

CGHV59070F/P

Rev. V1

#### **Features**

- 4.4 5.9 GHz Operation
- 70 W Minimum Output Power
- Large Signal Gain: 14 dB
- Drain Efficiency: 55 %
- Internally Matched

## **Applications**

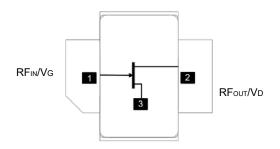
- Wireless Infrastructure
- Marine Radar
- · Weather Monitoring
- Air Traffic Control
- Maritime Vessel Traffic Control
- Port Security
- Troposcatter Communications
- Beyond Line of Sight BLOS

## **Description**

The CGHV59070 is an internally matched gallium nitride (GaN) amplifier. The CGHV59070, operating from a 50 Volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. The good efficiency, high gain and wide bandwidth capabilities make the CGHV59070 ideal for linear applications such as wireless infrastructure and for compressed amplifier circuits. The amplifier is available in a flange and pill package.

# **Typical RF Performance:**

Measured in Evaluation Test Fixture<sup>1</sup> at  $P_{IN} = 35.5$  dBm, 100 µsec pulse width and 10% Duty Cycle.


• 
$$V_{DS} = 50 \text{ V}, I_{DQ} = 150 \text{ mA}, T_{C} = 25^{\circ}\text{C}$$

| Frequency<br>(GHz) | Output <sup>1</sup> Power <sup>1</sup> Power Gain (W) (dB) |      | η <sub>□</sub> ¹<br>(%) |
|--------------------|------------------------------------------------------------|------|-------------------------|
| 4.8                | 84                                                         | 13.7 | 55                      |
| 5.0                | 93                                                         | 14.2 | 56                      |
| 5.2                | 101                                                        | 14.5 | 57                      |
| 5.4                | 102                                                        | 14.6 | 56                      |
| 5.6                | 95                                                         | 14.3 | 54                      |
| 5.8                | 84                                                         | 13.7 | 50                      |
| 5.9                | 76                                                         | 13.3 | 48                      |

1. Performance values and curves in this data sheet were measured in this fixture.



#### **Functional Schematic**



## **Pin Configuration**

| Pin# | Pin Name                           | Function          |
|------|------------------------------------|-------------------|
| 1    | RF <sub>IN</sub> / V <sub>G</sub>  | RF Input / Gate   |
| 2    | RF <sub>OUT</sub> / V <sub>D</sub> | RF Output / Drain |
| 3    | Flange <sup>2</sup>                | Ground / Source   |

<sup>2.</sup> The flange on the package bottom must be connected to RF, DC and thermal ground.

## **Ordering Information**

| Part Number    | MOQ Increment |
|----------------|---------------|
| CGHV59070F     | Bulk          |
| CGHV59070P     | Bulk          |
| CGHV59070F-AMP | Sample Board  |

<sup>\*</sup> Restrictions on Hazardous Substances, compliant to current RoHS EU



CGHV59070F/P

Rev. V1

# RF Electrical Specifications: $T_A = +25$ °C, $V_{DS} = 50$ V, $I_{DQ} = 150$ mA

| Parameter                        | Units | Min. | Тур. | Max. | Conditions                                                                                                                          |
|----------------------------------|-------|------|------|------|-------------------------------------------------------------------------------------------------------------------------------------|
| Small Signal Gain at f = 5.2 GHz | dB    | 15.5 | 17   | _    | V <sub>dd</sub> = 50 V, I <sub>dq</sub> = 150 mA, P <sub>in</sub> = 10 dBm                                                          |
| Output Power at f = 5.2 GHz      | W     | 75.9 | 100  | _    |                                                                                                                                     |
| Output Power at f = 5.55 GHz     | W     | 75.9 | 100  | _    |                                                                                                                                     |
| Output Power at f = 5.9 GHz      | W     | 62.4 | 77   | _    |                                                                                                                                     |
| Power Gain at f = 5.2 GHz        | dB    | _    | 14.5 | _    | $V_{dd}$ = 50 V, $I_{dq}$ = 150 mA, $P_{in}$ = 35.5 dBm<br>Pulse Width = 100 $\mu$ s, Duty Cycle = 10%                              |
| Drain Efficiency at f = 5.2 GHz  | %     | 50   | 54   | _    |                                                                                                                                     |
| Drain Efficiency at f = 5.55 GHz | %     | 46   | 55   | _    |                                                                                                                                     |
| Drain Efficiency at f = 5.9 GHz  | %     | 40   | 48   | _    |                                                                                                                                     |
| Ruggedness: Output Mismatch      | Ψ     | _    | _    | 5:1  | No damage at all phase angles,<br>$V_{dd}$ = 50 V, $I_{dq}$ = 150 mA, $P_{in}$ = 35.5 dBm<br>Pulse width = 100 µs, Duty Cycle = 10% |

# DC Electrical Characteristics T<sub>A</sub> = 25°C

| Parameter                    | Test Conditions                                  | Symbol           | Min.  | Тур. | Max. | Units    |
|------------------------------|--------------------------------------------------|------------------|-------|------|------|----------|
| Drain-Source Leakage Current | V <sub>GS</sub> = -8 V, V <sub>DS</sub> = 150 V  | I <sub>DLK</sub> | -     | -    | 4.16 | mA       |
| Gate-Source Leakage Current  | V <sub>GS</sub> = -8 V, V <sub>DS</sub> = 10 V   | I <sub>GLK</sub> | -1.45 | -    | -    | mA       |
| Gate Threshold Voltage       | $V_{DS} = 10 \text{ V}, I_{D} = 10.4 \text{ mA}$ | V <sub>T</sub>   | -3.8  | -2.8 | -2.3 | <b>V</b> |
| Gate Quiescent Voltage       | V <sub>DS</sub> = 50 V, I <sub>D</sub> = 150 mA  | $V_{GSQ}$        | -     | -2.7 | -    | V        |



CGHV59070F/P

Rev. V1

# **Absolute Maximum Ratings**<sup>1,2</sup>

| Parameter                             | Absolute Maximum |  |  |
|---------------------------------------|------------------|--|--|
| Drain-Source Voltage                  | 150 V            |  |  |
| Gate Voltage                          | -10, +2 V        |  |  |
| Storage Temperature                   | -65°C to +150°C  |  |  |
| Junction Temperature <sup>4,5,6</sup> | +225°C           |  |  |
| Gate Current                          | 10.4 mA          |  |  |
| DC Drain Current                      | 6.3 A            |  |  |
| Mounting Temperature <sup>3</sup>     | +245°C           |  |  |
| Operating Temperature                 | -40°C to +125°C  |  |  |

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 3. Mounting temperature for 30 seconds.
- 4. Operating at nominal conditions with  $T_J \le +225$  C will ensure MTTF > 1 x  $10^6$  hours.
- 5. Junction Temperature ( $T_J$ ) =  $T_C$  +  $\Theta$ jc \* (V \* I)

  Typical thermal resistance ( $\Theta$ jc) = 2.99 °C/W for CW.

  a) For  $T_C$  = +55°C,  $T_J$  = 225 °C @  $P_{diss}$ = 57 W
- 6. Junction Temperature  $(T_J) = T_C + \Theta jc * (V * I)$

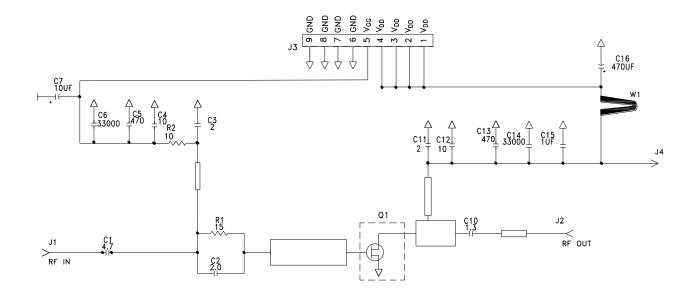
Typical thermal resistance (Θjc) = 0.85 °C/W for 100μs, 10%.

a) For 
$$T_C$$
 = +85°C,  
 $T_J$  = 145 °C @  $P_{diss}$ = 70 W

#### **Handling Procedures**

Please observe the following precautions to avoid damage:

#### **Static Sensitivity**


These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.



CGHV59070F/P

Rev. V1

#### Evaluation Test Fixture and Recommended Tuning Solution, 5.2—5.9 GHz



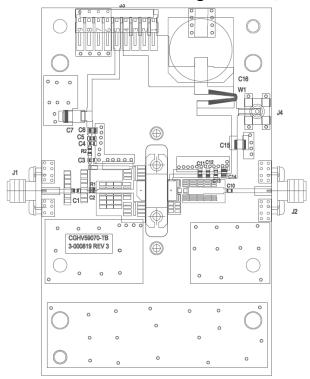
# **Description**

Parts measured on evaluation board (20-mil thick RF-35). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

## **Biasing Sequence**

#### **Bias ON**

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF


#### **Bias OFF**

- 1. Turn RF off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage



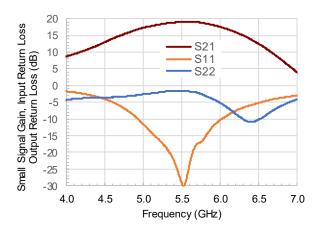
CGHV59070F/P Rev. V1

# **Evaluation Test Fixture and Recommended Tuning Solution, 5.2 - 5.9 GHz**

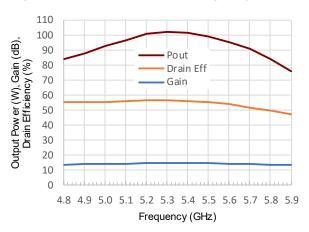


# **Assembly Parts List**

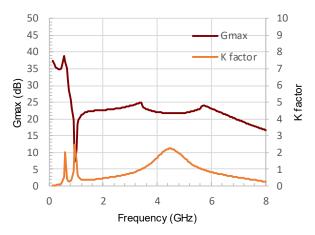
| Reference Designator | Description                                                       | Qty |
|----------------------|-------------------------------------------------------------------|-----|
| R1                   | RES, 15,OHM, +/- 1%, 1/16W, 0402                                  | 1   |
| R2                   | RES,1/16W,0603,1%,10.0 OHMS                                       | 1   |
| C1                   | CAP, 4.7 pF,+/-0.1pF, 0603, ATC600S                               | 2   |
| C10                  | CAP, 1.3 pF,+/-0.1pF, 0603, ATC600S                               | 1   |
| C3,C11               | CAP, 2.0 pF,+/-0.1pF, 0603, ATC600S                               | 2   |
| C2                   | CAP, 2.0 pF, +/- 0.05 pF, 0402, ATC                               | 1   |
| C4,C12               | CAP, 10pF,+/-5%, 0603, ATC                                        | 2   |
| C5,C13               | CAP, 470PF, 5%, 100V, 0603, X                                     | 2   |
| C6,C14               | CAP,33000PF, 0805,100V, X7R                                       | 2   |
| C15                  | CAP, 1.0UF, 100V, 10%, X7R, 1210                                  | 1   |
| C7                   | CAP 10UF 16V TANTALUM                                             | 1   |
| C16                  | CAP, 470uF, 20%, 80V, ELECT, SMD Size K                           | 1   |
| J1,J2                | CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-<br>HOLE, BLUNT POST, 20MI | 2   |
| J3                   | HEADER RT>PLZ .1CEN LK 9POS                                       | 1   |
| J4                   | CONNECTOR; SMB, Straight, JACK,SMD                                | 1   |
| W1                   | CABLE, 18 AWG, 4.2"                                               | 1   |
| -                    | PCB, TEST FIXTURE, TACONIC RF35, 20 MIL                           | 1   |
| Q1                   | CGHV59070F/P                                                      | 1   |



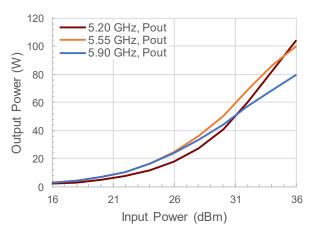

CGHV59070F/P


Rev. V1

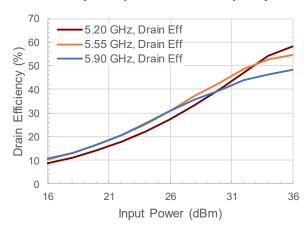
Typical Performance Curves as Measured in the 5.2 – 5.9 GHz Evaluation Test Fixture Pulse width = 100  $\mu$ s, Duty Cycle = 10%,  $P_{IN}$  = 35.5 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 150 mA (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


#### S11, S21, & S22 vs. Frequency

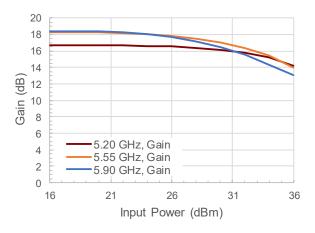



#### Output Power, Gain and PAE vs. Frequency




#### Maximum Available Gain and K Factor vs. Frequency




Output Power vs. Input Power and Frequency

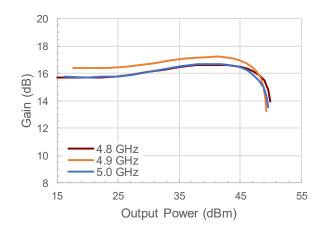


#### Drain Efficiency vs. Input Power and Frequency

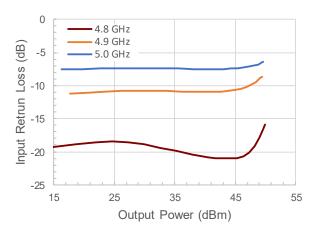


Gain vs. Input Power and Frequency

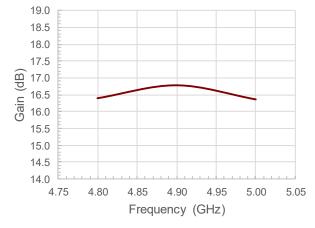




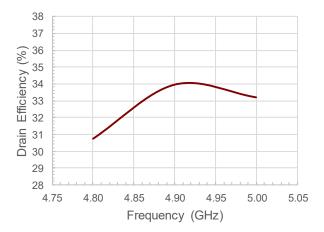

CGHV59070F/P


Rev. V1

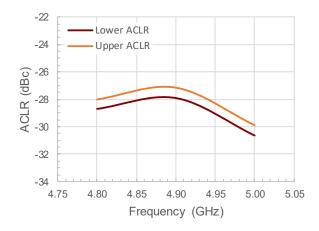
Typical Performance Curves as Measured in the 4.8 – 5.0 GHz Evaluation Test Fixture WCDMA, 7.5 dB PAR Signal,  $P_{IN}$  = 42 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 75 mA (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


#### Power Gain vs. Output Power




#### Input Power vs. Output Power



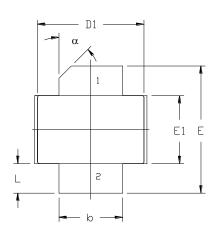

#### Power Gain vs. Frequency

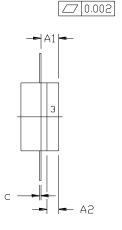


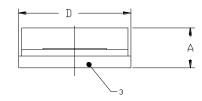
#### Drain Efficiency vs. Frequency



#### ACLR vs. Frequency





**CGHV59070F/P** 

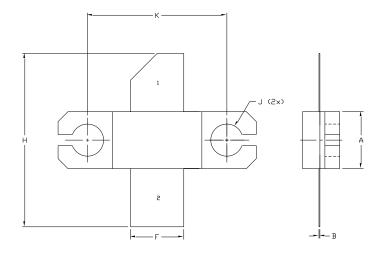
Rev. V1

## Lead-free 440170 Package Dimensions








- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020° BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

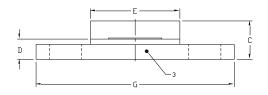
|     | INCHES  |       | MILLIMETERS |       | NOTES |  |
|-----|---------|-------|-------------|-------|-------|--|
| DIM | MIN     | MAX   | MIN         | MAX   |       |  |
| Α   | 0.125   | 0.145 | 3.18        | 3.68  |       |  |
| A1  | 0.057   | 0.067 | 1.45        | 1.70  |       |  |
| A2  | 0.035   | 0.045 | 0.89        | 1.14  |       |  |
| b   | 0.210   | 0.220 | 5.33        | 5.59  | 2×    |  |
| С   | 0.004   | 0.006 | 0.10        | 0.15  | 2×    |  |
| D   | 0.375   | 0.385 | 9.53        | 9.78  |       |  |
| D1  | 0.355   | 0.365 | 9.02        | 9.27  |       |  |
| Ε   | 0.400   | 0.460 | 10.16       | 11.68 |       |  |
| E1  | 0.225   | 0.235 | 5.72        | 5.97  |       |  |
| L   | 0.085   | 0.115 | 2.16        | 2.92  | 2×    |  |
| α   | 45° REF |       | 45° REF     |       |       |  |

- PIN 1. GATE
  - 2. DRAIN
  - 3. SOURCE

NOTES:

## Lead-free 440224 Package Dimensions




4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION. 5. ALL PLATED SURFACES ARE NI/AU INCHES MILLIMETERS DIM MIN MAX MIN MAX Α 0.225 0.235 5.72 5.97 0.004 0.006 0.10 0.15 0.145 0.165 3.18 4.19 0.077 0.087 1.96 0.355 0.365 9.02 9.27 0.210 0.220 5.33 5.59

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020\* BEYOND EDGE OF LID.

2. CONTROLLING DIMENSION: INCH.

0.795 0.805 20.19 20.45 0.670 0.730 17.02 18.54 ø .130 3.30 0.562 14.28





CGHV59070F/P

Rev. V1

## MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.