

LTC3621
17V, 1A Monolithic Synchronous
Step-Down Regulator

DESCRIPTION

Demonstration circuit 1863 is a step-down converter, capable of delivering up to 1A of output current from a minimum input voltage of 2.7V. The DC1863A uses the power-saving LTC®3621 1MHz monolithic synchronous buck regulator in a small 8-lead MS8 package. The LTC3621 IC quiescent currents can be as low as 3.5µA in normal operation, and less than 0.1µA in shut down. The output voltage range of the DC1863A is from as low as 0.6V, the reference voltage of the LTC3621, to as high as the maximum input voltage, 17V. The DC1863A can operate in three distinct operating modes: Burst Mode®

operation for highest efficiency at low output currents, forced continuous mode for lowest output ripple voltage, and pulse-skipping mode for the best compromise operation between the two other modes, by setting the mode pin to INTV_{CC} (3.6V), $\text{INTV}_{\text{CC}}/2$, or ground respectively. All these features make the DC1863A an ideal circuit for use in any high efficient, low power application.

Design files for this circuit board are available at
<http://www.linear.com/demo>

LTC, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY

Specifications are at $T_A = 25^\circ\text{C}$

PARAMETER	CONDITIONS	VALUE
Input Voltage Range		2.7V to 17V
Output Voltage Range		0.6V to V_{IN}
Run/Shutdown	RUN Pin = GND	Shutdown
	RUN Pin = V_{IN}	Operating
Output Voltage Regulation	$V_{\text{IN}} = 2.7\text{V to } 17\text{V, } I_{\text{OUT}} = 0\text{A to } 1\text{A}$	$1.2\text{V} \pm 3\%$ Typ (1.164V to 1.236V)
	$V_{\text{IN}} = 2.7\text{V to } 17\text{V, } I_{\text{OUT}} = 0\text{A to } 1\text{A}$	$1.8\text{V} \pm 3\%$ Typ (1.746V to 1.854V)
	$V_{\text{IN}} = 2.7\text{V to } 17\text{V, } I_{\text{OUT}} = 0\text{A to } 1\text{A}$	$2.5\text{V} \pm 3\%$ Typ (2.425V to 2.575V)
	$V_{\text{IN}} = 3.5\text{V to } 17\text{V, } I_{\text{OUT}} = 0\text{A to } 1\text{A}$	$3.3\text{V} \pm 3\%$ Typ (3.201V to 3.399V)
	$V_{\text{IN}} = 5.2\text{V to } 17\text{V, } I_{\text{OUT}} = 0\text{A to } 1\text{A}$	$5\text{V} \pm 3\%$ Typ (4.85V to 5.15V)
	$V_{\text{IN}} = 12\text{V, } V_{\text{OUT}} = 5\text{V, } I_{\text{OUT}} = 1\text{A (20MHz BW)}$	<20mV _{P-P}
Typical Output Ripple Voltage		
Nominal Switching Frequency		1MHz $\pm 8\%$
Operation Modes	MODE Pin = INTV_{CC}	Burst Mode
	MODE Pin = GND	Pulse-Skipping
	MODE Pin = $\text{INTV}_{\text{CC}}/2$	Forced Continuous
Burst Mode-to-CCM Operation	$V_{\text{IN}} = 12\text{V, } V_{\text{OUT}} = 1.2\text{V}$	$I_{\text{OUT}} < 500\text{mA}$
INTV_{CC}		$3.6\text{V} \pm 8.33\%$ (3.3V to 3.9V)

Table 2. Jumper Description

JUMPER	FUNCTION/RANGE	SETTING
JP1	Run: ON-OFF.	ON
JP2	Mode: Burst Mode Operation (BM) or Pulse-Skipping Mode (PS).	BM
JP3	Output Voltage Setting	1.2V

dc1863af

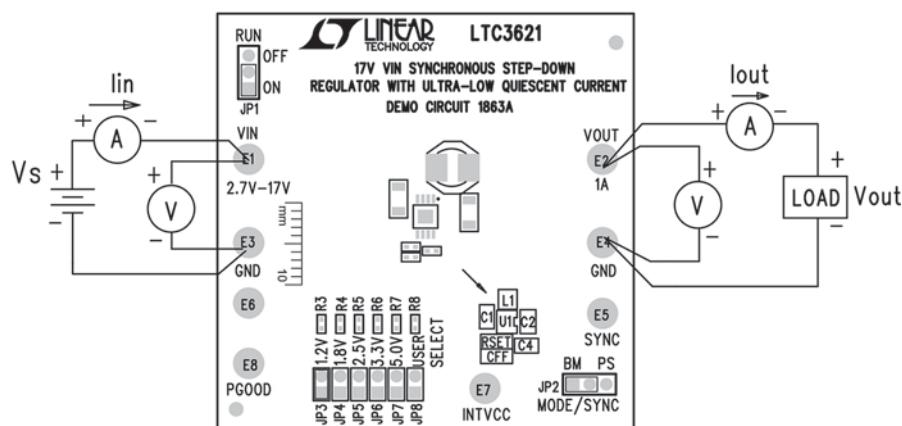
DEMO MANUAL DC1863A

QUICK START PROCEDURE

Demonstration Circuit 1863 is easy to set up to evaluate the performance of the LTC3621. For proper measurement equipment configuration, set up the circuit according to the diagram in Figure 1. Before proceeding to test, check that the shunts are inserted into the correct locations: 1.2V position of the output voltage header JP3, into the BM (Burst Mode operation) position of MODE header JP2, and into the ON position of RUN header JP1.

When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the VIN or VOUT and GND terminals. See Figure 2 for proper scope probe measurement technique.

With the DC1863 set up according to the proper measurement configuration and equipment in Figure 1, apply 5V at VIN (Do not hot-plug VIN or increase VIN over the rated maximum supply voltage of 17V, or the part may be damaged.). Measure V_{OUT}; it should read 1.2V (If desired, the quiescent current of the circuit can be monitored now by swapping the shunt in header JP1 into the OFF position). The output voltage should be regulating. Draw 500mA out of the output and measure V_{OUT}—it should measure 1.2V $\pm 2\%$ (1.176V to 1.224V). Verify the switching frequency is between 920kHz and 1.08MHz ($T = 1.08\mu s$ and 926ns), and that the switch node waveform is rectangular in shape.


Vary the input voltage from 2.7V to 17V and the load current from 0 to 1A. V_{OUT} should regulate around 1.2V \pm 3%

(1.164V to 1.236V). Measure the output ripple voltage; it should measure less than 20mV AC.

Set the input voltage to 12V and the output current to than 100mA. Observe the Burst Mode operation at the switch node (the pad of the inductor opposite from the output), and measure the output ripple voltage. It should measure less than 100mV. Change the shunt position on the MODE header from BM to PS (pulse-skipping mode) and observe the voltage waveform at the switch pins. To achieve forced continuous operation, insert two 100k resistors at the pads for R1 and R2. These resistors develop a voltage of $INTV_{CC}/2$ at the mode pin, which is the voltage setting for forced continuous operation.

Insert the JP1 shunt into the OFF position and move the shunt in the 1.2V output JP3 header into any of the remaining output voltage option headers: 1.8V (JP4), 2.5V (JP5), 3.3V (JP6) or 5V (JP7). Just as in the 1.2V VOUT test, the output voltage should read $V_{OUT} \pm 2\%$ tolerance under static line and load conditions and $\pm 1\%$ tolerance under dynamic line and load conditions ($\pm 3\%$ total). Also, the circuit switch operation in Burst or pulse-skipping mode will remain the same. There is an extra output voltage header, JP8, to allow the user to easily set the output to their desired value.

When finished, turn off the circuit by inserting the shunt in header JP1 into the OFF position.

Figure 1. Proper Equipment Measurement Setup

QUICK START PROCEDURE

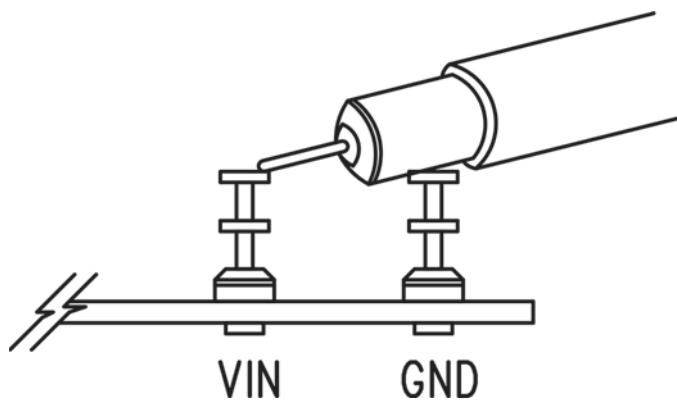


Figure 2. Measuring Input or Output Ripple

EFFICIENCY DATA

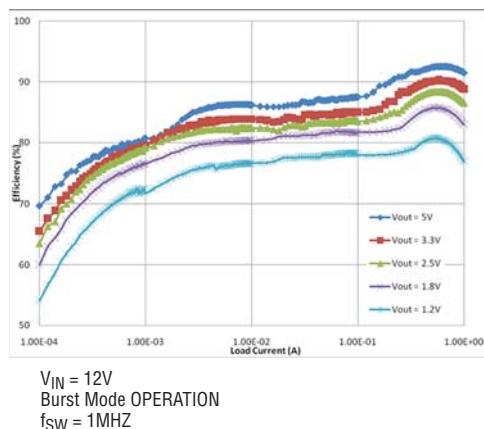


Figure 3. Efficiency vs Load Current

DEMO MANUAL DC1863A

LOAD STEP RESPONSE WAVEFORMS

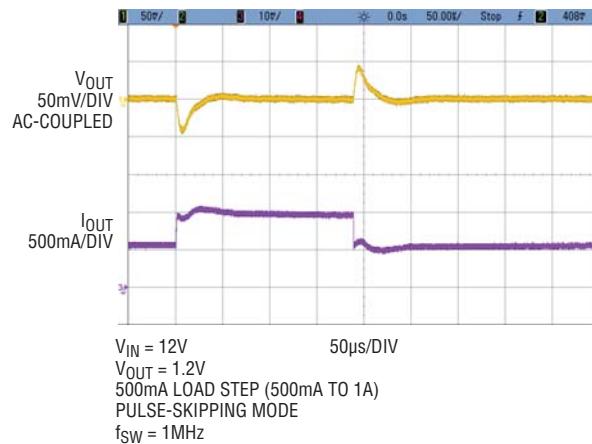


Figure 4

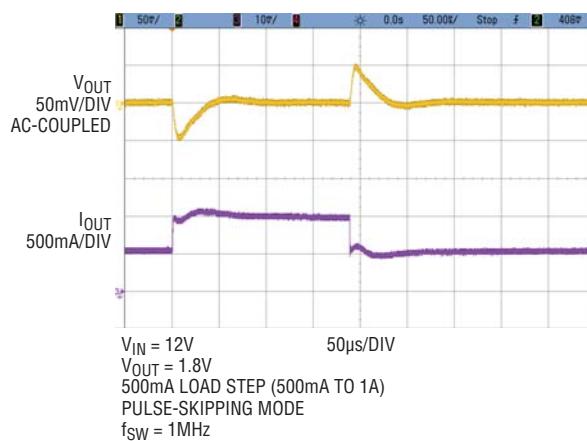


Figure 5

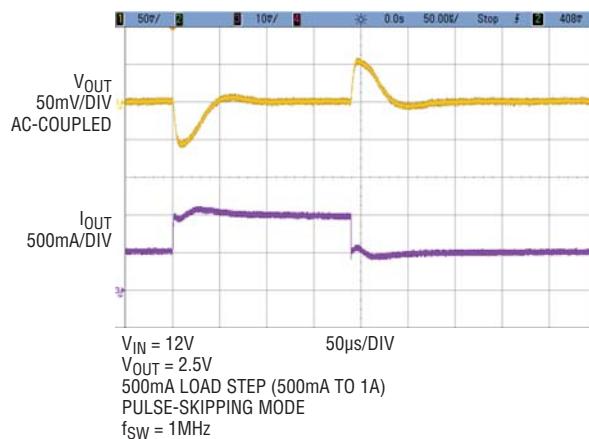


Figure 6

dc1863af

LOAD STEP RESPONSE WAVEFORMS

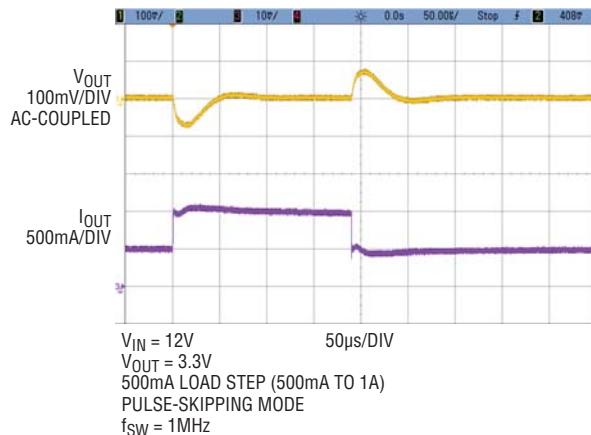


Figure 7

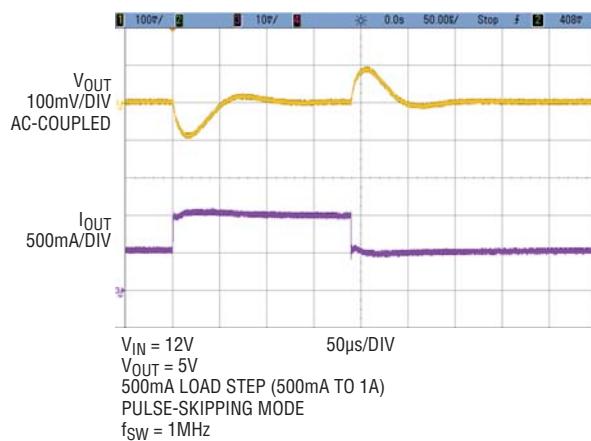
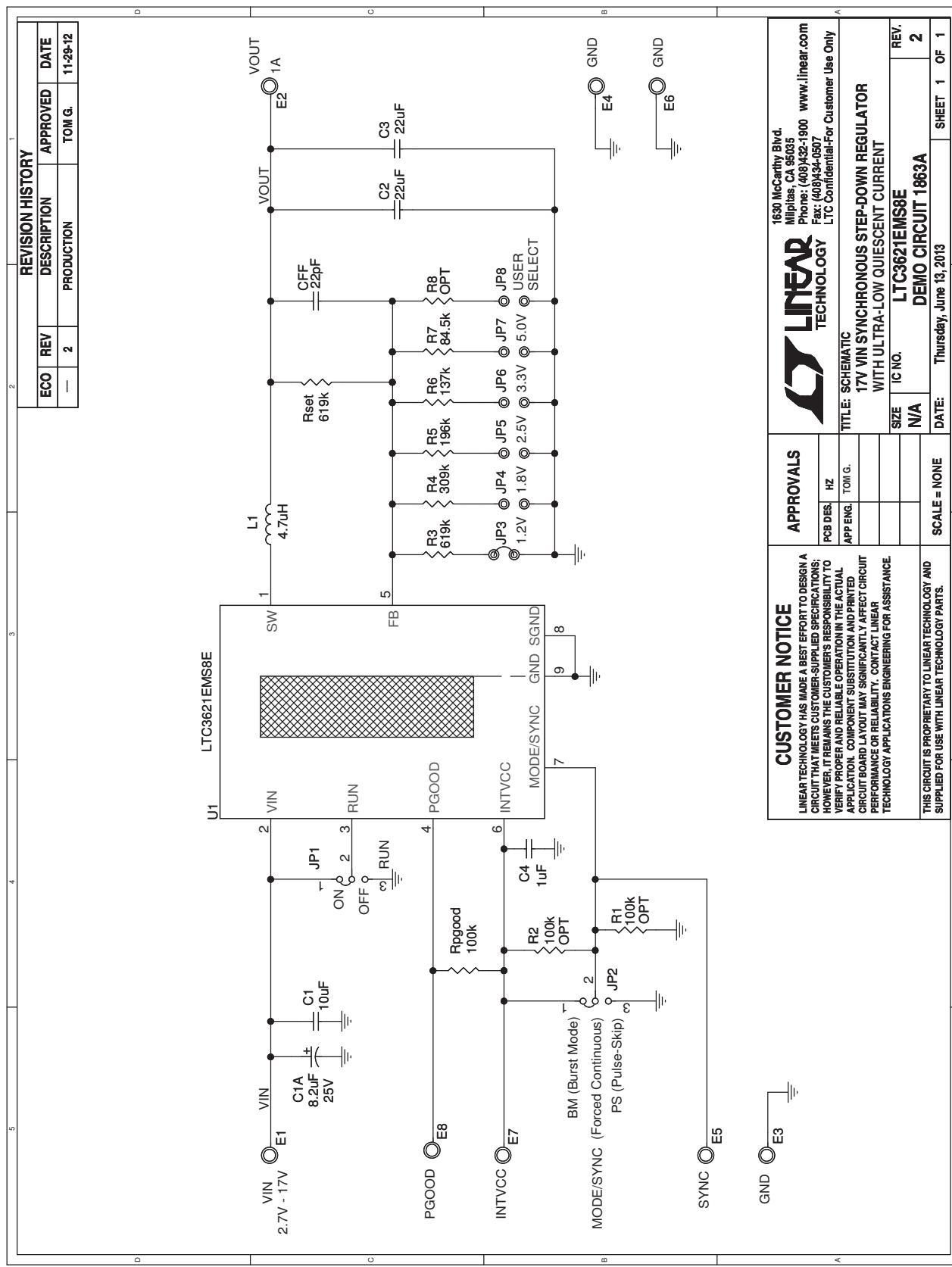


Figure 8

DEMO MANUAL DC1863A


PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	CFF	CAP., X7R, 22pF, 50V, 0402	AVX 04025A220KAT
2	1	C1	CAP., X5R, 10µF, 25V, 10%, 1206	AVX 12063D106KAT
3	2	C2, C3	CAP., X5R, 22µF, 25V, 10%, 1206	AVX 12063D226KAT
4	1	C4	CAP., X5R, 1µF, 6.3V, 20%, 0402	TDK, C1005X5R0J105M
5	1	L1	IND., FIXED INDUCTOR, 4.7µH	COILCRAFT XFL4020-472MEB
6	2	R3, Rset	RES., CHIP, 619k, 1%, 0402	VISHAY CRCW0402619KFKED
7	1	U1	LTC3621EMS8E, MS8 PACKAGE, 8-LEAD, MSOP	LINEAR TECH. LTC3621EMS8E#PBF
Additional Demo Board Circuit Components				
1	1	C1A	CAP., X5R, 8.2µF 20V, SIZE B2, 3528-7343	SANYO 20TQC8R2M
2	0	R1, R2 OPT	RES., CHIP, 0402	
3	1	Rpgood	RES., CHIP, 100k, 1%, 0402	VISHAY CRCW0402100K0FKED
4	1	R4	RES., CHIP, 309k, 1%, 0402	VISHAY CRCW0402309KFKED
5	1	R5	RES., CHIP, 196k, 1%, 0402	VISHAY CRCW0402196KFKED
6	1	R6	RES., CHIP, 137k, 1%, 0402	VISHAY CRCW0402137KFKED
7	1	R7	RES., CHIP, 84.5k, 1%, 0402	VISHAY CRCW040284K5FKED
8	0	R8 OPT	RES., CHIP, 0402	
Hardware				
1	8	E1-E8	TESTPOINT, TURRET, 0.095"	MILL-MAX 2501-2-00-80-00-00-07-0
2	2	JP1, JP2	2MM SINGLE ROW HEADER, 3-PIN	SULLINS NRPN031PAEN-RC
3	6	JP3-JP8	2MM SINGLE ROW HEADER, 2-PIN	SULLINS NRPN021PAEN-RC
4	3	JP1-JP3	SHUNT	SAMTEC 2SN-BK-G

dc1863af

DEMO MANUAL DC1863A

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

DEMO MANUAL DC1863A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following **AS IS** conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. **THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.**

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No license is granted under any patent right or other intellectual property whatsoever. **LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.**

LTC currently services a variety of customers for products around the world, and therefore this transaction **is not exclusive**.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged.**

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

dc1863af

Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 • FAX: (408) 434-0507 • www.linear.com

LT 1013 • PRINTED IN USA

© LINEAR TECHNOLOGY CORPORATION 2013