

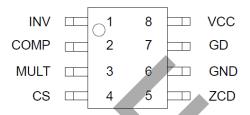
POWER FACTOR CORRECTION CONTROLLER

Description

The AP1661 is an active power factor control IC which is designed mainly for use as pre-converter in electronic ballast, AC-DC adapters and off-line SMPS applications.

The AP1661 includes an internal start-up timer for stand-alone applications, a one-quadrant multiplier to realize near unity power factor and a zero current detector to ensure DCM boundary conduction operation. The totem pole output stage is capable of driving power MOSFET with 600mA source current and 800mA sink current.

Designed with advanced BiCMOS process, the AP1661 features low start-up current, low operation current and low power dissipation. The AP1661 also has rich protection features including over-voltage protection, input under-voltage lockout with hysteresis and multiplier output clamp to limit maximum peak current.

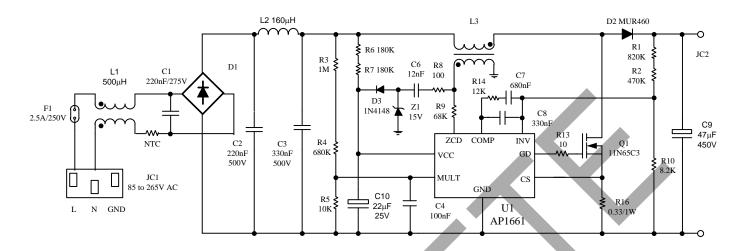

This IC is available in SOIC-8 and DIP-8 packages.

Features

- Zero Current Detection Control for DCM Boundary Conduction Mode
- Adjustable Output Voltage with Precise Over-Voltage Protection
- Low Start-up Current with 50µA Typical Value
- Low Operating Supply Current with 4mA Typical Value
- 1% Precision Internal Reference Voltage
- Internal Start-up Timer
- Disable Function for Reduced Current Consumption
- Totem Pole Output with 600mA Source Current and 800mA Sink Current Capability
- Under-Voltage Lockout with 2.5V of Hysteresis
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

Pin Assignments

(Top View)

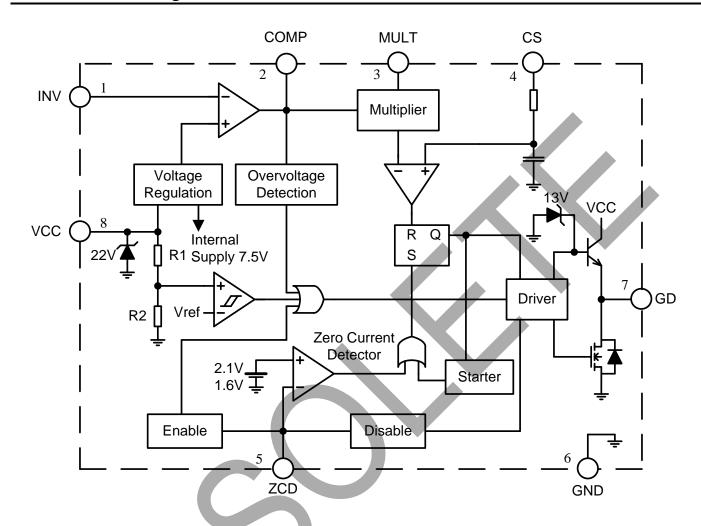

M Package/P Package (SOIC-8/DIP-8)

Applications

- AC-DC Adapter
- Off-line SMPS
- Electronic Ballast

Typical Applications Circuit

L3: Core type RM10, material 3C90 primary: 660µH, 66 turns of litze wire 0.1mm*30 secondary: 7 turns wire of 0.2mm


85 to 265V Wide Range Input 90W PFC Demo Board Electrical Schematic Circuit

Pin Descriptions

Pin Number	Pin Name	Function		
1	INV	Inverting input of the error amplifier		
2	COMP	Output of the error amplifier		
3	MULT	Input of the multiplier		
4	CS	Input of the current control loop comparator		
5	ZCD	Zero current detection input. If it is connected to GND, the device is disabled.		
6	GND	Ground. Current return for gate driver and control circuits of the IC		
7	GD	Gate driver output		
8	VCC	Supply voltage of gate driver and control circuits of the IC		

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

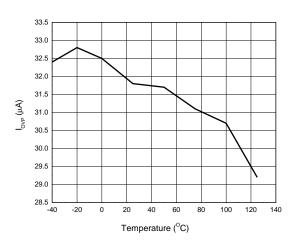
Symbol	Parameter	Rating	Unit
Vcc	Power Supply Voltage	20	V
I _{cc}	Operating Supply Current	30	mA
Іоит	Driver Output Current	±800	mA
V _{INV} , V _{COMP} , V _{MULT}	Input/Output of Error Amplifier, Input of Multiplier	-0.3 to 7	V
V _{cs}	Current Sense Input	-0.3 to 7	V
		Source -50	
I _{ZCD}	Zero Current Detector Input	Sink 10	mA
		DIP-8 100	2011
$R_{\scriptscriptstyle{ hetaJA}}$	Thermal Resistance Junction-Ambient	SOIC-8 150	°C/W
	Power Dissipation and Thermal Characteristics @	DIP-8 1	10/
Ртот	T _A =+50°C	SOIC-8 0.65	W
TJ	Operating Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature Range	°C	
T _{LEAD}	Lead Temperature (Soldering, 10 Seconds) +260		°C
_	ESD (Human Body Model)	del) 3000	
_	ESD (Machine Model)	300	V

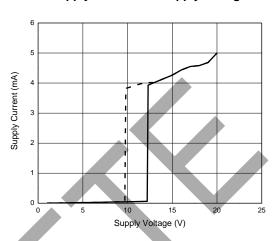
Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Symbol	Parameter		Test Conditions	Min	Тур	Max	Unit
Under Voltage Lockout Section							
V _{CC-ON}	Turn-on Threshold		V _{CC} rising	11	12	13	V
V _{CC-OFF}	Turn-off Th	nreshold	V _{CC} falling	8.7	9.5	10.3	V
V _{CC-HYS}	Hysterisis		_	2.2	2.5	2.8	V
Vcc	V _{CC} Operat	ting Range	After turn-on	10.3	-	20	V
Total Supply S	Section				→ \		
I _{START-UP}	Start-up Co	urrent	V _{CC} =11V before turn-on	20	50	90	μА
	0 1	0 10 1	C _L =1nF @frequency=70kHz		4	5.5	
I _{cc}	Operating	Supply Current	In OVP condition Vpin1=2.7V		1.4	2.1	mA
lα	Quiescent	Current	-		2.6	4	mA
	0	0 .	Vpin5≤150mV, V _{CC} >V _{CC-OFF}	_	1.4	2.1	mA
lα	Quiescent	Current	Vpin5≤150mV, V _{CC} <v<sub>CC-OFF</v<sub>	20	50	90	μΑ
Vz	V _{CC} Zener	Voltage	I _{CC} =20mA	20	22	24	V
Error Amplifie	r Section						
			T _A =+25°C	2.465	2.5	2.535	
V_{INV}	Voltage Fe	eedback Input Threshold	10.3V <v<sub>CC<20V</v<sub>	2.44	_	2.56	V
_	Line Regulation		V _{cc} =10.3V to 20V	_	2	5	mV
I _{INV}	Input Bias Current		V _{INV} =0V	_	-0.1	-1	μΑ
G _V	Voltage Gain		Open Loop	60	80	_	dB
GB	Gain Bandwidth		_	_	1	_	MHz
V _{COMP-H}	Output	Upper Clamp Voltage	I _{SOURCE} =0.5mA	_	5.8	_	.,
V _{COMP-L}	Voltage	Lower Clamp Voltage	I _{SINK} =0.5mA	_	2.25	_	V
І _{сомр-н}	Output	Source Current	V _{COMP} =4V, V _{INV} =2.4V	-2	-4	-8	
I _{COMP-L}	Current	Sink Current	V _{COMP} =4V, V _{INV} =2.6V	2.5	4.5	_	mA
V_{INV-TH}	Enable The	reshold	_	_	_	720	mV
Multiplier Section							
V_{MULT}	Linear Input Voltage Range		_	0 to 3	0 to 3.5	_	V
$\Delta V_{CS}/\Delta V_{MULT}$	Output Maximum Slope		V _{MULT} : 0 to 0.5V, V _{COMP} =Upper Clamp Voltage	_	1.7	_	_
k	Gain		V _{MULT} =1V, V _{COMP} =4V	0.45	0.6	0.75	1/V

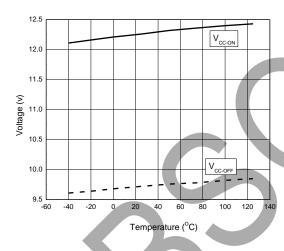
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
Current Sense Section							
I _{CS}	Input Bias Current	V _{CS} =0V	_	-0.05	-1.0	μA	
.,		V _{MULT} =0V	_	30	_	m)/	
V _{CS-OFFSET}	Current Sense Offset Voltage	V _{MULT} =2.5V	1	5 —		mV	
V _{CS-CLAMP}	Current Sense Reference Clamp	V _{COMP} =Upper Clamp Voltage, V _{MULT} =2.5V	1.6	1.7	1.8	V	
t _{d(H-L)}	Delay to Output	_	-	200	450	ns	
Zero Current	Detection Section						
V_{ZCD-R}	Input Threshold Voltage, V _{ZCD} Rising Edge	(Note 2)	-	2.1	_	>	
V _{ZCD-RTH}	Hysteresis Voltage	(Note 2)	0.3	0.5	0.7	V	
V _{ZCD-H}	Upper Clamp Voltage	I _{ZCD} =20μA	4.5	5.1	5.9	V	
V ZCD-H		I _{ZCD} =3mA	4.7	5.2	6.1		
V _{ZCD-L}	Lower Clamp Voltage	I _{ZCD} =-3mA	0.3	0.65	1	V	
I _{ZCD-SR}	Source Current Capability	_	-3		-10	mA	
I _{ZCD-SN}	Sink Current Capability	_	3	_	10	mA	
I _{ZCD-B}	Sink Bias Current	1V≤V _{ZCD} ≤4.5V	_	2	_	μΑ	
V _{ZCD-DIS}	Disable Threshold		150	200	250	mV	
V _{ZCD-HYS}	Disable Hysterisis	_	_	100	_	mV	
I _{ZCD-RES}	Restart Current After Disable	V _{ZCD} <v<sub>DIS; V_{CC}>V_{CC-OFF}</v<sub>	-100	-200	-300	μΑ	
Drive Output	Section						
V _{OH}	Dropout Voltage	I _{GD-SOURCE} =200mA, V _{CC} =12V	_	2.5	3	V	
• OH		I _{GD-SOURCE} =20mA, V _{CC} =12V	_	2	2.6	·	
V _{OL}		I _{GD-SINK} =200mA, V _{CC} =12V	_	0.9	1.9	V	
t _R	Output Voltage Rise Time	C _L =1nF	_	40	100	ns	
t _F	Output Voltage Fall Time	C _L =1nF	_	40	100	ns	
V _{O-CLAMP}	Output Clamp Voltage	I _{GD-SOURCE} =5mA, V _{CC} =20V	10	13	15	V	
Vos	UVLO Saturation	V _{CC} =0 to V _{CC-ON} , I _{SINK} =10mA	_	_	1.1	V	

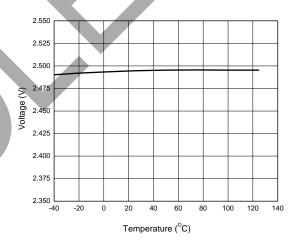
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
Output Over Voltage Section							
I _{OVP}	OVP Triggering Current	_	35	40	45	μΑ	
V _{OVP-TH}	Static OVP Threshold	_	2.1	2.25	2.4	V	
Restart Timer							
t _{START}	Restart Timer	_	70	150	400	μs	

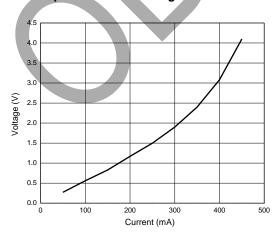

Note 2: Limits over the full temperature are guaranteed by design, but not tested in production.

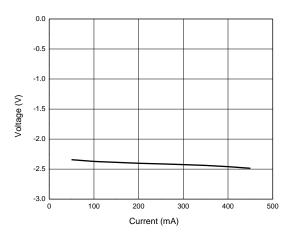


Performance Characteristics

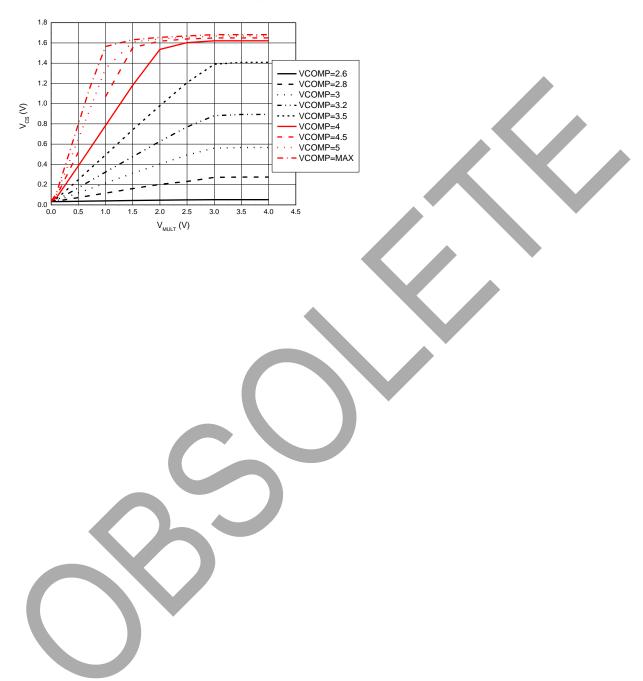

OVP Current Threshold vs. Temperature


Supply Current vs. Supply Voltage


Under Voltage Lockout Threshold vs. Temperature


Voltage Feedback Input Threshold vs. Temperature

Output Saturation Voltage vs. Sink Current

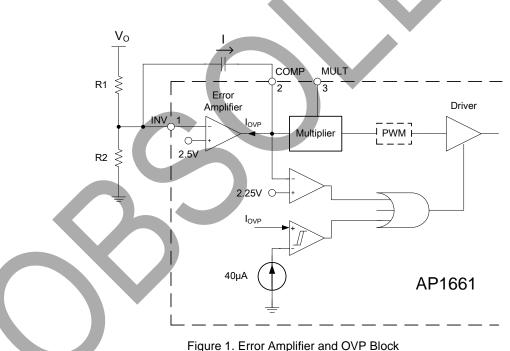

Output Saturation Voltage vs. Source Current

Performance Characteristics (continued)

Multiplier Characteristics Family

Functional Block Description

AP1661 is a high performance power factor correction controller which operates in DCM boundary conduction mode. The PFC converter's switch will be turned on when the inductor current reduces to zero and turned off when the sensed inductor current reaches the required reference which is decided by the output of multiplier.


Error Amplifier and Over-Voltage Protection

The error amplifier regulates the PFC output voltage. The internal reference on the non-inverting input of the error amplifier is 2.5V. The error amplifier's inverting input (INV) is connected to an external resistor divider which senses the output voltage. The output of error amplifier is one of the two inputs of multiplier. A compensation loop is connected outside between INV and the error amplifier output. Normally, the compensation loop bandwidth is set very low to realize high power factor for PFC converter.

To make the over voltage protection fast, the internal OVP function is added. If the output over voltage happens, excess current will flow into the output pin of the error amplifier through the feedback compensation capacitor. (see Figure 1) The AP1661 monitors the current flowing into the error amplifier output pin. When the detected current is higher than 40µA, the dynamic OVP is trigged. The IC will be disabled and the drive signal is stopped. If the output over voltage lasts so long that the output of error amplifier goes below 2.25V, static OVP will take place. Also the IC will be disabled until the output of error amplifier goes back to its linear region. R1 and R2 (see Fig. 1) will be selected as below:

$$\frac{R1}{R2} = \frac{Vo}{2.5V} - 1$$

$$R1 = \frac{\Delta V_{OVP}}{40\,\mu A}$$

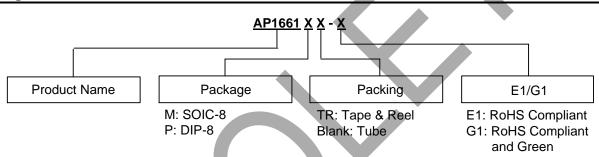
Multiplier

The multiplier has two inputs. One (Pin 3) is the divided AC sinusoidal voltage which makes the current sense comparator threshold voltage vary from zero to peak value. The other input is the output of error amplifier (Pin 2). In this way, the input average current wave will be sinusoidal as well as reflects the load status. Accordingly a high power factor and good THD are achieved. The multiplier transfer character is designed to be linear over a wide dynamic range, namely, 0V to 3V for Pin 3 and 2.0V to 5.8V for Pin 2. The relationship between the multiplier output and inputs is described as below equation.

$$V_{CS} = k \times (V_{COMP} - 2.5) \times V_{MULT}$$

Functional Block Description (continued)

Where V_{CS} (Multiplier output) is the reference for the current sense, k is the multiplier gain, V_{COMP} is the voltage on pin 2 (error amplifier output) and V_{MULT} is the voltage on pin 3.

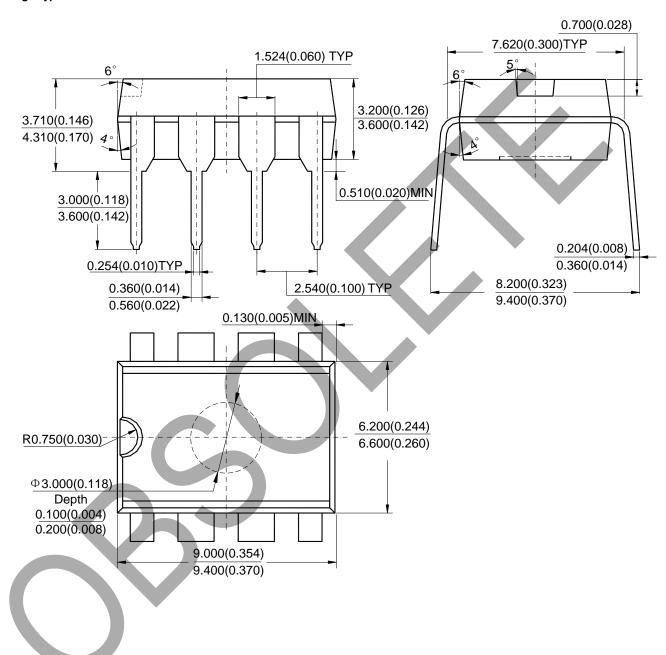

Current Sense/Current Sense Comparator

The PFC switch's turn-on current is sensed through an external resistor in series with the switch. When the sensed voltage exceeds the threshold voltage (the multiplier output), the current sense comparator will become low and the external MOSFET will be turned off. This insures a cycle-by-cycle current mode control operation. The maximum current sense reference is 1.8V. The max value usually happens at startup process or abnormal conditions such as short load.

Zero Current Detection

AP1661 is a DCM boundary conduction current mode PFC controller. Usually, the zero current detection (ZCD) voltage signal comes from the auxiliary winding of the boost inductor. When the ZCD pin voltage decreases below 1.6V, the gate drive signal becomes high to turn on the external MOSFET. 500mV of hysteresis is provided to avoid false triggering. The ZCD pin can be used for disabling the IC. Making its voltage below 0.15V or short to the ground will disable the device thus reduce the IC supply current consumption.

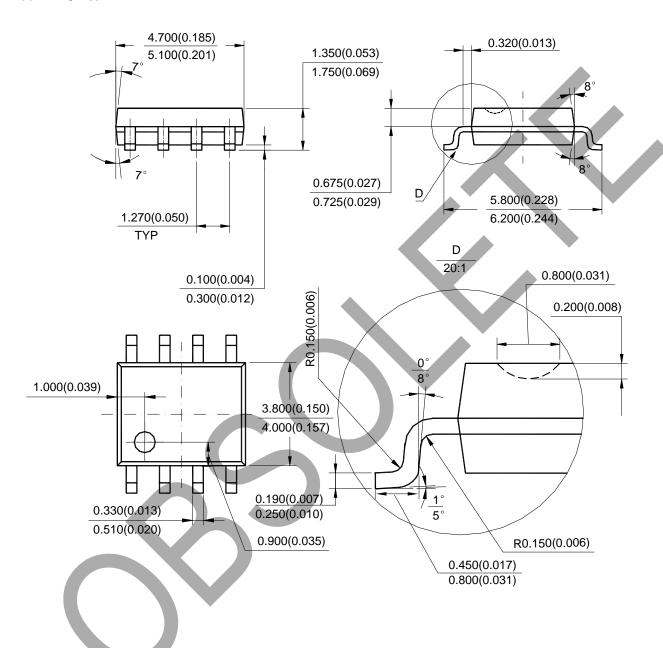
Ordering Information


Package	Temperature Range	Part Number		Marking ID			
		RoHS Compliant	RoHS Compliant and Green	RoHS Compliant	RoHS Compliant and Green	Packing	
SOIC-8	-40 to +85°C	AP1661M-E1	AP1661M-G1	1661M-E1	1661M-G1	Tube	
		AP1661MTR-E1	AP1661MTR-G1	1661M-E1	1661M-G1	Tape & Reel	
DIP-8	-40 to +85°C	AP1661P-E1	AP1661P-G1	AP1661P-E1	AP1661P-G1	Tube	

Package Outline Dimensions (All dimensions in mm(inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.

(1) Package Type: DIP-8



Package Outline Dimensions (All dimensions in mm(inch).) (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

(2) Package Type: SOIC-8

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated

www.diodes.com