4 Mb/s Infrared Data Transceiver Preliminary #### **Features** - IrDA, HP-SIR, Local Talk and Sharp ASK - · Ultracompact package: - H 4.0 mm x D 4.8 mm x L 9.8 mm - · Data rates from 9.6 Kbit/s to 4 Mbit/s - Supply voltage 2.7 V to 5.25 V - Power Shutdown mode (<100 nA) - Low power consumption - 1.7 mA (typ) @ 2.7 V - 3.2 mA (typ) @ 5.0 V - · Zero external resistors required #### Description Responding to the volumetric constraints of today's ultra-compact and power conscious portable products, Vishay has developed the next generation in infrared wireless communication transceivers. The transceiver has been designed to support up to 4 Mbit/s IrDATM, HP-SIRTM, Local TalkTM and Sharp ASKTM modes. The device combines an LED, photodiode, LED driver and a fully differential receiver into a single integrated package. ## **Absolute Maximum Ratings,** T_A=25°C (except where noted) | 0.5 to +5.5 V | |----------------------------| | –25 to +85°C | | 25 to +75°C | | 240°C<10 s | | 125°C | | 100 mA | | | | 710 mA | | -0.5 to $V_{CC} + 0.5$ V | | -0.5 to $V_{CC} + 0.5$ V | | | | Pin Number | Symbol | Description | |------------|-----------------|-------------------------| | 1 | LEDA | LED Anode | | 2 | LEDC | LED Cathode | | 3 | TxD | Transmit Data | | 4 | RxD | Receive Data | | 5 | SD/ Mode | Shutdown/ Mode Select | | 6 | V _{CC} | Positive Supply (Power) | | 7 | NC | GND | | 8 | GND | Ground | Document Number: 82579 www.vishay.com Revision 05-July-02 1 **Table 1. Input/Output Functional Description** | Symbol | I/O Type | Polarity | Function | |------------------|-----------------|----------------|---| | RxD | Output | Active
Low | This output indicates received serial data. It is a push-pull CMOS driver capable of driving a standard CMOS or TTL load. No external pull-up or pull-down resistor is required. This output may switch indeterminately when the module is transmitting. This output pin is in tri-state mode when the module is in shutdown mode and during digital serial programming operations. RxD is high at initializaton. | | TxD | Input | Active
High | This CMOS input is used to transmit serial data when SD/ Mode is low. An on-chip protection circuit disables the LED driver if the TxDpin is asserted for longer than 60 μs . When used in conjunction with the SD/ Mode pin. TxD is low at initializaton. | | SD/ Mode | Input | Active
High | Assertion of this pin high for a period of time exceeding 400 µs places the module into shutdown mode. On the falling edge of this signal, the state of the TxDpin is sampled and used to set receiver low bandwidth (TxD= Low) or high bandwidth (TxD= High) mode. See Figures 7 and 8 for timings. SD is low at initialization | | V _{CC} | Positive Supply | - | Connect to positive power supply (2.7 V to 5.25 V). Placement of a 1.0 μ F to 10.0 μ F decoupling ceramic capacitor as close as possible to the V _{CC} pin is recommended. | | GND | Ground (Power) | - | Connect to power supply ground. A solid ground plane is recommended. | | NC | No Connect | - | This pin could be connected to ground. | | L _{EDA} | Input | - | This pin can be connected directly to V _{CC} . No series resistor is required. | | L _{EDC} | Output | - | LED cathode. Leave this pin unconnected. This pin may be monitored to determine the state of the LED. | Figure 1. Block Diagram Figure 2. Minimum Vishay Low-Power Integrated Infrared Transceiver Circuit Diagram **Table 2. Recommended Operating Conditions** | Symbol | Parameter | Min | Typical | Max | Unit | Conditions | |-----------------|----------------------------------|-----|---------|------|------|------------| | V _{CC} | Supply Voltage | 2.7 | | 5.25 | V | | | T _A | Ambient Operating
Temperature | -25 | | 75 | °C | | **Table 3. DC Electrical Characteristics** | Symbol | Parameter | Min | Typical | Max | Unit | Conditions | |-----------------|---------------------------|-----|---------|-----|------|---| | I _{cc} | Supply Current; Listening | 2.0 | 3.2 | 4.5 | mA | Typical value obtained at Vcc=5 V | | I _{cc} | Supply Current; Receiving | | 3.8 | 15 | mA | Interface and optical input power dependent | | I _{SD} | Supply Current; Shutdown | | 50 | 100 | nA | $V_{SD} = V_{CC}$ | **Table 4. Receiver DC Electrical Characteristics** | Symbol | Parameter | Min | Typical | Max | Unit | Conditions | |-----------------|------------------------------|---------|---------|-----|------|-------------| | V _{OL} | RxD Output Low Voltage | | | 0.5 | V | | | I _{OL} | Static Sink Current on RxD | | | 2.4 | mA | 2.2KΩ load. | | V _{OH} | RxD Output High Voltage | Vcc-0.5 | | | V | | | I _{OH} | Static Source Current on RxD | | | 2.4 | mA | 2.2KΩ load. | | RL | RxD Rosistive Load | 2.2 | | | kΩ | | | C _L | RxD Capacitive Load | | | 50 | pF | | Document Number: 82579 www.vishay.com ## **Table 5. Transmitter DC Electrical Characteristics** | Symbol | Parameter | Min | Typical | Max | Unit | Conditions | |-----------------|------------------------|-----|---------|-----|------|------------| | V _{IL} | TxD Input Voltage Low | | | 0.8 | V | | | V _{IH} | TxD Input Voltage High | 2.4 | | | V | | | C _i | Input Capacitance | | | 5 | pF | | ## Table 6. SD/Mode DC Electrical Characteristics | Symbol | Parameter | Min | Typical | Max | Unit | Conditions | |-----------------|-----------------------------|-----|---------|-----|------|------------| | V _{IL} | SD/ Mode Input Voltage Low | | | 0.8 | V | | | V _{IH} | SD/ Mode Input Voltage High | 2.4 | | | V | | | C _i | Input Capacitance | | | 5 | pF | | ## **Table 7. Optical Characteristics** | Symbol | Parameter | Min | Typical | Max | Unit | Conditions | |---------------------------------|--|------|---------|-------|------------------------|--| | E _{min} | Minimum Detection Irradiance 9.6-115.2 kbit/s, SIR | | 3.7 | 4 | μW/
cm ² | 9.6 kbit/s to 115.2 kbit/s | | E _{min} | Minimum Detection Irradiance 1.152Mbit/s, MIR | | 4 | | μW/
cm ² | 1.152 Mbit/s | | E _{min} | Minimum Detection Irradiance
4 Mbit/s, FIR | | 7.9 | 9 | μW/
cm ² | 4 Mbit/s | | t _r , t _f | LED Optical Rise/Fall Time | | | 40 | ns | | | t _{xpw} | SIR Optical Pulse Width | 1.41 | | 22.13 | μs | TxD Input Pulse Width = 3/16 duty cycle | | t _{xpw} | MIR Optical Pulse Width | 147 | | 261 | ns | TxD Input Pulse Width = 217ns | | t _{xpw} | FIR Optical Pulse Width | 115 | | 140 | ns | TxD Input Pulse Width = 125ns | | I _e | Output Radiant Intensity | 110 | 200 | 400 | mW/sr | TxD=High, SD/Mode=Low, V_{CC} =3.3 V, α =±15°, T_A =25°C, TX@2MHz and 25% | | aÅ | Output Radiant Half Intensity
Angle | ±15 | | | 0 | | | $\lambda_{\rm p}$ | Peak Wavelength | 850 | 870 | 900 | nm | | | | Optical Overshoot | | | 25 | % | | ## **Table 8. AC Electrical Characteristics** | Symbol | Parameter | Min | Typical | Max | Unit | Conditions | |---------------------------------|--|-----|---------|-----|------|--| | t _r | RxD Rise Time | | | 60 | ns | R _L =2.2 K, C _L =50 pF | | t _f | RxD Fall Time | | | 50 | ns | R _L =2.2 K, C _L =50 pF | | t _{su} ,t _H | TxDSetup and Hold to SD/ Mode Falling Edge | 10 | | | ns | | | t _w | RxD Pulse Width (SIR) | 1.0 | | 2.1 | μs | | | t _w | RxD Pulse Width (1.152Mbit/s) | 100 | | 600 | ns | | | t _w | RxD Pulse Width (4Mbit/s, single pulse) | 80 | | 165 | ns | | | t _w | RxD Pulse Width (4Mbit/s, double pulse) | 210 | | 290 | ns | | | t_ | Receiver Latency | | | 100 | μs | | | t _{RxDEN} | RxD Valid After Shutdown | | | 200 | μs | | | t _{LEDP} | LED Protection Time-out | | | 100 | μs | | | I _{LED} | Peak Transmit Current | 10 | | 710 | mA | 25% duty cycle | | I _{LED} | Average Transmit Current | 5 | | 150 | mA | 25% duty cycle | Document Number: 82579 Revision 05-July-02 www.vishay.com 3 Figure 3. Timing Diagrams Figure 4. Bandwidth Programming #### Setting the Receiver to High BW Mode (FIR) The transceiver powers on with the receiver in low bandwidth mode. To enable high bandwidth mode, apply timings as shown in the figure 7, to the SD/ Mode and the TxD inputs. Note that the internal LED driver is disabled when SD/ Mode is active and is not enabled until the next rising edge of TxD. This ensures that the LED will not be active during bandwidth adjustment. It is recommended that the SD/ Mode pin be connected to GND if bandwidth adjustment and shutdown mode are not used. #### Setting the Receiver to High Bandwidth Mode (see Figure 4) - 1. Set the SD/ Mode input to 'logic high'. - Set the TxD input to 'logic high'. Wait t_{su} ≥ 10 ns. - 3. Set the SD/ Mode to 'logic low'. (This high-to-low transition latches the state of TxD, which determines the receiver bandwidth.) 4. After waiting $t_h \ge 10$ ns, set the TxDinput to 'logic low'. The receiver is in high bandwidth mode within 200 µs of the SD/ Mode rising edge or 10 ns after the SD/ Mode falling edge, whichever occurs later. #### Setting the Receiver to Low Bandwidth Mode (see Figure 4) - 1. Set the SD/ Mode input to 'logic high'. - 2. Ensure that the TxD input is at 'logic low'. Wait $t_{SLI} \ge 10$ ns. - 3. Set the SD/ Mode to 'logic low'. (This high-to-low transition latches the state of TxD, which determines the receiver bandwidth.) - 4. Ensure that the TxD input remains low for $t_h \ge 10$ ns. The receiver is in low bandwidth mode within 200 μ s of the SD/ Mode rising edge or 10 ns after the SD/ Mode falling edge, whichever occurs later. Document Number: 82579 Revision 05-July-02 www.vishay.com Figure 5. Infrared Reflow Soldering Profile Figure 6. Super I/O (PC87338VLJ) to IRMS6452/IRMT6452 Figure 7. Ultra I/O controller with fast IR (FDC37C93xFR) to IRMS6452/IRMT6452 Figure 8. Super I/O (PC87338VLJ) to IRMS6452/IRMT6452 with independent V_{LED} power supply Table 9. Recommended R_O values for different V_{LED} | Parameter | Values | Values | | | | | | | |-------------------------------|--------|--------|-----|------|---|--|--|--| | V _{LED} power supply | 2.7 | 3 | 3.3 | >3.5 | V | | | | | Resistor | 0 | 1.8 | 4.7 | 6.8 | Ω | | | | Table 10. Slimline IRMS64XX Truth Table | Inputs | S | | | Outputs | | |--------|--------------|-----------------------|--|---------|-----| | SD | $V_{\rm CC}$ | RxD | Detector | RxD | LED | | High | 2.4 to 5.5 V | X=don't
care state | X=don't
care state | | Off | | Low | 2.4 to 5.5 V | High | 1 | | On | | | 2.4 to 5.5 V | Low | <0.4 μW/cm ²
(115 Kb/s) | High | Off | | | 2.4 to 5.5 V | | <1.0 µW/cm ² (1 & 4 Mb/s) | | | | | 2.4 to 5.5 V | Low | <4.0 μW/cm ²
(115 Kb/s) | Low | Off | | | 2.4 to 5.5 V | | <10.0 μW/cm ²
(1 & 4 Mb/s) | | | Document Number: 82579 Revision 05-July-02 **Table 11. Ordering Information** | S . | | | |--|---|---| | Part
Number | Description | PCB Mounting
Orientation | | IRMS6452 | Integrated
Transceiver
—Side View | Packaged in
Component Carrier Reel
(1000/reel) for Side View
Mounting on PCB | | IRMT6452 | Integrated
Transceiver
—Top View | Packaged in
Component Carrier Reel
(1000/reel) for Top View
Mounting on PCB | | Tape Leader and Trailer is 400 mm minimum. | | | Figure 9. Reel Dimensions in Inches (mm) Document Number: 82579 www.vishay.com Revision 05-July-02 6 Figure 11. IRMS6452/IRMT6452 detail drawings with optional side view or top view mounting Vishay reserves the right to make changes to the product described without notice. No liability is assumed as a result of its use nor for any infringement of the rights of others. This document may contain preliminary information and is subject to change by Vishay without notice. Some of the parametric data expressed in this preliminary data sheet is considered to be functional by design. Vishay assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Vishay or third parties. The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OF FIT-NESS FOR A PARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT. © Vishay Infrared Components, Inc. Printed in the United States of America. All rights reserved. Vishay The information provided is believed to be accurate and reliable. Vishay ## **Disclaimer** All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Revision: 18-Jul-08 Document Number: 91000 www.vishay.com