STP16DPP05

Low voltage 16-bit constant current LED sink driver with output error detection

Datasheet - production data

Features

- Low voltage power supply down to 3 V
- 16 constant current output channels
- Adjustable output current through external resistor
- Short and open output error detection
- Serial data IN/parallel data OUT
- 3.3 V MCU-driving capability
- Output current: 3 to 40 mA
- 30 MHz clock frequency
- Available in high thermal efficiency TSSOP exposed pad
- ESD protection: 2 kV HBM, 200 V MM

Description

The STP16DPP05 is a monolithic, low voltage, low current power 16-bit shift register designed for LED panel displays. The device features a 16-bit serial-in, parallel-out shift register that Table 1: Device summary

feeds a 16- bit D-type storage register. In the output stage, sixteen regulated current sources are designed to provide 3 to 40 mA of constant current to drive the LEDs. The STP16DPP05 features open and short LED detection on the outputs. The detection circuit checks for 3 different conditions that can occur on the output line: short to GND, short to Vo or open line. The data detection results are loaded in the shift registers and shifted out via the serial line output. The detection functionality is implemented without increasing the pin count, through a secondary function of the output enable and latch pin (DM1 and DM2 respectively). A dedicated logic sequence allows the device to enter or exit from detection mode. The STP16DPP05 output current can be adjusted through an external resistor to control the light intensity of the LEDs. LED brightness is adjustable from 0% to 100%

via the OE/DM2 pin. The STP16DPP05

guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high 30 MHz clock frequency makes the device suitable for high data rate transmission. The 3.3 V supply is well suited for applications which interface a 3.3 V MCU. Compared to a standard TSSOP package, the TSSOP with exposed pad increases heat dissipation capability by a factor of 2.5.

Order code	Package	Packing			
STP16DPP05MTR	SO-24 (tape and reel)	1000 parts per reel			
STP16DPP05TTR	TSSOP24 (tape and reel)	2500 parts per reel			
STP16DPP05XTTR	TSSOP24 exposed pad (tape and reel)	2500 parts per reel			
STP16DPP05PTR	QSOP-24	2500 parts per reel			

April 2017

DocID16518 Rev 4

This is information on a product in full production.

Contents

1	Summa	ry description	3
	1.1	Pin connection and description	3
2	Electric	al ratings	4
	2.1	Absolute maximum ratings	4
	2.2	Thermal data	4
	2.3	Recommended operating conditions	5
3	Electric	al characteristics	6
4	Equival	ent circuit and outputs	8
5		diagrams	
6	•	characteristics	
7		etection mode functionality	
	7.1	Phase one: entering error detection mode	18
	7.2	Phase two: error detection	19
	7.3	Phase three: resuming normal mode	21
	7.4	Error detection conditions	21
8	Packag	e information	23
	8.1	QSOP-24 package information	24
	8.2	SO-24 package information	26
	8.3	TSSOP24 package information	27
	8.4	TSSOP exposed pad package information	29
	8.5	TSSOP24, TSSOP24 exposed pad and	
		SO-24 packing information	31
9	Revisio	n history	

1 Summary description

Table 2: Typical	current accuracy
------------------	------------------

	Current accuracy		Output ourront	VDD	Temperature	
Output voltage	Between bits	Between ICs	Output current	V DD	remperature	
≥ 1.3 V	± 1%	± 2%	5 to 40 mA	3.3 V to 5 V	25 °C	

1.1 Pin connection and description

Figure 1: Pin	connection	
	/	
GND [] 1	24 🛛 V _{DD}	
SDI [2	23 🗍 R-EXT	
CLK [] 3	22 SDO	
LE/DM1 [₄	21 0E/DM2	
ουτο [5	20 0UT15	
ουτί [6	19 OUT14	
Ουτ2 [7	18 0UT13	
OUT3 [8	17 0UT12	
<u>ОUТ4</u> [9	16 0UT11	
OUT5 [10	15 0UT10	
OUT6 [11	14 0UT9	
OUT7 [12		
	CS15121	GIPD280920150957MT

The exposed pad should be electrically connected to a metal land electrically isolated or connected to ground.

Table 3: Pin description

Pin n°	Symbol	Name and function
1	GND	Ground terminal
2	SDI	Serial data input terminal
3	CLK	Clock input terminal
4	LE/DM1	Latch input terminal - detect mode 1 (see operation principle)
5-20	OUT 0-15	Output terminal
21	OE/DM2	Input terminal of output enable (active low) - detect mode 1 (see operation principle)
22	SDO	Serial data out terminal
23	R-EXT	Input terminal for an external resistor for constant current programming
24	V _{DD}	Supply voltage terminal

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the ratings listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other condition above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	0 to 7	V
Vo	Output voltage	-0.5 to 20	V
lo	Output current	50	mA
VI	Input voltage	-0.4 to V_{DD}	V
Ignd	GND terminal current	800	mA
f _{CLK}	Clock frequency	50	MHz
TJ	Junction temperature range (1)	-40 to +170	°C

Table 4: Absolute	maximum	ratings
-------------------	---------	---------

Notes:

⁽¹⁾ Such absolute value is based on the thermal shutdown protection.

2.2 Thermal data

Table 5: Thermal data

Symbol	Parameter		Value	Unit
TA	Operating free-air temperature range		-40 to +125	°C
T _{J-OPR}	Operating thermal junction temperature range		-40 to +150	°C
Tstg	Storage temperature range		-55 to +150	°C
	Thermal resistance junction-ambient ⁽¹⁾	SO-24	42.7	°C/W
		TSSOP24	55	°C/W
R _{thJA}		TSSOP24 ⁽²⁾	37.5	°C/W
		exposed pad	57.5	0/10
		QSOP-24	55	°C/W

Notes:

⁽¹⁾ According with JEDEC standard 51-7.

⁽²⁾ The exposed pad should be soldered directly to the PCB to obtain the thermal benefits.

2.3 Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vdd	Supply voltage		3		5.5	V
Vo	Output voltage				20	V
lo	Output current	OUTn	3		40	mA
Іон	Output current	SERIAL-OUT			1	mA
IOL	Output current	SERIAL-OUT			-1	mA
VIH	Input voltage		$0.7 V_{DD}$		V _{DD}	V
VIL	Input voltage		-0.3		0.3 V _{DD}	V
t _{wLAT}	LE/DM1 pulse width		20			ns
t _{wCLK}	CLK pulse width		10			ns
t _{wEN}	OE/DM2 pulse width	V _{DD} = 3.0 V to 5.0 V	100			ns
tsetup(d)	Setup time for DATA					ns
thold(d)	Hold time for DATA		5			ns
tsetup(L)	Setup time for LATCH		8			ns
fclк	Clock frequency	Cascade operation ⁽¹⁾			30	MHz

Table 6: Recommended operating conditions

Notes:

 $^{(1)}$ If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please consider the timings carefully.

3 Electrical characteristics

 V_{DD} = 3.3 V to 5 V, T_{A} = 25 °C, unless otherwise specified.

Table 7: Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ViH	Input voltage high level		0.7 V _{DD}		V _{DD}	V
VIL	Input voltage low level		GND		0.3 V _{DD}	V
I _{ОН}	Output leakage current	V _{OH} = 20 V			1	μA
Vol	Output voltage (serial-OUT)	I _{OL} = 1 mA			0.4	V
Vон	Output voltage (serial-OUT)	I _{OH} = -1 mA	V _{DD} -0.4V			V
I _{OL1}		V_{O} = 0.3 V, R_{ext} = 4 k Ω	4.75	5	5.25	
Iol2	Output current	$V_0 = 0.3 \text{ V}, \text{ R}_{\text{ext}} = 1 \text{ k}\Omega$	19	20	21	
I _{OL3}		V_{O} = 1.3 V, R_{ext} = 497 Ω	38	40	42	mA
Δl _{OL1}	Output current error between bit (all output ON)	$V_{O} = 0.3 \text{ V}, I_{O} = 5 \text{ mA}$ $R_{ext} = 4 \text{ k}\Omega$		± 1	± 5	
Δl _{OL2}		$V_{\rm O} = 0.3 \text{ V}, I_{\rm O} = 20 \text{ mA}$ $R_{\text{ext}} = 980 \ \Omega$		± 0.5	± 3	%
Δlol3		$\label{eq:Vo} \begin{array}{l} V_{0} = 1.3 \; V, \; I_{0} = 40 \; \text{mA} \\ R_{\text{ext}} = 490 \; \Omega \end{array}$		± 0.5	± 3	
R _{SIN(up)}	Pull-up resistor		150	300	600	kΩ
RsIN(down)	Pull-down resistor		100	200	400	kΩ
IDD(OFF1)		$\begin{aligned} R_{\text{ext}} &= 1 \text{ k}\Omega, I_{\text{OUT}} = 20 \text{ mA}, \\ \text{OUT 0 to } 15 = \text{OFF} \end{aligned}$		5.4	7.5	mA
I _{DD(OFF2)}	Supply current (OFF)	R _{ext} = 497 Ω, I _{OUT} = 40 mA OUT 0 to 15 = OFF		8	9.5	
IDD(ON1)	Supply surrent (ON)	$\label{eq:Rext} \begin{split} R_{\text{ext}} &= 1 \ \text{k}\Omega, \ I_{\text{OUT}} = 20 \ \text{mA}, \\ \text{OUT 0 to } 15 = \text{ON} \end{split}$		5.5	7.5	
I _{DD(ON2)}	Supply current (ON)	R _{ext} = 497 Ω, I _{OUT} = 40 mA OUT 0 to 15 = ON		8.1	9.5	
Thermal	Thermal protection			170		°C

STP16DPP05

Table 8: Switching characteristics

Symbol	Parameter	Test condition	IS	Min.	Тур.	Max.	Unit
t _{PLH1}	Propagation delay time, CLK- OUTn , LE/DM1 = H,		V _{DD} = 3.3 V		35.5	44.5	
	OE/DM2 = L		$V_{DD} = 5 V$		18.5	24	ns
	Propagation delay time,		V _{DD} = 3.3 V		41.5	50	
tplh2	LE/DM1 - OUTn , OE/DM2 = L		V _{DD} = 5 V		23	29	ns
	Propagation delay time,		V _{DD} = 3.3 V		45	54	
t _{PLH3}	OE/DM2 - OUTn , LE = H		V _{DD} = 5 V		25	31	ns
	Propagation delay time,	•	V _{DD} = 3.3 V	15	21	31	
t _{PLH}	CLK-SDO		$V_{DD} = 5 V$	11	15	21	ns
	Propagation delay time,	VIH = VDD	V _{DD} = 3.3 V		13.7	18	
t _{PHL1}	$\frac{CLK-OUTn}{OE/DM2} = L$	$V_{IL} = GND$ $C_L = 10 \text{ pF}$ $I_O = 20 \text{ mA}$ $V_L = 3.0 \text{ V}$ $R_{ext} = 1 \text{ K}\Omega$ $R_L = 60 \Omega$	V _{DD} = 5 V		8.8	12.5	ns
	Propagation delay time,		V _{DD} = 3.3 V		17	22	
tPHL2	LE/DM1 - OUTn OE/DM2 = L		V _{DD} = 5 V		13	17	ns
	Propagation delay time,		V _{DD} = 3.3 V		12.7	17	
t _{PHL3}	OE/DM2 - OUTn , LE/DM1 = H		V _{DD} = 5 V		9.5	13	ns
t	Propagation delay time,		V _{DD} = 3.3 V	17.5	24	36	
t PHL	CLK-SDO		$V_{DD} = 5 V$	12.5	17	25	ns
tou	Output rise time 10~90% of		$V_{DD} = 3.3 V$		28	39	
ton	voltage waveform		$V_{DD} = 5 V$		17	23	ns
toff	Output fall time 90~10% of		$V_{DD} = 3.3 V$		4.5	6	
LOFF	voltage waveform		$V_{DD} = 5 V$		3.5	5	ns
tr	CLK rise time ⁽¹⁾					5000	ns
t _f	CLK fall time ⁽¹⁾					5000	ns

Notes:

 $^{(1)}$ In order to achieve high cascade data transfer, please consider tr/tf timings carefully.

4 Equivalent circuit and outputs

Figure 3: LE/DM1 terminal

 DocID16518 Rev 4
 9/34

5 Timing diagrams

CLOCK	LE/DM1	OE/DM2	SERIAL-IN	SERIAL-IN OUT0 OUT7 OUT15	
_ -	Н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15
_ -	L	L	Dn + 1	No change	Dn - 14
_ -	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13
- _	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13
-	Х	Н	Dn + 3	OFF	Dn - 13

OUTn = ON when Dn = H OUTn = OFF when Dn = L.

Figure 7: Timing diagram

1 Latch and output enable terminals are level-sensitive and are not synchronized with rising or falling edge of CLK signal.

2 When LE/DM1 terminal is low level, the latch circuit holds previous set of data.

3 When LE/DM1 terminal is high level, the latch circuit refreshes new set of data from SDI chain.

4 When OE/DM2 terminal is at low level, the output terminals Out 0 to Out 15 respond to data in the latch circuits, either '1' for ON or '0' for OFF.

5 When OE/DM2 terminal is at high level, all output terminals are switched OFF.

STP16DPP05

Table 10: Enable IO: shutdown truth table							
CLOCK	LE/DM1	SDI0SDI7 SDI15	SH	Auto power-up	OUTn		
_ -	Н	All = L	Active	Not active ⁽¹⁾	OFF		
_ -	L	No change	No change	No change	No change		
_ -	Н	One or more = H	Not active	Active	X ⁽²⁾		

Notes:

 $^{\left(1\right) }$ At power-up, the device starts in shutdown mode.

(2) Undefined.

Figure	ς.	Clock	serial-in	serial-out
rigure	о.	GIUCK,	senarin,	Senal-Out

Figure 10: Outputs

6 Typical characteristics

Figure 11: Output current vs. R-EXT resistor

Table 11: Output current vs. R-EXT resistor

R- _{EXT} (Ω)	Output current (mA)
23700	1
11730	2
6930	3
4090	5
2025	10
1000	20
667	30
497	40
331	60

STP16DPP05

Conditions: temperature = 25 °C, V_{DD} = 3.3 V; 5.0 V, I_{SET} = 3 mA; 5 mA; 10 mA; 20 mA; 50 mA; 60 mA.

Figure 12: ISET vs. dropout voltage (Vdrop)

Table 12: ISET vs. dropout voltage (Vdrop)

lout (mA)	Avg (mV) @ 3.3 V	Avg (mV) @ 5.0 V
3	36	37
5	71	72
10	163	163
20	346	347
40	724	726
60	1080	1110

Typical characteristics

57

DocID16518 Rev 4

16/34

The exposed pad should be soldered to the PCB to obtain the thermal benefits.

Notes:

⁽¹⁾ The reference level for the TON characteristics is 50% of $\overline{OE/DM2}$ signal and 90 % of output current.

⁽²⁾ The reference level for the TOFF characteristics is 50% of OE/DM2 signal and 10 % of output current.

Electrical conditions: Vdd = 3.3 V, Vin = Vdd, Vled = 3.0 V, RL = 60 Ω , CL = 10 pF Ch1 (Yellow) = $\overline{OE/DM2}$, Ch2 (Blue) = SDI, Ch3 (Purple) = VOUT, Ch4 (Green) = OUT

57

7 Error detection mode functionality

7.1 Phase one: entering error detection mode

From the "normal mode" condition the device can switch to "error mode" by a logic sequence on the OE/DM2 and LE/DM1 pins, as shown in the following table and diagram:

Table To. Entering error detection mode - train table						
CLK	1°	2 °	3°	4 °	5°	
OE/DM2	н	L	н	н	н	
LE/DM1	L	L	L	Н	L	

Table 13: Entering error detection mode - truth table

After these five CLK cycles, the device goes into "error detection mode" and at the rising edge of the 6th CLK cycle, the SDI data are ready for sampling.

7.2 Phase two: error detection

The 16 data bits must be set to "1" in order for all the outputs to be ON during error detection. The data are latched by LE/DM1, after which the outputs are ready for the detection process. When the microcontroller switches the $\overline{OE/DM2}$ to LOW, the device drives the LEDs to analyze if an OPEN or SHORT condition has occurred.

Figure 19: Detection diagram

The status of the LEDs is detected in at least 1 microsecond, and after this period the microcontroller sets $\overrightarrow{OE/DM2}$ to HIGH state and the output data detection result is sent to the microcontroller via SDO. Error detection mode and normal mode both use the same data format. As soon as all the detection data bits are available on the serial line, the device may return to normal mode of operation. To re-detect the status, the device must first return to normal mode and reenter error detection mode.

Error detection mode functionality

7.3 Phase three: resuming normal mode

The sequence for reentering normal mode is shown in the following table:

Table 14. Kesuning normal mode - timing diagram						
CLK	1°	2 °	3°	4 °	5°	
OE/DM2	н	L	Н	н	н	
LE/DM1	L	L	L	L	L	

Table 14: Resuming normal mode - timing diagram

For proper device operation, the "entering error detection" sequence must be followed by a "resume mode" sequence, it is not possible to insert consecutive equal sequences.

7.4 Error detection conditions

Table 15: Detection conditions (VDD = 3.3 to 5 V, temperature range -40 to 125 °C)

Configuration Detect mode		Detection results		
SW-1 or SW-3b	Open line or output short to GND detected	==> l _{ODEC} ≤ 0.5 x l _O	No error detected	==> l _{ODEC} ≥ 0.5 x l _O
SW-2 or SW-3a	Short on LED or short to V-LED detected	==> V₀ ≥ 2.6 V	No error detected	==> V₀ ≤ 2.3 V

Where: I_0 = the output current programmed by the R-EXT, I_{ODEC} = the detected output current in detection mode

Figure 21: Detection circuit

57

Error detection mode functionality

STP16DPP05

Figure 22: Error detection sequence

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

8.1 QSOP-24 package information

STP16DPP05

Package information

Table 16: QSOP-24 mechanical data					
Dim		mm			
Dim.	Min.	Тур.	Max.		
A	1.54	1.62	1.73		
A1	0.10	0.15	0.25		
A2		1.47			
b	0.20		0.31		
С	0.17		0.254		
D	8.56	8.66	8.76		
E	5.80	6.00	6.20		
E1	3.80	3.91	4.01		
е		0.635			
L	0.40	0.635	0.89		
h	0.25	0.33	0.41		
<	0°		8°		

26/34

STP16DPP05

Package information

27/34

Table 17: SO-24 mechanical data						
Dim		mm				
Dim.	Min.	Тур.	Max.			
A	2.35		2.65			
A1	0.10		0.30			
В	0.33		0.51			
С	0.23		0.32			
D	15.20		15.60			
E	7.40		7.60			
е		1.27				
Н	10.00		10.65			
h	0.25		0.75			
L	0.40		1.27			
k	0		8			
ddd			0.10			

8.3 TSSOP24 package information

DocID16518 Rev 4

57

Package information

Table 18: TSSOP24 mechanical data

STP16DPP05

Dim	mm				
Dim.	Min.	Тур.	Max.		
А			1.1		
A1	0.05		0.15		
A2		0.9			
b	0.19		0.30		
С	0.09		0.20		
D	7.7		7.9		
E	4.3		4.5		
е		0.65 BSC			
Н	6.25		6.5		
К	0°		8°		
L	0.50		0.70		

8.4 TSSO

57

Package information

Table 19: TSSOP24 exposed pad mechanical data

STP16DPP05

Dim.	mm			
	Min.	Тур.	Max.	
А			1.20	
A1			0.15	
A2	0.80	1.00	1.05	
b	0.19		0.30	
С	0.09		0.20	
D	7.70	7.80	7.90	
D1	4.80	5.00	5.2	
E	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
E2	3.00	3.20	3.40	
е		0.65		
L	0.45	060	075	
L1		1.00		
k	0°		8°	
aaa			0.10	

8.5 TSSOP24, TSSOP24 exposed pad and SO-24 packing information

Dim.	mm		
	Min.	Тур.	Max.
А		-	330
С	12.8	-	13.2
D	20.2	-	
Ν	60	-	
Т		-	22.4
Ao	6.8	-	7
Во	8.2	-	8.4
Ko	1.7	-	1.9
Po	3.9	-	4.1
Р	11.9	-	12.1

Package information

Table 21: SO-24 tape and reel mechanical data

STP16DPP05

Dim.	mm			
	Min.	Тур.	Max.	
А		-	330	
С	12.8	-	13.2	
D	20.2	-		
Ν	60	-		
Т		-	30.4	
Ao	10.8	-	11.0	
Во	15.7	-	15.9	
Ко	2.9	-	3.1	
Po	3.9	-	4.1	
Р	11.9	-	12.1	

32/34

9 Revision history

Table 22: Document revision history

Date	Revision	Changes	
22-Oct-2009	1	First release.	
19-Jun-2014	2	Updated Section 8: Package mechanical data. Added Section 9: Packaging mechanical data. Minor text changes.	
04-Apr-2016	3	Updated <i>Table 16:</i> "QSOP-24 mechanical data". Minor text changes.	
04-Apr-2017	4	Updated <i>Figure 5:</i> "SDO terminal", <i>Figure 8:</i> "Clock, serial-in, serial-out" and <i>Figure 9:</i> "Clock, serial-in, latch, enable, outputs". Minor text changes.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

