

Series HRS100

Hall Effect Rotary Position Sensor

The HRS100 Hall Effect Rotary Position Sensor provides angular position information for a variety of sensing and control applications in the automotive, marine, truck, off-road, industrial instrumentation, aerospace and rail industries. The use of magnetically coupled information in place of a mechanical wiper assembly provides a long life, cost effective solution for harsh environments that include temperature, vibration, dither, moisture and dirt. Standard linearity of 2% and a life rating of 50 million cycles makes the HRS100 the sensor of choice for harsh or demanding applications. For testing and prototyping, a standard catalog version, model HRS100SSAB090 has been configured as a stock item. For quantity driven OEM applications, several options are available as shown on the custom configuration selection matrix.

APPLICATIONS

MARINE

- Throttle position
- Outboard motor position
- Inboard lever control
- Control position:
 - Rudder position
 - Trim tab and plane position
 - Drive tilt and drive gimbal position
 - Auto pilot feedback
 - Drive by wire systems
 - Control and position feedback systems

AUTOMOTIVE

- Foot pedal position
- Throttle position
- Steering position
- Suspension system position
- Seat position
- Mirror position

FORKLIFT - INDUSTRIAL TRUCK - FARM EQUIPMENT

- Throttle/speed control (forward, neutral, reverse)
- Foot pedal position
- Lift and shuttle position and control
- Tilt position
- Gimbal position and control
- Steering position

MEDICAL INSTRUMENTATION

- Manipulator arm position

Series HRS100

Hall Effect Rotary Position Sensor

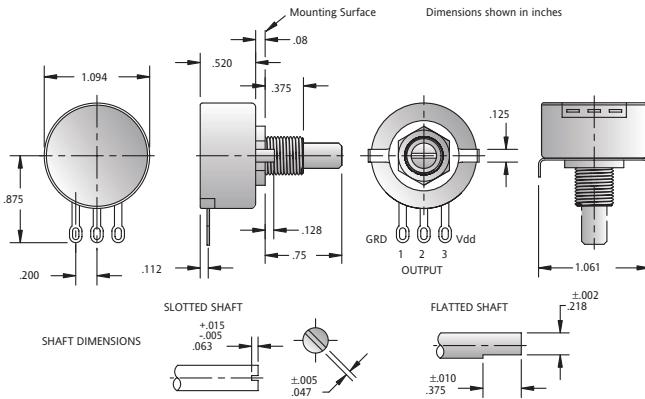
SPECIFICATIONS

MECHANICAL

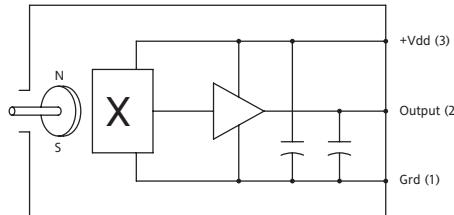
Dimensions in inches unless otherwise stated

Housing:	Stainless steel
	O.D.: $1.094 \pm .015$
	Depth: $.598 \pm .015$
FMS	
Bushing:	3/8-32, .375 FMS Includes C-ring
Shaft:	Slotted .249 $\pm .001$.75 FMS
AR Lugs:	2 at 180° on .531 radius .125W x .128 FMS
Style:	Solder lugs
Mechanical Angle:	$90^\circ \pm 2^\circ$ and $180^\circ \pm 2^\circ$
Rotational Life:	50mm minimum
Rotational Torque:	2.0 in oz max. at 25° C
Stop Torque:	5 inch pounds
Push Out:	20 pounds minimum
Pull Out:	10 pounds minimum

ELECTRICAL


Electrical Angle:	$90^\circ \pm 2^\circ$, $180^\circ \pm 2^\circ$ Custom specific angles available*
Electrical Output:	5% to 95% of applied Vdd, approximate (programmable)
Linearity:	$\pm 2\%$
Output Current:	2mA maximum (source or sink)
Overvoltage Protection:	18 VDC maximum
Supply Voltage:	5 VDC $\pm 10\%$ * (output ratometric to supply)
Supply Current:	5mA typical
ESD Sensitivity:	$\pm 7\text{KV}$ maximum (human body model) Standard electronic assembly practices should be observed
EMI:	30V/m, 10 KHz to 1000 MHz at 3 meters

ENVIRONMENTAL


Low Temperature Operation: -40°C
High Temperature Operation: 85° C
Storage Temperature: 105° C maximum
Shock: 50 Gs, 11ms
Vibration: 15G, 10 to 2000 Hz

*Consult Factory for custom OEM configurations.

DIMENSIONS

EQUIVALENT ELECTRICAL SCHEMATIC

ORDERING INFORMATION

Standard Model:	HRS100SSAB-090 - All specifications are per this data sheet. See the matrix below for definition of characters.
Custom Models:	The following options are available for custom OEM applications. Consult factory for details and minimum quantity requirements.

HRS100 - F W A A - 0 6 0

45 TO 180
Electrical Angle in
Degrees

A: .2 - 2.5V
B: .2 - 4.8V
A: 2% Linearity

S: Straight Solder Lugs
B: Bent Solder Lugs
W: Wire Leads

F: Flattened Shaft
S: Slotted Shaft

Non-Coded Options
Shaft Length · No Shaft Seal
Mechanical Angle · 1 AR Lug

1 800 872 0042
FAX: 800 872 3333

Invensys

Sensor Systems

12055 Rojas Drive, Suite K
El Paso, Texas, USA 79936

www.speed-position.invensys.com

GENERAL DISCLAIMER: Invensys Sensors Systems reserves the right to make changes to its products and their specifications at any time, without prior notice to anyone. Invensys Sensors Systems has made every effort to ensure accuracy of the information contained herein but can assume no responsibility for inadvertent errors, omissions, or subsequent changes. Invensys Sensors Systems does not assume responsibility for the use of any circuit or other information described within this document, and further, makes no representations of any that the circuit and information described herein is free infringement of any intellectual property right or any other right of third parties. No express or implied licenses of any Invensys Sensors System intellectual property right is granted by implication or otherwise.