MOSFET – Power, N-Channel, SUPERFET[®] III 800 V, 360 m Ω , 13 A

NTP360N80S3Z

Description

800 V SUPERFET III MOSFET is ON Semiconductor's high performance MOSFET family offering 800 V breakdown voltage.

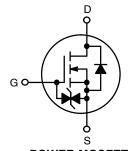
New 800 V SUPERFET III MOSFET which is optimized for primary switch of flyback converter, enables lower switching losses and case temperature without sacrificing EMI performance thanks to its optimized design. In addition, internal Zener Diode significantly improves ESD capability.

This new family of 800 V SUPERFET III MOSFET enables to make more efficient, compact, cooler and more robust applications because of its remarkable performance in switching power applications such as Laptop adapter, Audio, Lighting, ATX power and industrial power supplies.

Features

- Typ. $R_{DS(on)} = 300 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 25.3 nC)
- Low Stored Energy in Output Capacitance (Eoss = 2.72 μJ @ 400 V)
- 100% Avalanche Tested
- ESD Improved Capability with Zener Diode
- RoHS Compliant

Applications


- Adapters / Chargers
- LED Lighting
- AUX Power
- Audio
- Industrial Power

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
800 V	360 m $Ω$	13 A

POWER MOSFET

MARKING DIAGRAM

&Z = Assembly Plant Code &3 = Data Code (Year & Week)

&K = Lot

NTP360N80S3Z = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($T_J = 25^{\circ}C$, unless otherwise noted)

Symbol	Parame	Value	Unit V	
V _{DSS}	Drain-to-Source Voltage			
V _{GS}	Gate-to-Source Voltage	DC	±20	V
		AC (f > 1 Hz)	±30	1
I _D	Drain Current	Continuous (T _C = 25°C)	13	Α
		Continuous (T _C = 100°C)	8.2	1
I _{DM}	Drain Current	Pulsed (Note 1)	32.5	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	40	mJ	
I _{AS}	Avalanche Current (Note 2)		2.0	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		0.96	mJ
dv/dt	MOSFET dv/dt		100	V/ns
	Peak Diode Recovery dv/dt (Note 3)		10	1
P_{D}	Power Dissipation	(T _C = 25°C)	96	W
		Derate Above 25°C	0.768	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		−55 to +150	°C
TL	Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from Case for 10 seconds)		260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. Repetitive rating: pulse–width limited by maximum junction temperature.
2. $I_{AS} = 2.0 \text{ A}$, $R_{G} = 25 \Omega$, starting $T_{J} = 25^{\circ}\text{C}$.
3. $I_{SD} \leq 3.25 \text{ A}$, $di/dt \leq 200 \text{ A}/\mu\text{s}$, $V_{DD} \leq 400 \text{ V}$, starting $T_{J} = 25^{\circ}\text{C}$.

THERMAL RESISTANCE RATINGS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State	1.3	°C/W
$R_{ heta JA}$	Junction-to-Ambient - Steady State	62.5	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NTP360N80S3Z	NTP360N80S3Z	TO-220	Tube	N/A	N/A	50 Units

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACT	TERISTICS			•	•	•
BV _{DSS}	Drain-to-Source Breakdown Voltage	V_{GS} = 0 V, I_D = 1 mA, T_J = 25°C	800			V
		V _{GS} = 0 V, I _D = 1 mA, T _J = 150°C	900			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 1 mA, Referenced to 25°C		1.1		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 800 V, V _{GS} = 0 V			1	μΑ
		V _{DS} = 640 V, T _C = 125°C		0.8		1
I _{GSS}	Gate-to-Body Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			1	μΑ
ON CHARACTI	ERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 0.3 \text{ mA}$	2.2		3.8	V
R _{DS(on)}	Static Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 6.5 A		300	360	mΩ
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 6.5 A		13.8		S
DYNAMIC CHA	RACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{ V}, f = 250 \text{ kHz}$		1143		pF
C _{oss}	Output Capacitance			18.1		pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		236.4		pF
C _{oss(er.)}	Energy Related Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		34		pF
Q _{g(tot)}	Total Gate Charge at 10 V	V _{DS} = 400 V, I _D = 6.5 A, V _{GS} = 10 V		25.3		nC
Q_{gs}	Gate-to-Source Gate Charge	(Note 4)		5.3		nC
Q_{gd}	Gate-to-Drain "Miller" Charge			8.3		nC
ESR	Equivalent Series Resistance	f = 1 MHz		4		Ω
SWITCHING CI	HARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, I_D = 6.5 \text{ A}, V_{GS} = 10 \text{ V},$		21.2		ns
t _r	Turn-On Rise Time	$R_g = 25 \Omega$ (Note 4)		18.5		ns
t _{d(off)}	Turn-Off Delay Time			110		ns
t _f	Turn-Off Fall Time			17.7		ns
SOURCE-DRA	IN DIODE CHARACTERISTICS					
I _S	Maximum Continuous Source-to-Drain Diode Forward Current				13	Α
I _{SM}	Maximum Pulsed Source-to-Drain Diode Forward Current				32.5	Α
V _{SD}	Source-to-Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 6.5 \text{ A}$			1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 3.25 A,		370		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs		3.0		μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

^{4.} Essentially independent of operating temperature typical characteristics.

TYPICAL CHARACTERISTICS

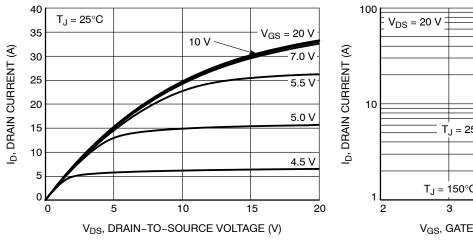


Figure 1. On-Region Characteristics

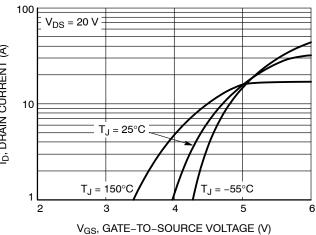


Figure 2. Transfer Characteristics

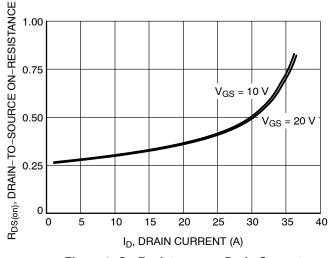


Figure 3. On Resistance vs. Drain Current

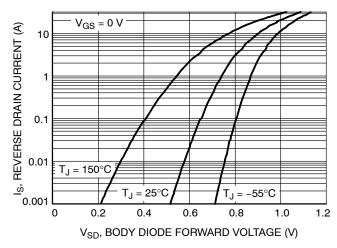


Figure 4. Diode Forward Voltage vs. Current

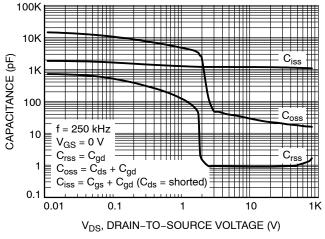


Figure 5. Capacitance Characteristics

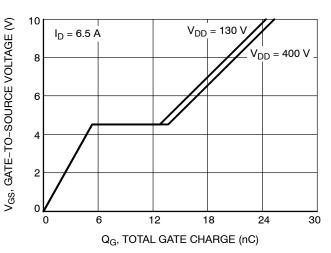


Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS

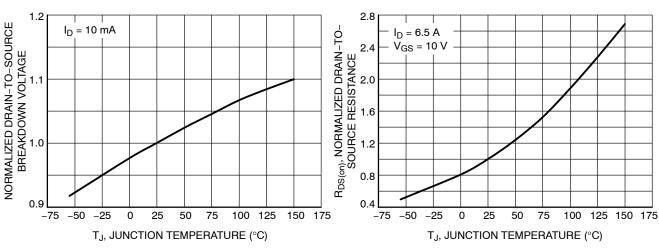
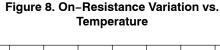



Figure 7. Normalized BV_{DSS} vs. Temperature

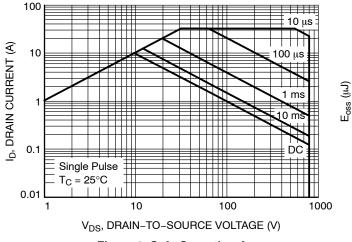


Figure 9. Safe Operating Area

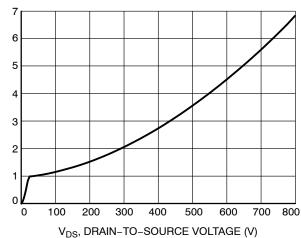


Figure 10. E_{oss} vs. Drain-to-Source Voltage

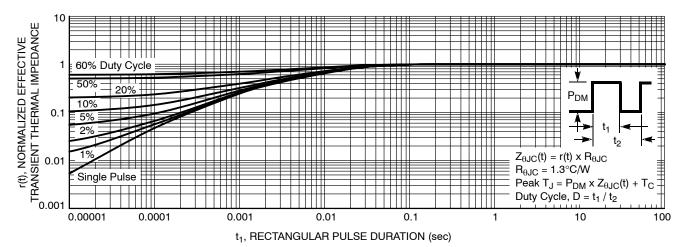


Figure 11. Transient Thermal Impedance

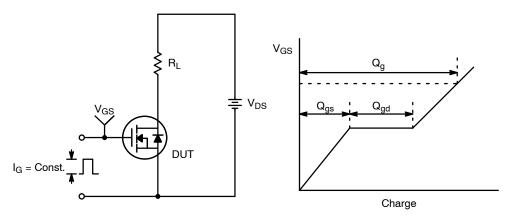


Figure 12. Gate Charge Test Circuit & Waveform

Figure 13. Resistive Switching Test Circuit & Waveforms

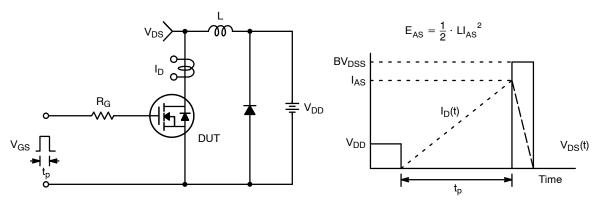
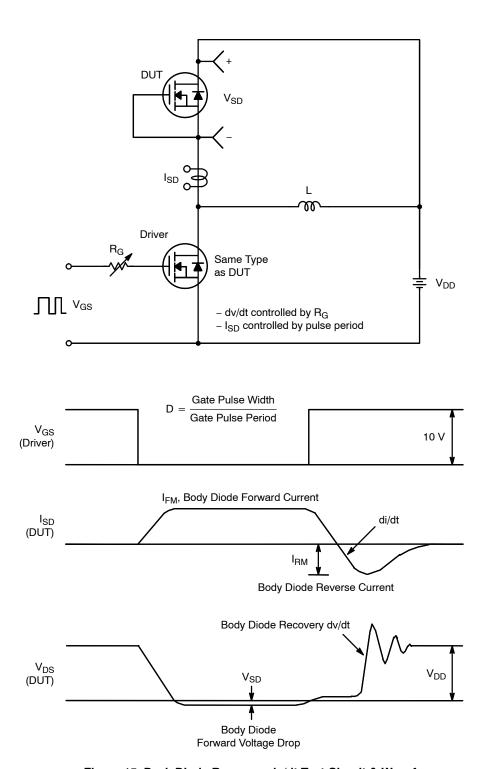
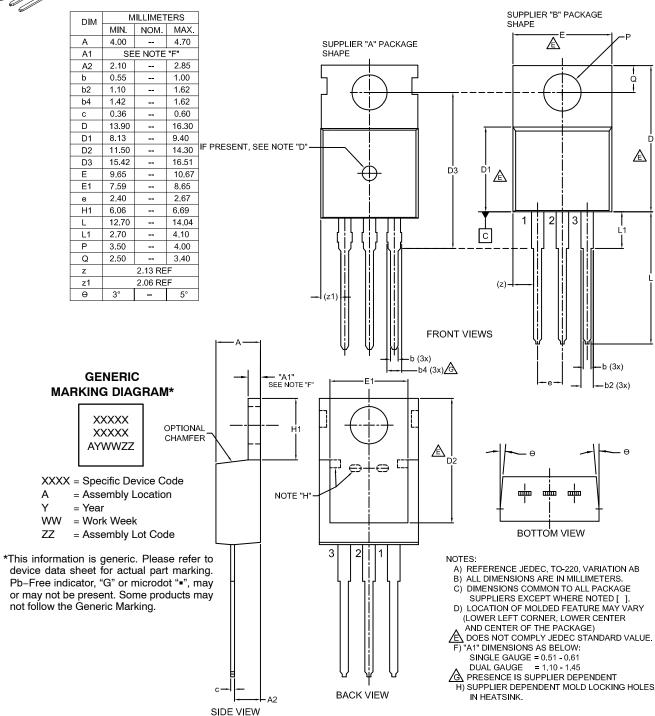


Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms




Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

DIM MIN. A 4.00 A1 SE A2 2.10 b 0.55

TO-220-3LD CASE 340AT ISSUE B

DATE 08 AUG 2022

DOCUMENT NUMBER:	98AON13818G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales