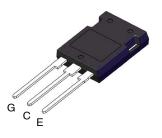


IGBT - Field Stop, Trench, Soft Fast Recovery Diode 650 V, 160 A FGY160T65SPD-F085

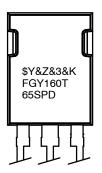
G G F

Benefits


- Very Low Conduction and Switching Losses for a High Efficiency Operation in Various Applications
- Rugged Transient Reliability
- Outstanding Parallel Operation Performance with Balance Current Sharing
- Low EMI

Features

- AEC-Q101 Qualified and PPAP Capable
- Very Low Saturation Voltage: $V_{CE(sat)} = 1.6 \text{ V (Typ.)}$ @ $I_C = 160 \text{ A}$
- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Co-Efficient
- Tight Parameter Distribution
- High Input Impedance
- 100% of the Parts are Dynamically Tested
- Short circuit ruggedness > 6 μs @ 25°C
- Copacked with Soft, Fast Recovery Extremefast Diode
- This Device is Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


Applications

- Traction Inverter for HEV/EV
- Auxiliary DC/AC Converter
- Motor Drives
- Other Power-Train Applications Requiring High Power Switch

TO-247-3LD CASE 340CU

MARKING DIAGRAM

&Y = **onsemi** Logo &Z = Assembly Plant Code &3 = Data Code (Year & Week) &K = Lot FGY160T65SPD = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Ratings	Unit
V _{CES}	Collector to Emitter Voltage	650	V
V_{GES}	Gate to Emitter Voltage	±20	V
	Transient Gate to Emitter Voltage	±30	V
I _C	Collector Current @ T _C = 25°C (Note 1)	240	Α
	Collector Current @ T _C = 100°C	220	Α
I _{Nominal}	Nominal Current	160	Α
I _{CM}	Pulsed Collector Current	480	Α
I _{FM}	Diode Forward Current @ T _C = 25°C (Note 1)	240	Α
	Diode Forward Current @ T _C = 100°C	188	Α
P_{D}	Maximum Power Dissipation @ T _C = 25°C	882	W
	Maximum Power Dissipation @ T _C = 100°C	441	W
SCWT	Short Circuit Withstand Time @ T _C = 25°C	6	μs
ΔV/Δt	Voltage Transient Ruggedness (Note 2)	10	V/ns
TJ	Operating Junction Temperature	-55 to +175	°C
T _{stg}	Storage Temperature Range	-55 to +175	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Limited to bondwire.

2. V_{CC} = 400 V, V_{GE} = 15 V, I_{CE} = 480 A, Inductive load.

THERMAL CHARACTERISTICS

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case	-	0.17	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case	-	0.32	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Packing Type	Qty per Tube
FGY160T65SPD	FGY160T65SPD-F085	TP-247-3LD	Tube	30 ea

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHARAC	CTERISTICS					
BV _{CES}	Collector to Emitter Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	650	-	-	V
$\Delta BV_CES / \Delta T_J$	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	-	0.6	-	V/°C
I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0 V	-	-	40	μΑ
I _{GES}	G-E Leakage Current	V _{GE} = V _{GES} , V _{CE} = 0 V	-	-	±250	nA
ON CHARAC	TERISTICS					
V _{GE(th)}	G-E Threshold Voltage	I _C = 160 mA, V _{CE} = V _{GE}	4.3	5.3	6.3	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 160 A, V _{GE} = 15 V	-	1.6	2.05	V
		I _C = 160 A, V _{GE} = 15 V, T _J = 175°C	-	2.15	-	V

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_J = 25$ °C unless otherwise noted) (continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
DYNAMIC CH	IARACTERISTICS				•	•
C _{ies}	Input Capacitance	V _{CE} = 30 V, V _{GE} = 0 V,	-	6710		pF
C _{oes}	Output Capacitance	f = 1 MHz	-	450	_	pF
C _{res}	Reverse Transfer Capacitance		-	55	-	pF
R_{G}	Internal Gate Resistance	f = 1 MHz	-	3	_	Ω
SWITCHING	CHARACTERISTICS					
T _{d(on)}	Turn-On Delay Time	$V_{CC} = 400 \text{ V}, I_{C} = 160 \text{ A},$	-	53	_	ns
T _r	Rise Time	$R_G = 5 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_J = 25^{\circ}C$	-	197	-	ns
T _{d(off)}	Turn-Off Delay Time		-	98	-	ns
T _f	Fall Time		-	141	-	ns
E _{on}	Turn-On Switching Loss		-	12.4	-	mJ
E _{off}	Turn-Off Switching Loss		-	5.7	-	mJ
E _{ts}	Total Switching Loss		-	18.1	-	mJ
T _{d(on)}	Turn-On Delay Time	$V_{CC} = 400 \text{ V}, I_{C} = 160 \text{ A},$	-	52	-	ns
T _r	Rise Time	$R_G = 5 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_J = 175$ °C	-	236	-	ns
T _{d(off)}	Turn-Off Delay Time		-	104	-	ns
T _f	Fall Time		-	204	-	ns
E _{on}	Turn-On Switching Loss		-	21	-	mJ
E _{off}	Turn-Off Switching Loss		-	8.5	-	mJ
E _{ts}	Total Switching Loss		-	29.5	-	mJ
Qg	Total Gate Charge	V _{CE} = 400 V, I _C = 160 A,	-	163	245	nC
Q _{ge}	Gate to Emitter Charge	V _{GE} = 15 V	-	50	-	nC
Q _{gc}	Gate to Collector Charge		-	49	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS OF THE DIODE ($T_J = 25$ °C unless otherwise noted)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V_{FM}	Diode Forward Voltage	I _F = 160 A	T _J = 25°C	-	1.4	1.7	V
			T _J = 175°C	-	1.35	_	
E _{rec}	Reverse Recovery Energy	V _{CE} = 400 V, I _F = 160 A,	T _J = 25°C	-	598	_	μJ
		$\Delta I_F/\Delta t = 1000 A/\mu s$	T _J = 175°C	-	4000	_	
T _{rr}	Diode Reverse Recovery		T _J = 25°C	-	132	_	ns
	Time		T _J = 175°C	-	245	_	
Q _{rr}	Diode Reverse Recovery		T _J = 25°C	-	3.3	_	μС
	Charge		T _J = 175°C	-	12.5	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

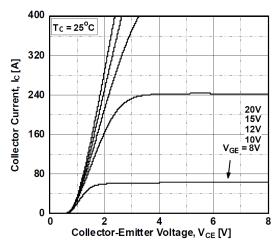


Figure 1. Typical Output Characteristics

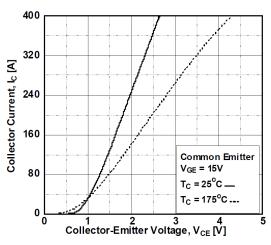


Figure 3. Typical Saturation Voltage Characteristics

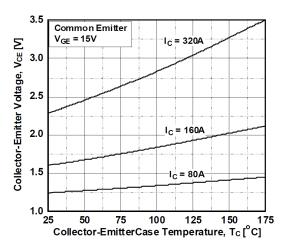


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

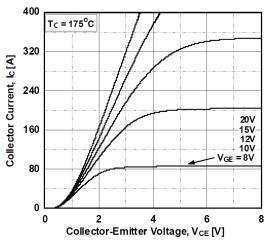


Figure 2. Typical Output Characteristics

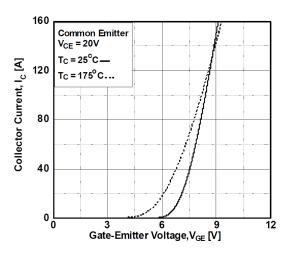


Figure 4. Transfer Characteristics

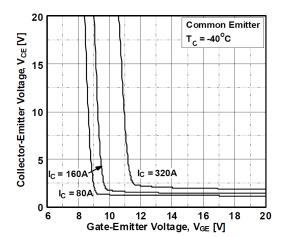


Figure 6. Saturation Voltage vs. V_{GE}



Figure 7. Saturation Voltage vs. V_{GE}

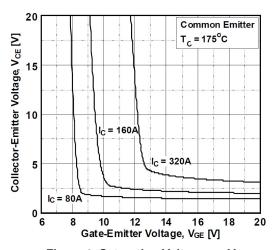


Figure 8. Saturation Voltage vs. V_{GE}

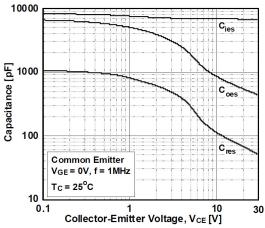


Figure 9. Capacitance Characteristics

Figure 10. Gate Charge Characteristics

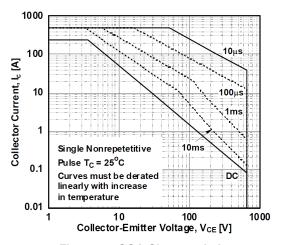


Figure 11. SOA Characteristics

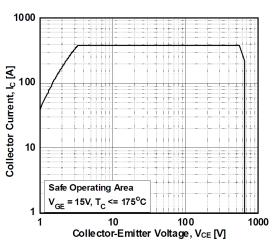


Figure 12. Turn Off Switching SOA Characteristics

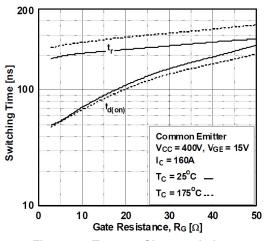


Figure 13. Turn-on Characteristics vs.

Gate Resistance

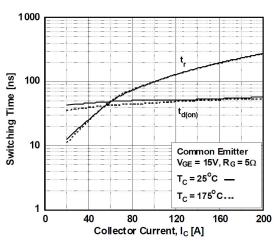


Figure 15. Turn-on Characteristics vs. Collector Current

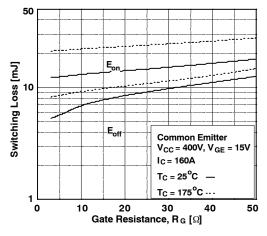


Figure 17. Switching Loss vs. Gate Resistance

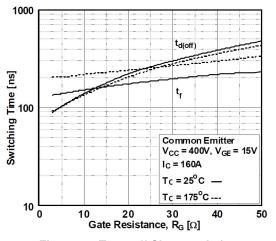


Figure 14. Turn-off Characteristics vs.

Gate Resistance

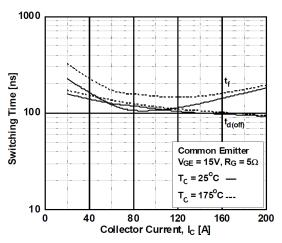


Figure 16. Turn-off Characteristics vs.
Collector Current

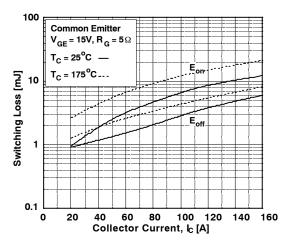


Figure 18. Switching Loss vs. Collector Current

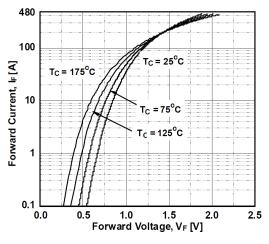


Figure 19. Forward Characteristics

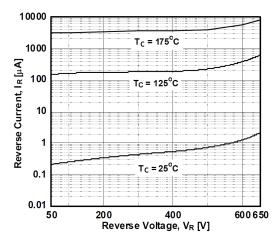


Figure 20. Reverse Current

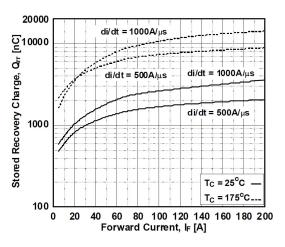


Figure 21. Stored Charge

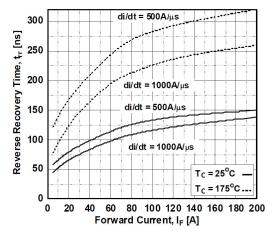


Figure 22. Reverse Recovery Time

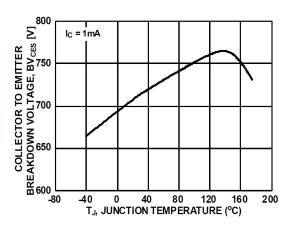


Figure 23. Collector to Emitter Breakdown Voltage vs. Junction Temperature

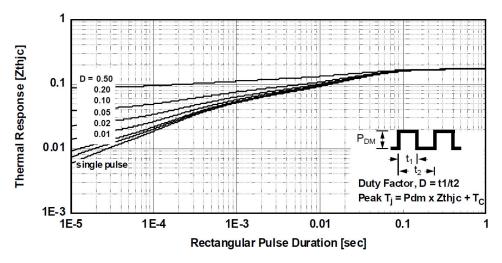


Figure 24. Transient Thermal Impedance of IGBT

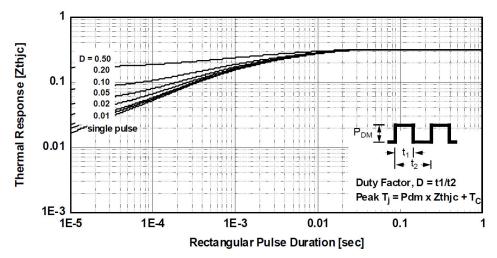
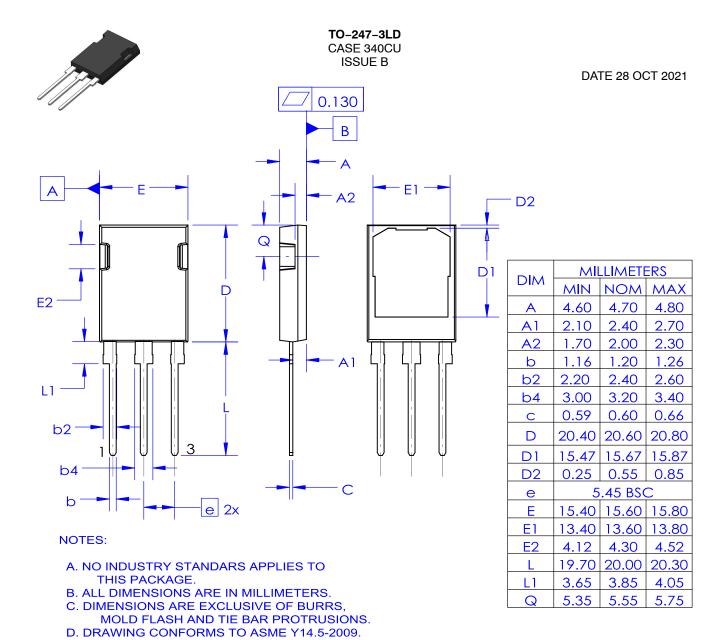



Figure 25. Transient Thermal Impedance of Diode

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code

A = Assembly Site Code

/ = Year

WW = Work Week

ZZ = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13773G	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

