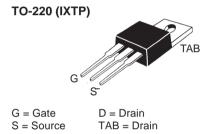


TrenchMV[™] Power MOSFET

IXTA98N075T IXTP98N075T

 $V_{DSS} = 75 \quad V$ $I_{D25} = 98 \quad A$ $R_{DS(op)} \leq 10 \quad m\Omega$

N-Channel Enhancement Mode



Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 175°C	75	V	
V _{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C} \text{ to } 175^{\circ}\text{C}; R_{_{\rm GS}} = 1 \text{ M}\Omega$	75	V	
V _{GSM}	Transient	± 20	V	
I _{D25}	T _c = 25°C	98	А	
ILRMS	Package Current Limit (RMS):	75	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	280	Α	
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, \mathrm{di/dt} \leq 100 \mathrm{A/\mu s}, \mathrm{V_{_{DD}}} \leq \mathrm{V_{_{DSS}}}$ $T_{_{\mathrm{J}}} \leq 175^{\circ}\mathrm{C}, \mathrm{R_{_{\mathrm{G}}}} = 5 \Omega$	5	V/ns	
I _{AR}	T _c = 25°C	25	А	
E _{AS}	$T_c = 25^{\circ}C$	600	mJ	
P _d	T _C = 25°C	230	W	
T		-55 +175	°C	
T_{JM}		175	°C	
T _{stg}		-40 +175	°C	
T _L	1.6 mm (0.062 in.) from case for 10 s	300	°C	
T _{SOLD}	Plastic body for 10 seconds	260	°C	
M _d	Mounting torque (TO-220)	1.13 / 10	Nm/lb.in.	
Weight	TO-220 TO-263	3.0 2.5	g g	

Symbol Test Conditions $(T_J = 25^{\circ}C \text{ unless otherwise specified})$				aracteri Typ.	istic Val	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		75			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$		2.0		4.0	V
l _{gss}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$				± 200	nA
DSS	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 150°C			2 150	μA μA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 25 \text{ A}, \text{ Note}$	s 1, 2			10	mΩ

TO-263 (IXTA)

Features

- Ultra-low On Resistance
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- easy to drive and to protect
- 175 °C Operating Temperature

Advantages

- Easy to mount
- Space savings
- High power density

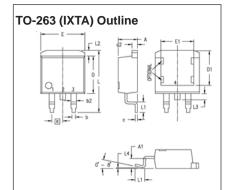
Applications

- Automotive
 - Motor Drives
 - 42V Power Bus
 - ABS Systems
- DC/DC Converters and Off-line UPS
- Primary Switch for 24V and 48V Systems
- High Current Switching Applications

DS99541(04/07)

Symbol (T _J = 25°C t	Test Conditions unless otherwise specified)	Cha Min.	racteris Typ.	tic Values Max.
g _{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 0.5 I_{D25}, \text{ Note 1}$	38	64	S
C _{iss}			3100	pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		520	pF
\mathbf{C}_{rss}			125	pF
t _{d(on)}	Resistive Switching Times		20	ns
t,	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 25 \text{ A}$		42	ns
$\mathbf{t}_{d(off)}$	$R_{g} = 5 \Omega $ (External)		42	ns
t _f			27	ns
Q _{g(on)}			68	nC
\mathbf{Q}_{gs}	V_{GS} = 10 V, V_{DS} = 0.5 V_{DSS} , I_{D} = 25 A		18	nC
\mathbf{Q}_{gd}			15	nC
R _{thJC}				0.65°C/W
R _{thCS}			0.50	°C/W

Source-Drain Diode


Symbol	lest ConditionsCharacteristic Values
$(T_J = 25^{\circ}C$	unless otherwise specified)
	V 0 V

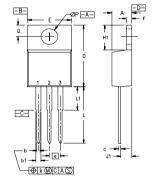
Is	$V_{GS} = 0 V$		98	Α
I _{SM}	Repetitive		280	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0$ V, Note 1		1.5	V
t _{rr}	$I_F = 49 \text{ A}, -di/dt = 100 \text{ A}/\mu\text{s}$	50		ns
	$V_R = 40 \text{ V}, V_{GS} = 0 \text{ V}$			

- Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2 \%$;
 - 2. On through-hole packages, $R_{\rm DS(on)}$ Kelvin test contact location is 5 mm or less from the package body.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Pins: 1 - Gate 2 - Drain 3 - Source 4, TAB - Drain


Min.		Inches	
iviill.	Max.	Min.	Max.
4.06	4.83	.160	.190
2.03	2.79	.080	.110
0.51	0.99	.020	.039
1.14	1.40	.045	.055
0.46	0.74	.018	.029
1.14	1.40	.045	.055
8.64	9.65	.340	.380
7.11	8.13	.280	.320
9.65	10.29	.380	.405
6.86	8.13	.270	.320
2.54	BSC	.100	BSC
14.61	15.88	.575	.625
2.29	2.79	.090	.110
1.02	1.40	.040	.055
1.27	1.78	.050	.070
0	0.38	0	.015
0.46	0.74	.018	.029
	2.03 0.51 1.14 0.46 1.14 8.64 7.11 9.65 6.86 2.54 14.61 2.29 1.02 1.27 0	2.03 2.79 0.51 0.99 1.14 1.40 0.46 0.74 1.14 1.40 8.64 9.65 7.11 8.13 9.65 10.29 6.86 8.13 2.54 BSC 14.61 15.88 2.29 2.79 1.02 1.40 1.27 1.78 0 0.38	2.03 2.79 .080 0.51 0.99 .020 1.14 1.40 .045 0.46 0.74 .018 1.14 1.40 .045 8.64 9.65 .340 7.11 8.13 .280 9.65 10.29 .380 6.86 8.13 .270 2.54 BSC .100 14.61 15.88 .575 2.29 2.79 .090 1.02 1.40 .040 1.27 1.78 .050 0 0.38 0

TO-220 (IXTP) Outline

Max.

Min.

Typ.

Pins: 1 - Gate 2 - Drain 3 - Source 4, TAB - Drain

MYZ	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	.170	.190	4.32	4.83	
b	.025	.040	0.64	1.02	
b1	.045	.065	1.15	1.65	
С	.014	.022	0.35	0.56	
D	.580	.630	14.73	16.00	
Е	.390	.420	9.91	10.66	
е	.100 BSC		2.54 BSC		
F	.045	.055	1.14	1.40	
H1	.230	.270	5.85	6.85	
J1	.090	.110	2.29	2.79	
k	0	.015	0	0.38	
L	.500	.550	12.70	13.97	
L1	.110	.230	2.79	5.84	
ØΡ	.139	.161	3.53	4.08	
Q	.100	.125	2.54	3.18	

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,404,065 B1 7,005,734 B2 7,157,338B2 by one or moreof the following U.S. patents: 4,850,072 5,017,508 4,881,106 5,034,796 6,259,123 B1 6,306,728 B1 6,534,343 6,583,505 6,710,405 B2 6,710,463 6,759,692 7,063,975 B2 6,771,478 B2 7,071,537 5,063,307 5,381,025 5,187,117 5,486,715

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.