

MOSFET - Power, 4.4 Amps, 20 Volts

P-Channel TSOP-6

NTGS3443, NVGS3443

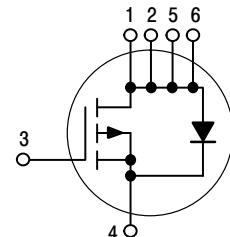
Features

- Ultra Low $R_{DS(on)}$
- Higher Efficiency Extending Battery Life
- Miniature TSOP-6 Surface Mount Package
- These Devices are Pb-Free and are RoHS Compliant
- NVGS Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable

Applications

- Power Management in Portable and Battery-Powered Products, i.e.: Cellular and Cordless Telephones, and PCMCIA Cards

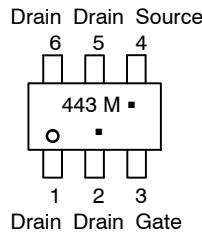
MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted)


Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	-20	Volts
Gate-to-Source Voltage – Continuous	V_{GS}	± 12	Volts
Thermal Resistance Junction-to-Ambient (Note 1)	$R_{\theta JA}$	244	$^\circ\text{C}/\text{W}$
Total Power Dissipation @ $T_A = 25^\circ\text{C}$	P_d	0.5	Watts
Drain Current – Continuous @ $T_A = 25^\circ\text{C}$ – Pulsed Drain Current ($T_p < 10 \mu\text{s}$)	I_D	-2.2	Amps
	I_{DM}	-10	Amps
Thermal Resistance Junction-to-Ambient (Note 2)	$R_{\theta JA}$	128	$^\circ\text{C}/\text{W}$
Total Power Dissipation @ $T_A = 25^\circ\text{C}$	P_d	1.0	Watts
Drain Current – Continuous @ $T_A = 25^\circ\text{C}$ – Pulsed Drain Current ($T_p < 10 \mu\text{s}$)	I_D	-3.1	Amps
	I_{DM}	-14	Amps
Thermal Resistance Junction-to-Ambient (Note 3)	$R_{\theta JA}$	62.5	$^\circ\text{C}/\text{W}$
Total Power Dissipation @ $T_A = 25^\circ\text{C}$	P_d	2.0	Watts
Drain Current – Continuous @ $T_A = 25^\circ\text{C}$ – Pulsed Drain Current ($T_p < 10 \mu\text{s}$)	I_D	-4.4	Amps
	I_{DM}	-20	Amps
Operating and Storage Temperature Range	T_J, T_{stg}	-55 to 150	$^\circ\text{C}$
Maximum Lead Temperature for Soldering Purposes for 10 Seconds	T_L	260	$^\circ\text{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Minimum FR-4 or G-10 PCB, operating to steady state.
2. Mounted onto a 2 in square FR-4 board (1 in sq, 2 oz. Cu. 0.06" thick single sided), operating to steady state.
3. Mounted onto a 2 in square FR-4 board (1 in sq, 2 oz. Cu. 0.06" thick single sided), $t < 5.0$ seconds.

4.4 AMPERES
20 VOLTS
 $R_{DS(on)} = 65 \text{ m}\Omega$


P-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

TSOP-6
CASE 318G
STYLE 1

443 = Specific Device Code
M = Date Code*
▪ = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS3443T1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel

DISCONTINUED (Note 1)

NVGS3443T1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel
-------------	---------------------	--------------------

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1. **DISCONTINUED:** This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com.

NTGS3443, NVGS3443

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted) (Notes 4 & 5)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage ($V_{GS} = 0 \text{ Vdc}$, $I_D = -10 \mu\text{A}$)	$V_{(BR)DSS}$	-20	-	-	Vdc
Zero Gate Voltage Drain Current ($V_{GS} = 0 \text{ Vdc}$, $V_{DS} = -20 \text{ Vdc}$, $T_J = 25^\circ\text{C}$) ($V_{GS} = 0 \text{ Vdc}$, $V_{DS} = -20 \text{ Vdc}$, $T_J = 70^\circ\text{C}$)	I_{DSS}	-	-	-1.0 -5.0	μAdc
Gate-Body Leakage Current ($V_{GS} = -12 \text{ Vdc}$, $V_{DS} = 0 \text{ Vdc}$)	I_{GSS}	-	-	-100	nAdc
Gate-Body Leakage Current ($V_{GS} = +12 \text{ Vdc}$, $V_{DS} = 0 \text{ Vdc}$)	I_{GSS}	-	-	100	nAdc

ON CHARACTERISTICS

Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = -250 \mu\text{Adc}$)	$V_{GS(\text{th})}$	-0.60	-0.95	-1.50	Vdc
Static Drain-Source On-State Resistance ($V_{GS} = -4.5 \text{ Vdc}$, $I_D = -4.4 \text{ Adc}$) ($V_{GS} = -2.7 \text{ Vdc}$, $I_D = -3.7 \text{ Adc}$) ($V_{GS} = -2.5 \text{ Vdc}$, $I_D = -3.5 \text{ Adc}$)	$R_{DS(\text{on})}$	-	0.058 0.082 0.092	0.065 0.090 0.100	Ω
Forward Transconductance ($V_{DS} = -10 \text{ Vdc}$, $I_D = -4.4 \text{ Adc}$)	g_{FS}	-	8.8	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance	$(V_{DS} = -5.0 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C_{iss}	-	565	-	pF
Output Capacitance		C_{oss}	-	320	-	pF
Reverse Transfer Capacitance		C_{rss}	-	120	-	pF

SWITCHING CHARACTERISTICS

Turn-On Delay Time	$(V_{DD} = -20 \text{ Vdc}, I_D = -1.0 \text{ Adc}, V_{GS} = -4.5 \text{ Vdc}, R_g = 6.0 \Omega)$	$t_{d(\text{on})}$	-	10	25	ns
Rise Time		t_r	-	18	45	ns
Turn-Off Delay Time		$t_{d(\text{off})}$	-	30	50	ns
Fall Time		t_f	-	31	50	ns
Total Gate Charge	$(V_{DS} = -10 \text{ Vdc}, V_{GS} = -4.5 \text{ Vdc}, I_D = -4.4 \text{ Adc})$	Q_{tot}	-	7.5	15	nC
Gate-Source Charge		Q_{gs}	-	1.4	-	nC
Gate-Drain Charge		Q_{gd}	-	2.9	-	nC

BODY-DRAIN DIODE RATINGS

Diode Forward On-Voltage	$(I_S = -1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$	V_{SD}	-	-0.83	-1.2	Vdc
Reverse Recovery Time	$(I_S = -1.7 \text{ Adc}, dI_S/dt = 100 \text{ A}/\mu\text{s})$	t_{rr}	-	30	-	ns

4. Indicates Pulse Test: P.W. = 300 μsec max, Duty Cycle = 2%.

5. Handling precautions to protect against electrostatic discharge are mandatory.

TYPICAL ELECTRICAL CHARACTERISTICS

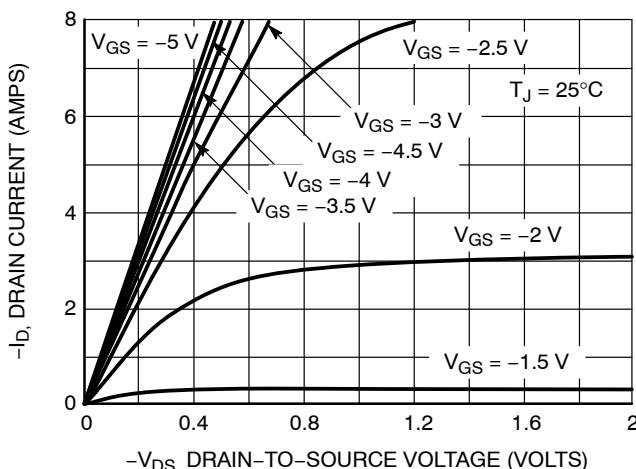


Figure 1. On-Region Characteristics

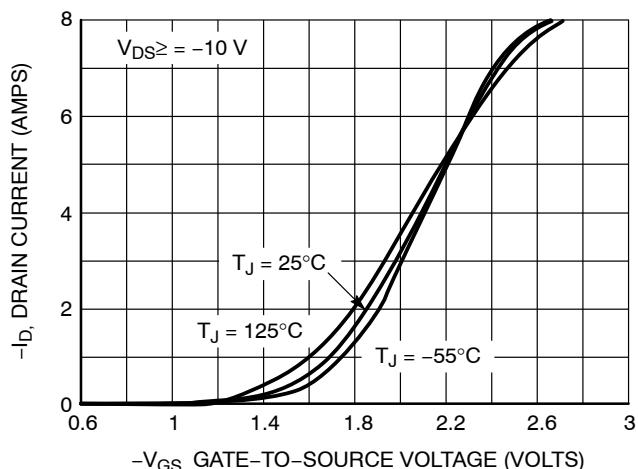


Figure 2. Transfer Characteristics

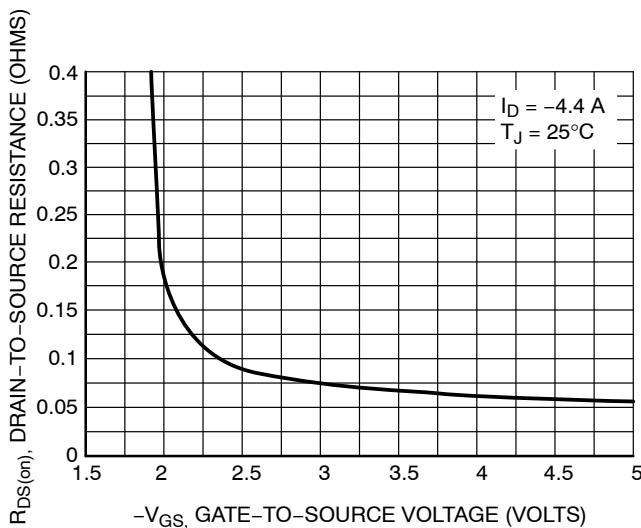


Figure 3. On-Resistance vs. Gate-to-Source Voltage

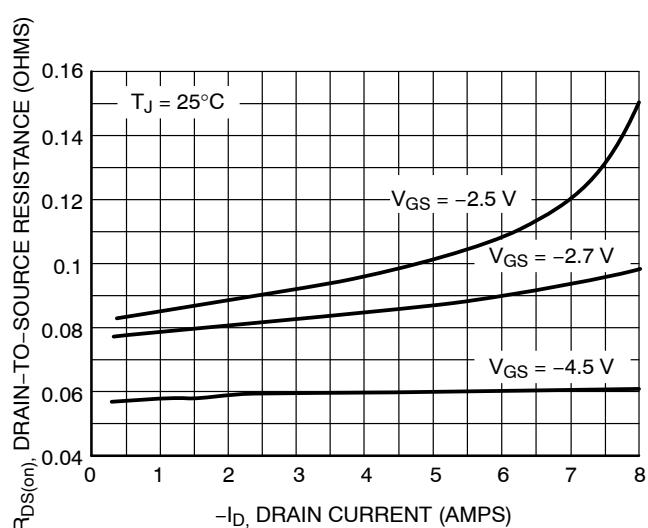


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

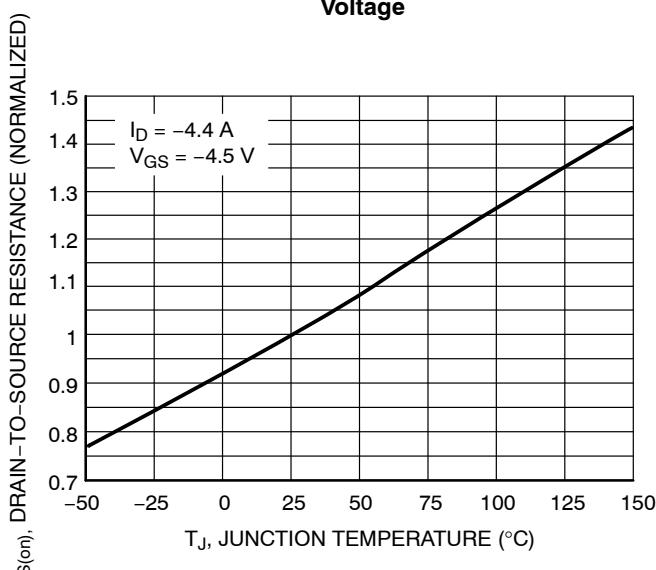


Figure 5. On-Resistance Variation with Temperature

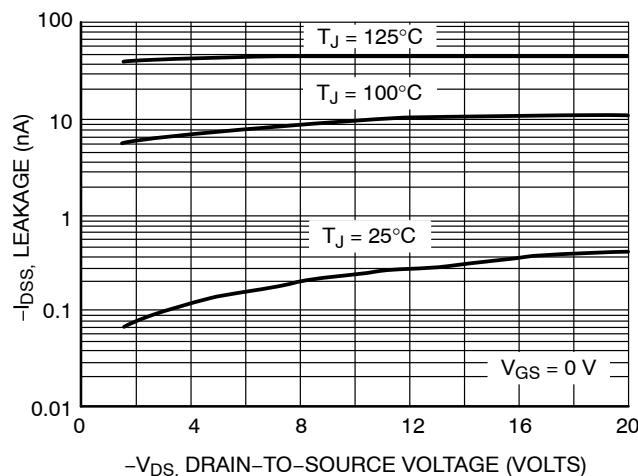


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

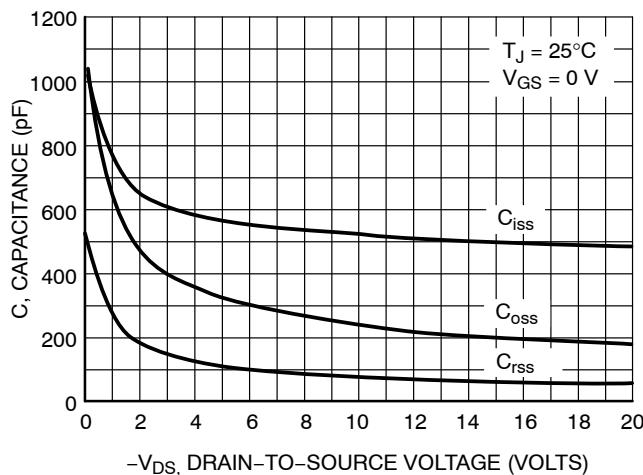


Figure 7. Capacitance Variation

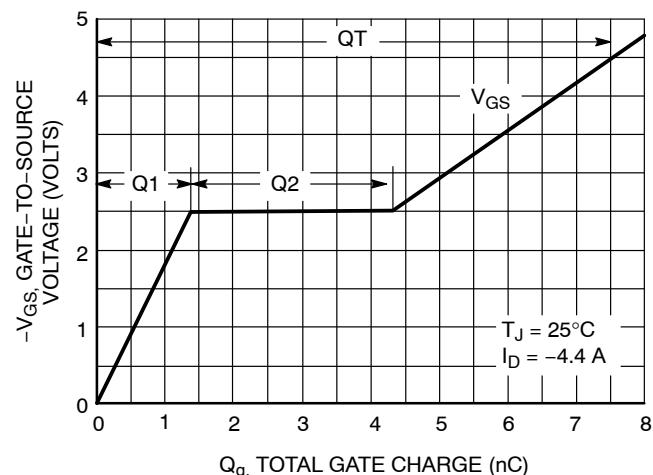


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

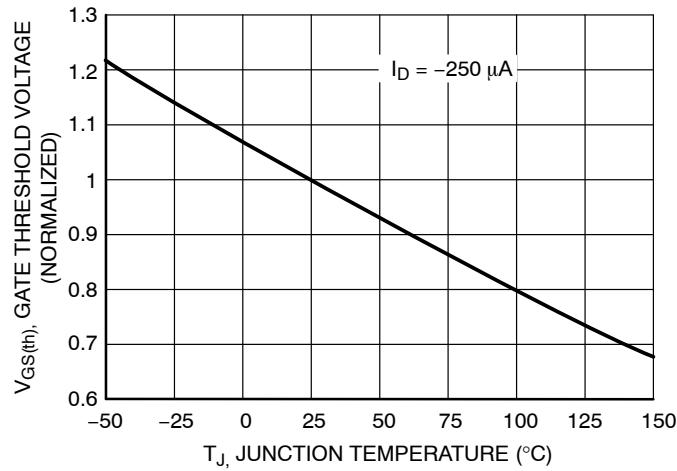


Figure 9. Gate Threshold Voltage Variation with Temperature

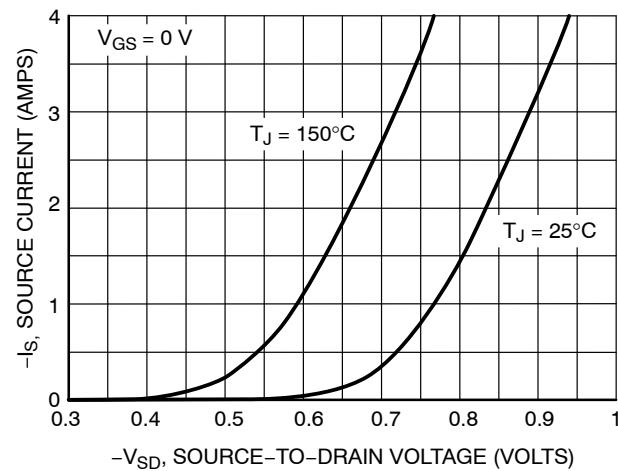
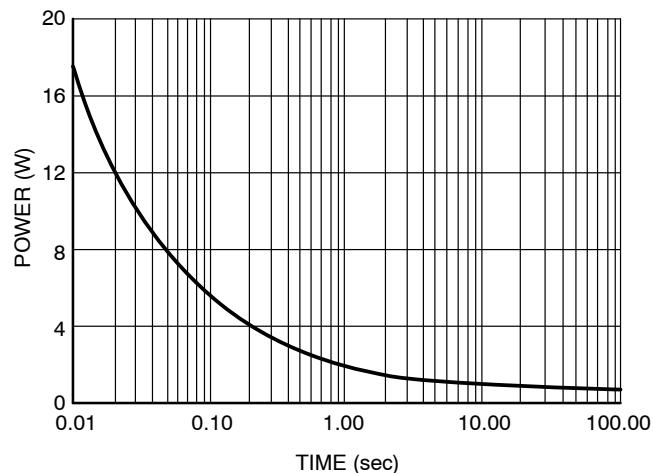
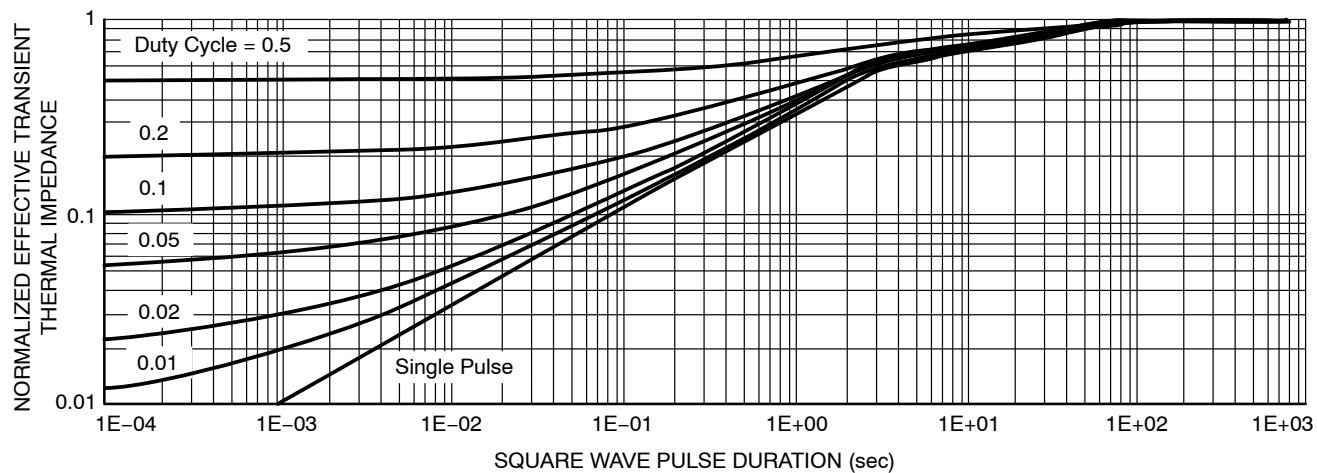




Figure 10. Diode Forward Voltage vs. Current

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 11. Single Pulse Power

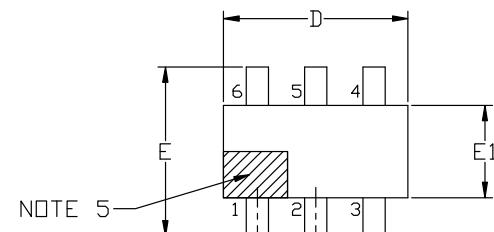
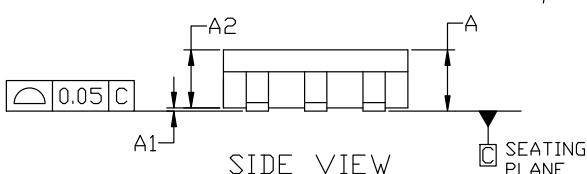
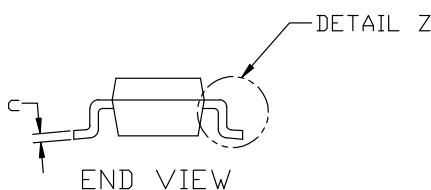
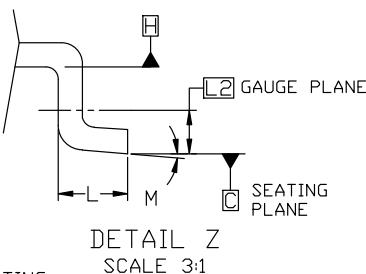


Figure 12. Normalized Thermal Transient Impedance, Junction-to-Ambient



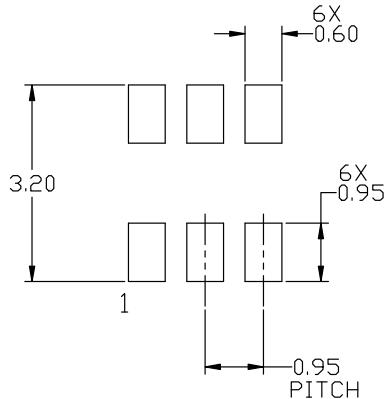
TSOP-6 3.00x1.50x0.90, 0.95P
CASE 318G
ISSUE W


DATE 26 FEB 2024


TOP VIEW

SIDE VIEW

END VIEW



DETAIL Z
SCALE 3:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
5. PIN 1 INDICATOR MUST BE LOCATED IN THE INDICATED ZONE

MILLIMETERS			
DIM	MIN	NOM	MAX
A	0.90	1.00	1.10
A1	0.01	0.06	0.10
A2	0.80	0.90	1.00
b	0.25	0.38	0.50
c	0.10	0.18	0.26
D	2.90	3.00	3.10
E	2.50	2.75	3.00
E1	1.30	1.50	1.70
e	0.85	0.95	1.05
L	0.20	0.40	0.60
L2	0.25 BSC		
M	0°	---	10°

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference manual, SOLDERMM/D.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P	PAGE 1 OF 2

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TSOP-6 3.00x1.50x0.90, 0.95P

CASE 318G

ISSUE W

DATE 26 FEB 2024

**GENERIC
MARKING DIAGRAM***

IC

XXX = Specific Device Code
 A = Assembly Location
 Y = Year
 W = Work Week
 ▪ = Pb-Free Package

STANDARD

XXX = Specific Device Code
 M = Date Code
 ▪ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "▪", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:
 PIN 1. DRAIN
 2. DRAIN
 3. GATE
 4. SOURCE
 5. DRAIN
 6. DRAIN

STYLE 2:
 PIN 1. Emitter 2
 2. Base 1
 3. Collector 1
 4. Emitter 1
 5. Base 2
 6. Collector 2

STYLE 3:
 PIN 1. ENABLE
 2. N/C
 3. R BOOST
 4. Vz
 5. Vin
 6. Vout

STYLE 4:
 PIN 1. N/C
 2. Vin
 3. NOT USED
 4. GROUND
 5. ENABLE
 6. LOAD

STYLE 5:
 PIN 1. Emitter 2
 2. Base 2
 3. Collector 1
 4. Emitter 1
 5. Base 1
 6. Collector 2

STYLE 6:
 PIN 1. COLLECTOR
 2. COLLECTOR
 3. BASE
 4. Emitter
 5. COLLECTOR
 6. COLLECTOR

STYLE 7:
 PIN 1. COLLECTOR
 2. COLLECTOR
 3. BASE
 4. N/C
 5. COLLECTOR
 6. Emitter

STYLE 8:
 PIN 1. Vbus
 2. D(in)
 3. D(in)+
 4. D(out)+
 5. D(out)
 6. GND

STYLE 9:
 PIN 1. LOW VOLTAGE GATE
 2. DRAIN
 3. SOURCE
 4. DRAIN
 5. DRAIN
 6. HIGH VOLTAGE GATE

STYLE 10:
 PIN 1. D(OUT)+
 2. GND
 3. D(OUT)-
 4. D(IN)-
 5. VBUS
 6. D(IN)+

STYLE 11:
 PIN 1. SOURCE 1
 2. DRAIN 2
 3. DRAIN 2
 4. SOURCE 2
 5. GATE 1
 6. DRAIN 1/GATE 2

STYLE 12:
 PIN 1. I/O
 2. GROUND
 3. I/O
 4. I/O
 5. VCC
 6. I/O

STYLE 13:
 PIN 1. GATE 1
 2. SOURCE 2
 3. GATE 2
 4. DRAIN 2
 5. SOURCE 1
 6. DRAIN 1

STYLE 14:
 PIN 1. ANODE
 2. SOURCE
 3. GATE
 4. CATHODE/DRAIN
 5. CATHODE/DRAIN
 6. CATHODE/DRAIN

STYLE 15:
 PIN 1. ANODE
 2. SOURCE
 3. GATE
 4. DRAIN
 5. N/C
 6. CATHODE

STYLE 16:
 PIN 1. ANODE/CATHODE
 2. BASE
 3. Emitter
 4. COLLECTOR
 5. ANODE
 6. CATHODE

STYLE 17:
 PIN 1. Emitter
 2. BASE
 3. ANODE/CATHODE
 4. ANODE
 5. CATHODE
 6. COLLECTOR

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P	PAGE 2 OF 2

onsemi and **ONSEMI** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

