

R5541K Series

Low ON Resistance Nch Load Switch IC

NO.EA-319-241224

OUTLINE

The R5541K is a CMOS-based dual supply voltage load switch IC. The R5541K is an ideal switch for supplying the power from the secondary power source such as the output of a step-down DC/DC converter to the load circuit. A built-in Nch. transistor with typically $18~\text{m}\Omega$ ON resistance allows the R5541K to provide a low dropout voltage. Reverse current blocking function prevents the reverse current during shutdown mode. Internally, a single IC consists of an internal voltage step-up circuit, a soft-start circuit, a thermal shutdown circuit, a chip enable circuit and a UVLO circuit.

The gate voltage of Nch. driver transistor is supplied by a soft-start circuit. The soft-start circuit is supplied by the external power source (V_{BIAS}). Soft-start time is adjustable by connecting an external capacitor.

The R5541K is offered in an ultra-small 6-pin DFN(PL)1216-6G package which achieve the smallest possible footprint solution on boards where area is limited.

FEATURES

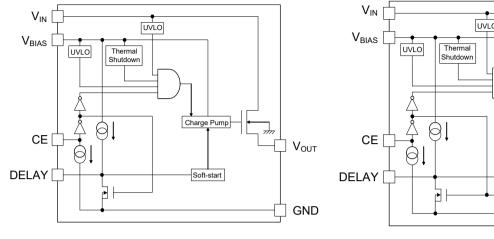
• Supply Current ······Typ. 25 μA (I _{OUT} = 0 mA)

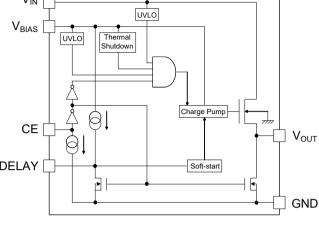
• Standby Current·····Typ. 0.01 μA

• V_{IN} Input Voltage Range··················0.6 V to 4.8 V

V_{BIAS} Input Voltage Range ························2.5 V to 5.5 V

• Switch ON Resistance·····Typ. 18 mΩ (V_{IN} = 1.0 V, V_{BIAS} = 5.0 V)


Output Current ······Max. 3 A


- A single Nch MOSFET Circuit
- Soft-start Function
- Thermal Shutdown Circuit
- Auto-discharge Function (R5541K001D)
- Package ······DFN(PL)1216-6G

APPLICATIONS

Secondary Power Source for hand-held communication equipments and laptop PCs

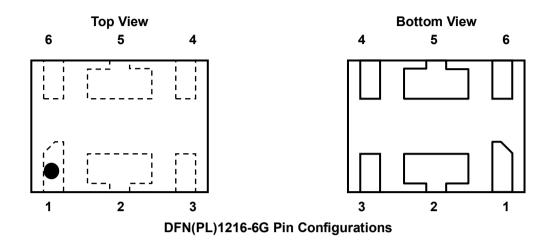
BLOCK DIAGRAMS

R5541K001B Block Diagram

R5541K001D Block Diagram

SELECTION GUIDE

The auto-discharge function*1 is a user-selectable option.


Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R5541K001*-E2	DFN(PL)1216-6G	5,000 pcs	Yes	Yes

- *: Specify the CE Pin Polarity and auto-discharge option.
 - B: Active-High, no auto-discharge function
 - D: Active-High, auto-discharge function

^{*1} Auto-discharge function quickly lowers the output voltage to 0 V, when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.

PIN DESCRIPTION

DFN(PL)1216-6G Pin Description

Pin No.	Symbol	Description
1	CE	Chip Enable Pin (Active-High)
2	V _{IN}	Input Pin 2*1
3	V _{BIAS}	Input Pin 1*1
4	GND	Ground Pin
5	V _{OUT}	Output Pin
6	DELAY	DELAY Pin for Soft-start Setting

^{*1} V_{IN} should be used as V_{IN} ≤ V_{BIAS}.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

Symbol	Item	Rating	Unit
V _{BIAS}	V _{BIAS} Pin Input Voltage	-0.3 to 6.0	V
V _{IN}	V _{IN} Pin Input Voltage	-0.3 to 5.5	V
V _{CE}	CE Pin Input Voltage	-0.3 to 6.0	V
V _{OUT}	V _{OUT} Pin Voltage	-0.3 to V _{IN}	V
I _{OUT}	Output Current	3.0	Α
P _D	Power Dissipation (JEDEC STD.51-7 Test Land Pattern)*1	714	mW
Tj	Junction Temperature	-40 to 125	°C
Tstg	Storage Temperature Range	-55 to 125	°C

^{*1} Refer to *PACKAGE INFORMATION* for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

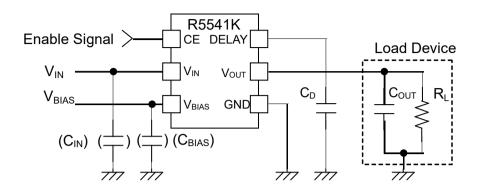
ELECTRICAL CHARACTERISTICS

 V_{BIAS} = 5.0 V, V_{IN} = 1.0 V, C_{BIAS} = 1 μF, C_{IN} = none, C_{OUT} = 0.1 μF, unless otherwise noted. The specifications surrounded by are guaranteed by Design Engineering at -40°C ≤ Ta ≤ 85°C.

R5541K Electrical Characteristics

 $(Ta = 25^{\circ}C)$

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
V_{BIAS}	V _{BIAS} Pin Input Voltage			2.5		5.5	V
V _{IN}	V _{IN} Pin Input Voltage			0.6		4.8	V
Ron	Switch ON Resistance	I _{OUT} = 500 mA			18	28	mΩ
I _{SS}	Supply Current	I _{OUT} = 0 mA, V _{BIAS} Pin			25	47	μΑ
Istandby	Standby Current	V _{CE} = 0 V,	V _{BIAS} Pin		0.01	0.15	μΑ
istanuby	Standby Current	$V_{IN} = 4.8 \text{ V}, V_{BIAS} = 5.5 \text{ V}$	V _{IN} Pin		0.01	1	μΑ
UVLO	Undervoltage Lockout V _{BIAS} Pin*1		2.0		2.49	V	
UVLO	Voltage V _{IN} Pin ^{*2}			0.3		0.59	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature			145		°C
T_{TSR}	Thermal Shutdown Release Temperature	Junction Temperature			125		°C
I _{CEPD}	CE Pull-down Current				0.4	8.0	μA
V _{CEH}	CE Input Voltage "H"			1.0			V
V _{CEL}	CE Input Voltage "L"	out Voltage "L"				0.4	V
I _{DELAY}	DELAY Pin Current	*3		1.25	1.5	1.8	μΑ
R _{LOW}	Low Output Nch Tr. ON Resistance (R5541K001D)	V _{CE} = 0 V			80		Ω


All test items listed under *ELECTRICAL CHARACTERISTICS* are done under the pulse load condition (Tj ≈ Ta = 25°C).

^{*1} The UVLO detector threshold and the UVLO release voltage are between the min and the max of UVLO with Typ. 90 mV hysteresis.

^{*2} The UVLO detector threshold and the UVLO release voltage are between the min and the max of UVLO with Typ. 70 mV hysteresis.

^{*3} Soft-start time can be adjusted by using I_{DELAY} and a capacitor (C_D). Refer to Soft-start Function in TECHNICAL NOTES for detailed Information.

TYPICAL APPLICATION

R5541K Typical Application

TECHNICAL NOTES

The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A peripheral component or the device mounted on PCB should not exceed a rated voltage, a rated current or a rated power. When designing a peripheral circuit, please be fully aware of the following points.

- An input capacitor (C_{IN}) and a bypass capacitor (C_{BIAS}) are NOT necessarily required between the V_{IN} pin and GND. If there is a possibility that the parasitic element (inductance) of V_{IN} may generate spike noise, connect an appropriate capacitor (about 0.1 μF) between the V_{IN} pin and GND.
- V_{IN} and V_{BIAS} should always be used as $V_{IN} \le V_{BIAS}$.
- Connect the DELAY pin to a capacitor (CD) or leave the DELAY pin floating.
- This device does not have reverse current blocking function during active mode. If the V_{OUT} voltage is higher
 than the V_{IN} voltage, reverse current flow through the parasitic elements inside this device, which may
 destroy the device.

SOFT-START FUNCTION

Soft-start function maintains the smooth control of the output voltage to prevent an inrush current during startup by adjusting the soft-start time (tstart) (V_{OUT} = 10% to 90%). tstart can be adjusted by connecting a capacitor (C_D) between the DELAY pin and GND. The calculation of C_D is as follows.

$$C_D$$
 [nF] = 7.5 x tstart [ms] x I_{DELAY} [μ A] / V_{IN} [V]

If C_D is not connected to the DELAY pin, leave the DELAY pin floating. If the DELAY pin is left floating, the calculation of the start-up time (tr) ($V_{OUT} = 10\%$ to 90%) is as follows.

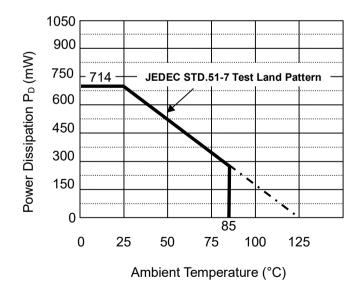
$$tr [ms] = 0.04 \times V_{IN} [V] (Typ.)$$

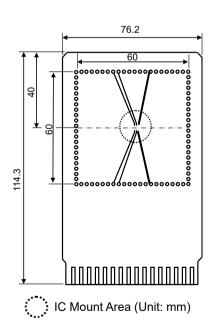
 V_{BIAS} , V_{IN} and CE can be sequenced in any order; the device can start up with soft-start function.

PACKAGE INFORMATION

POWER DISSIPATION (DFN(PL)1216-6G)

Power Dissipation (P_D) of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

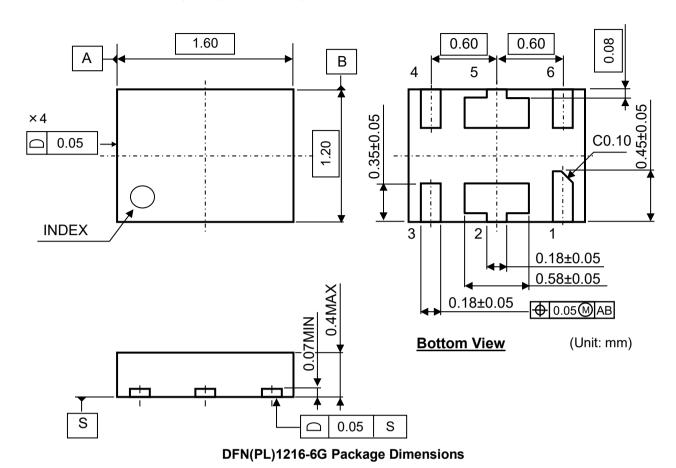

Measurement Conditions


	JEDEC STD.51-7 Test Land Pattern
Environment	Mounting on Board (Wind Velocity = 0m/s)
Board Material	Glass Cloth Epoxy Plastic (4 Layer)
Board Dimensions	76.2 mm × 114.3 mm × 1.6 mm
Copper Ratio	Top side, Back side: 60 mm x 60mm, Approx.10% 2nd, 3rd layers: 74.2 mm x 74.2 mm, Approx. 100%
Through-holes	φ 0.85 mm x 44 pcs

Measurement Result

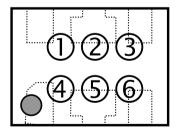
(Ta = 25°C, Tjmax = 125°C)

	JEDEC STD.51-7 Test Land Pattern
Power Dissipation	714 mW
Thermal Resistance	θja = (125 - 25°C) / 0.714 W = 140°C/W
	θjc = 21°C/W



Ambient Temperature vs. Power Dissipation

Measurement Board Pattern


PACKAGE DIMENSIONS (DFN(PL)1216-6G)

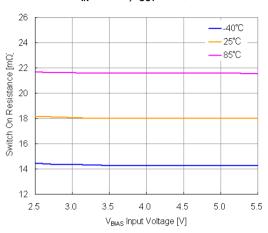
MARK SPECIFICATION (DFN(PL)1216-6G)

①②③④: Product Code ...Refer to MARK SPECIFICATION TABLE DFN(PL)1216-6G.

⑤⑥: Lot Number ...Alphanumeric Serial Number

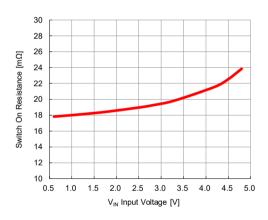
DFN(PL)1216-6G Mark Specification

MARK SPECIFICATION TABLE (DFN(PL)1216-6G)

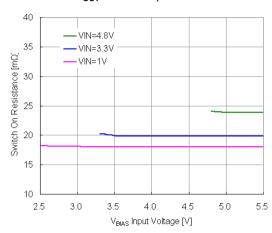

Mark Specification Table

Product Name	0230
R5541K001B	D Z 0 1
R5541K001D	D Z 0 3

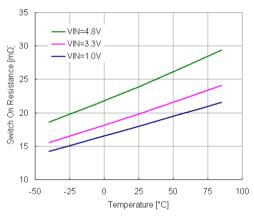
TYPICAL CHARACTERISTICS


Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

R5541K001x V_{IN} = 1.0 V, I_{OUT} = 500 mA

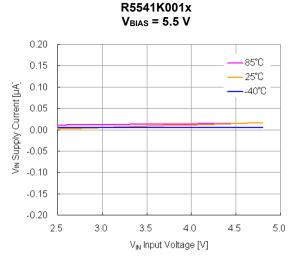

Switch On Resistance vs. V_{BIAS} Input Voltage

R5541K001x V_{BIAS} = 5.0 V, I_{OUT} = 500 mA, Ta = 25°C


Switch On Resistance vs. V_{IN} Input Voltage

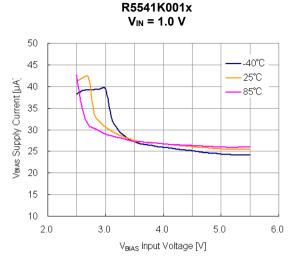
R5541K001x I_{OUT} = 500 mA, Ta = 25°C

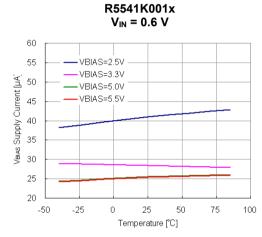
Switch On Resistance vs. V_{BIAS} Input Voltage


 $R5541K001x \\ V_{\text{IN}} = 1.0 \text{ V, } V_{\text{BIAS}} = 5.0 \text{ V, } I_{\text{OUT}} = 500 \text{ mA}$

Switch On Resistance vs. Temperature

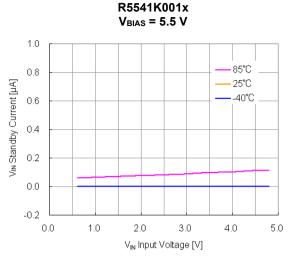
R5541K


NO.EA-319-241224

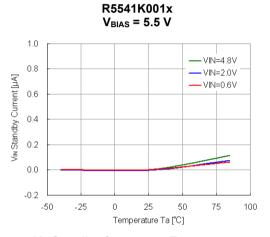

V_{IN} Supply Current vs. V_{IN} Input Voltage

R5541K001x **V**_{BIAS} = 5.5 **V** 0.20 0.15 VIN=0.6V - VIN=2.0V 0.10 Vin Supply Current [µA] - VIN=4.8V 0.05 0.00 -0.05 -0.10 -0.15 -0.20 -50 75 100 -25 50 Temperature [°C]

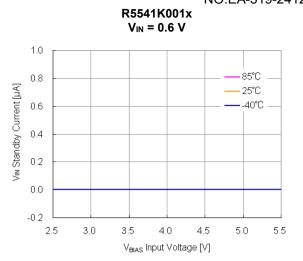
V_{IN} Supply Current vs. Temperature

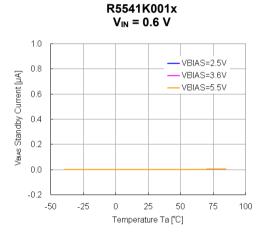


V_{BIAS} Supply Current vs. V_{BIAS} Input Voltage



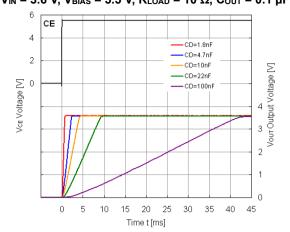
V_{BIAS} Supply Current vs. Temperature


NO.EA-319-241224


VIN Standby Current vs. VIN Input Voltage

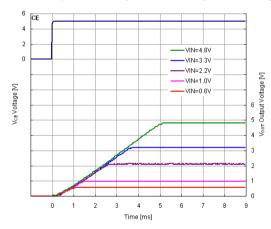
 V_{IN} Standby Current vs. Temperature

VIN Standby Current vs. VBIAS Input Voltage

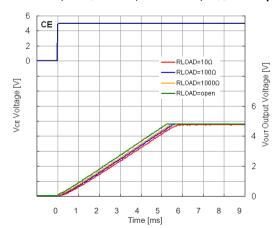


V_{BIAS} Standby Current vs. Temperature

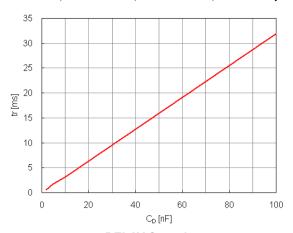
R5541K


NO.EA-319-241224

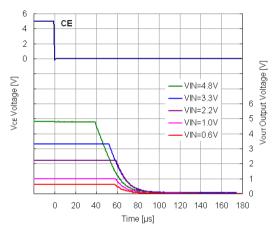
R5541K001x V_{IN} = 3.6 V, V_{BIAS} = 5.5 V, R_{LOAD} = 10 Ω, C_{OUT} = 0.1 μF


Vout Output Voltage On Time vs. DELAY Capacitance

R5541K001x $V_{\text{BIAS}} = 5.0 \text{ V, } C_{\text{D}} = 10 \text{ nF, } R_{\text{LOAD}} = 10 \text{ } \Omega, \text{ } C_{\text{OUT}} = 0.1 \text{ } \mu\text{F}$


VOUT Output Voltage On Time vs. VIN Input Voltage

 $\label{eq:vin} R5541K001x$ V_{IN} = 4.8 V, V_{BIAS} = 5.0 V, C_{D} = 10 nF, C_{OUT} = 0.1 μF


 V_{OUT} Output Voltage On Time vs. Load Resistance

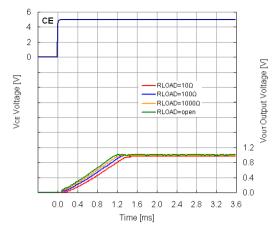
R5541K001x $V_{\text{IN}} = 3.6 \text{ V, } V_{\text{BIAS}} = 5.5 \text{ V, } R_{\text{LOAD}} = 10 \text{ } \Omega, C_{\text{OUT}} = 0.1 \mu\text{F}$

tr vs. DELAY Capacitance

 $\label{eq:vbias} R5541K001D$ $\mbox{V}_{\mbox{\scriptsize BIAS}}$ = 5.0 V, $\mbox{C}_{\mbox{\scriptsize D}}$ = 10 nF, $\mbox{C}_{\mbox{\scriptsize OUT}}$ = 0.1 $\mbox{$\mu$F}$

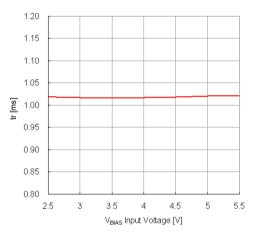
 V_{OUT} Output Voltage Off Time vs. V_{IN} Input Voltage

\$R5541K001D\$ V_{IN} = 4.8 V, V_{BIAS} = 5.0 V, C_{D} = 10 nF, C_{OUT} = 0.1 μF

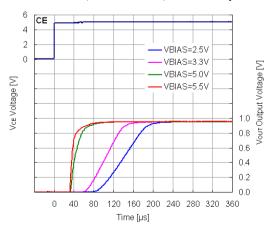


V_{OUT} Output Voltage Off Time vs. Load Resistance

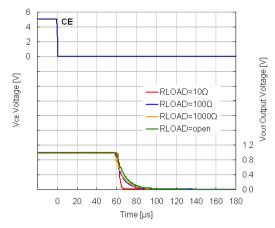
R5541K


NO.EA-319-241224

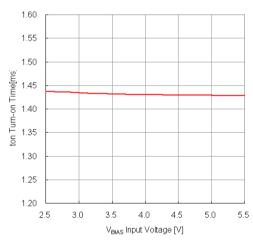
 $\label{eq:vin} R5541K001x$ V_{IN} = 1.0 V, V_{BIAS} = 5.5 V, C_{D} = 10 nF, C_{OUT} = 0.1 μF


 $\ensuremath{V_{\text{OUT}}}$ Output Voltage On Time vs. Load Resistance

R5541K001x V_{IN} = 1.0 V, C_{D} = 10 nF, R_{LOAD} = 10 $\Omega,\,C_{\text{OUT}}$ = 0.1 μF


tr vs. V_{BIAS} Input Voltage

 $\label{eq:vin} R5541K001x$ V_{IN} = 1.0 V, R_{LOAD} = 10 $\Omega,$ C_{OUT} = 0.1 μF


Vout Output Voltage On Time vs. VBIAS Input Voltage

 $\label{eq:vin} R5541K001D$ V_{IN} = 1.0 V, V_{BIAS} = 5.5 V, C_{D} = 10 nF, C_{OUT} = 0.1 μF

V_{OUT} Output Voltage Off Time vs. Load Resistance

R5541K001x V_{IN} = 1.0 V, C_D = 10 nF, R_{LOAD} = 10 $\Omega,~C_{OUT}$ = 0.1 μF

ton Turn-on Time vs. V_{BIAS} Input Voltage

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period
 - In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
 - 8-2. Quality Warranty Remedies
 - When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
 - Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
 - 8-3. Remedies after Quality Warranty Period
 - With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/

Downloaded from Arrow.com.