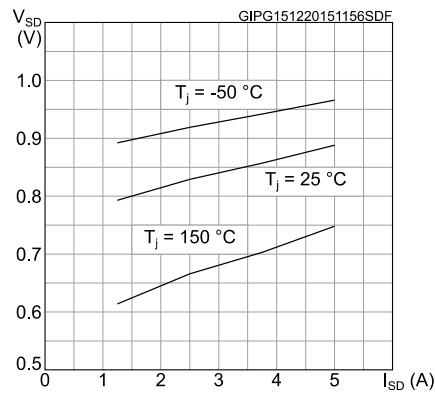
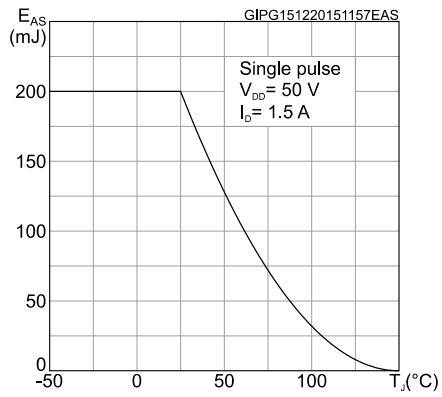



Figure 13: Maximum avalanche energy vs starting T_J

3 Test circuits

Figure 14: Test circuit for resistive load switching times

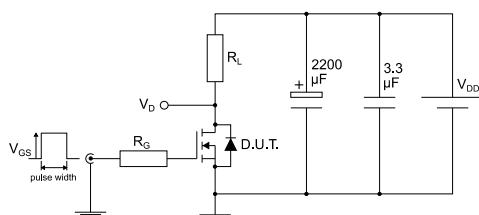


Figure 15: Test circuit for gate charge behavior

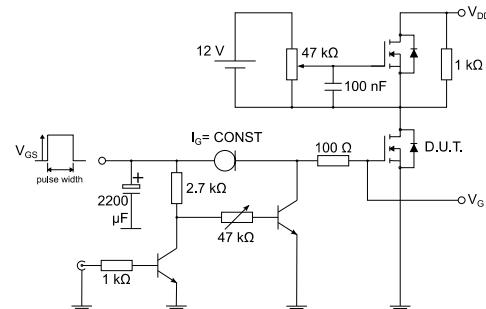


Figure 16: Test circuit for inductive load switching and diode recovery times

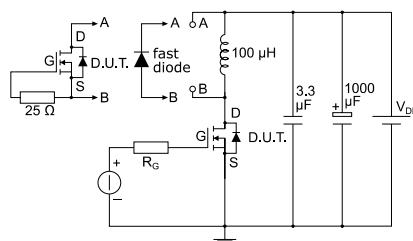


Figure 17: Unclamped inductive load test circuit

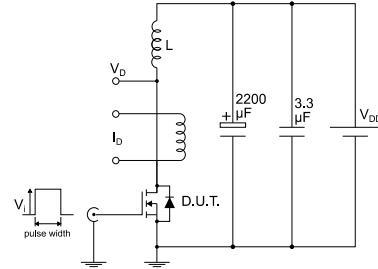


Figure 18: Unclamped inductive waveform

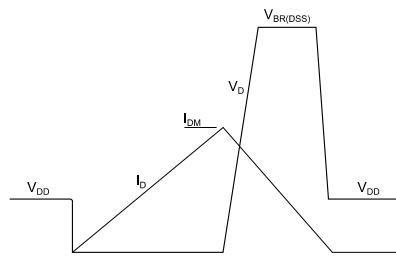
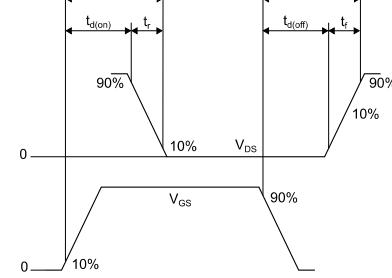



Figure 19: Switching time waveform

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 I²PAKFP (TO-281) package information

Figure 20: I²PAKFP (TO-281) package outline

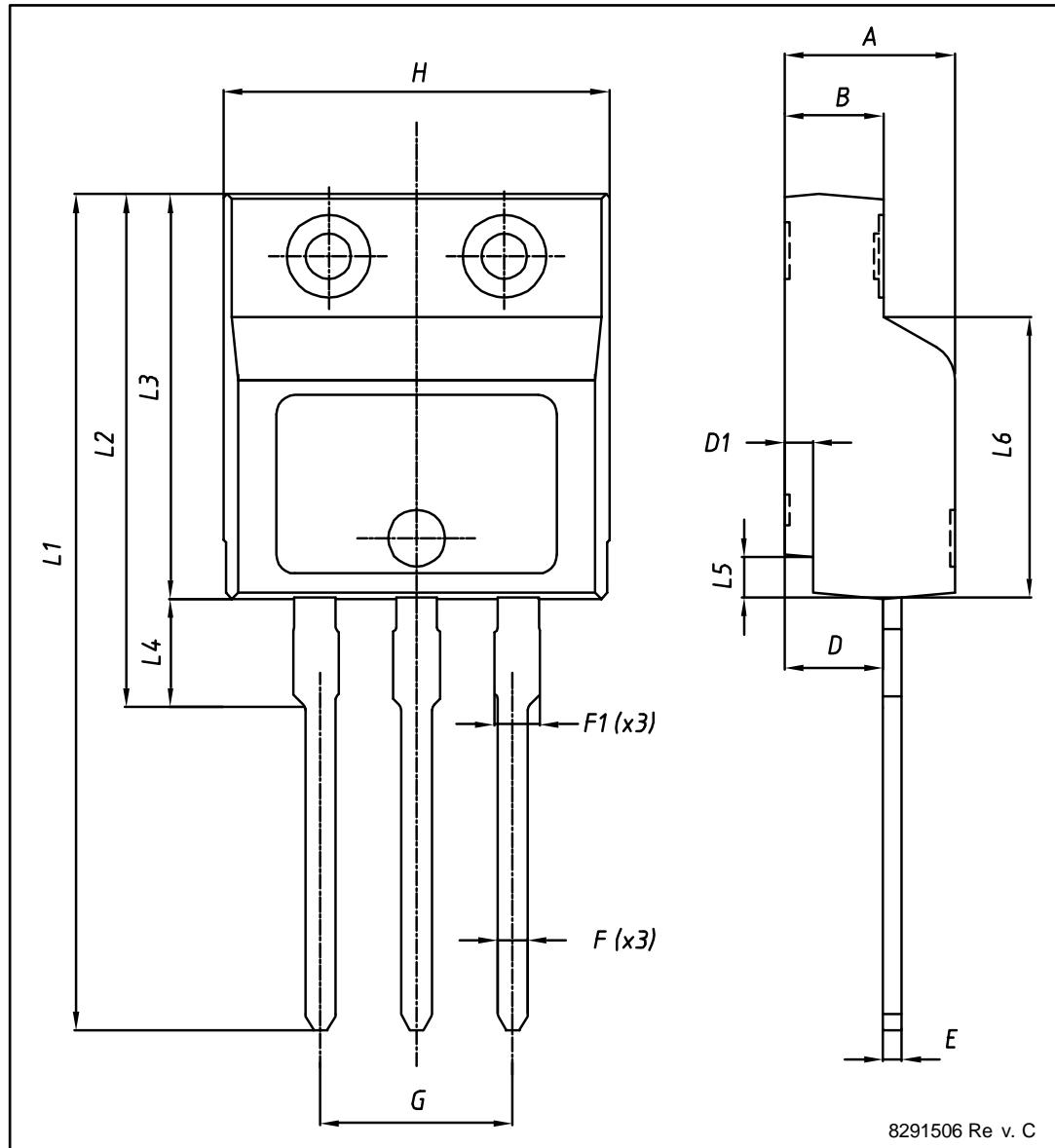


Table 10: I²PAKFP (TO-281) mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.40		4.60
B	2.50		2.70
D	2.50		2.75
D1	0.65		0.85
E	0.45		0.70
F	0.75		1.00
F1			1.20
G	4.95		5.20
H	10.00		10.40
L1	21.00		23.00
L2	13.20		14.10
L3	10.55		10.85
L4	2.70		3.20
L5	0.85		1.25
L6	7.50	7.60	7.70

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
15-Dec-2015	1	First release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved