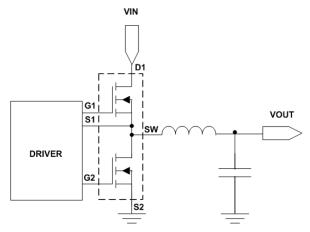
ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

PowerPhase, Dual N-Channel SO8FL


30 V, High Side 20 A / Low Side 24 A

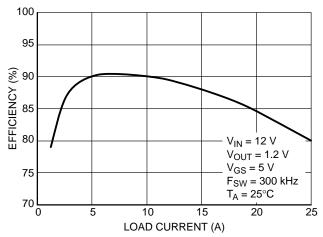
Features

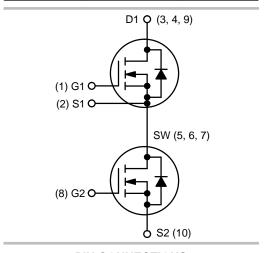
- Co-Packaged Power Stage Solution to Minimize Board Space
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

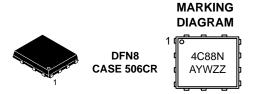
Applications

- DC-DC Converters
- System Voltage Rails
- Point of Load

Figure 1. Typical Application Circuit




Figure 2. Typical Efficiency Performance POWERPHASEGEVB Evaluation Board


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1 Top FET	5.4 mΩ @ 10 V	20 A
30 V	8.1 mΩ @ 4.5 V	20 A
Q2 Bottom	4.4 mΩ @ 10 V	24 A
FET 30 V	6.0 mΩ @ 4.5 V	24 A

PIN CONNECTIONS D1 4 5 5 SW D1 3 9 10 6 SW S1 2 7 SW G1 1 (Bottom View)

4C88N = Specific Device Code
A = Assembly Location
Y = Year
W = Work Week

W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Unit			
Drain-to-Source Voltage	Q1	V_{DSS}	30	V			
Drain-to-Source Voltage	Q2						
Gate-to-Source Voltage	Q1	V_{GS}	±20	V			
Gate-to-Source Voltage			Q2				
Continuous Drain Current R _{θJA} (Note 1)	Continuous Drain Current $R_{\theta JA}$ (Note 1) $T_A = 25^{\circ}C$						
		T _A = 85°C			11.1] ,	
		T _A = 25°C	Q2		18.7	A	
		T _A = 85°C			13.5		
Power Dissipation		T _A = 25°C	Q1	P _D	1.89	W	
RθJA (Note 1)			Q2				
Continuous Drain Current $R_{\theta JA} \le 10 \text{ s (Note 1)}$	1	T _A = 25°C	Q1	I _D	21.0		
		T _A = 85°C			15.1	А	
	Steady	T _A = 25°C	Q2		25.4		
	State	T _A = 85°C			18.3		
Power Dissipation		T _A = 25°C	Q1	P _D	3.51	W	
$R_{\theta JA} \le 10 \text{ s (Note 1)}$			Q2				
Continuous Drain Current		T _A = 25°C	Q1	I _D	11.7		
R _{θJA} (Note 2)		T _A = 85°C			8.5] ,	
		T _A = 25°C	Q2		14.2	A	
		T _A = 85°C			10.3		
Power Dissipation		T _A = 25 °C	Q1	P_{D}	1.10	W	
R _{θJA} (Note 2)			Q2				
Pulsed Drain Current		T _A = 25°C	Q1	I _{DM}	160	Α	
		t _p = 10 μs	Q2		240		
Operating Junction and Storage Temperature		Q1	T _J , T _{STG}	-55 to +150	°C		
	Q2						
Source Current (Body Diode)	Q1	IS	10	Α			
	Q2		10				
Drain to Source DV/DT	-	dV/dt	6	V/ns			
$ \begin{array}{ll} \text{Single Pulse Drain-to-Source Avalanche Energy (T}_{J} = 25C, \\ V_{DD} = 50 \text{ V}, V_{GS} = 10 \text{ V}, L = 0.1 \text{ mH}, R_{G} = 25 \Omega) \end{array} $ $ \begin{array}{ll} I_{L} = 20 \text{ A}_{pk} \\ \hline I_{L} = 24 \text{ A}_{pk} \\ \hline \end{array} $				EAS	20	mJ	
				EAS	29		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface—mounted on FR4 board using 1 sq—in pad, 2 oz Cu.

2. Surface—mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	66.0	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	113.7	°C/W
Junction–to–Ambient – (t \leq 10 s) (Note 3)	$R_{\theta JA}$	35.6	

- 3. Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
- 4. Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•	•	•	•
Drain-to-Source Break-	Q1		V _{GS} = 0 V, I _D = 250 μA		30			V
down Voltage	Q2	V _{(BR)DSS}	$v_{GS} = 0 v$,	I _D = 250 μA	30			
Drain-to-Source Break- down Voltage Temperature	Q1	V _(BR) DSS				18		mV / °C
Coefficient	Q2	(7,4 _J				17		
	Q1		$V_{GS} = 0 V$	T _J = 25°C			1	
Zero Gate Voltage Drain		I _{DSS}	$V_{DS} = 24 \text{ V}$	T _J = 125°C			10	μΑ
Current	Q2	.033	V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			1	, pu
Gate-to-Source Leakage	Q1		V _{GS}	= 0 V,			100	
Current Q2		I _{GSS}	$V_{DS} = \pm 20 \text{ V}$				100	nA
ON CHARACTERISTICS (Not	e 5)							
Q1		\/	V _{GS} = VDS,		1.3		2.2	V
Gate Threshold Voltage Q:	Q2	V _{GS(TH)}	I _D = 250 μA		1.3		2.2	
Negative Threshold Temper-	Q1	V _{GS(TH)} / T _J				4.5		mV /
ature Coefficient	Q2	ŤJ				4.6		°C
	Q1	R _{DS(on)}	$V_{GS} = 10 \text{ V}$	I _D = 10 A		4.3	5.4	
Drain-to-Source On Resist-			$V_{GS} = 4.5 \text{ V}$	I _D = 10 A		6.5	8.1	mΩ
ance	Q2		$V_{GS} = 10 \text{ V}$	I _D = 20 A		2.8	4.4	11152
			$V_{GS} = 4.5 \text{ V}$ $I_D = 20 \text{ A}$			4.0	6.0	
CAPACITANCES								
Input Capacitance	Q1	C _{ISS}			1252			
при Оарасканос	Q2	0155				1546		
Output Capacitance	Q1	C _{OSS} V _{GS} = 0 V, f = 1 M		MHz Vpc = 15 V		610		pF
- a.p.a. oapaonanoo	Q2	9055	$V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}, V_{DS} = 15 \text{ V}$			841		
Reverse Capacitance	Q1	C _{RSS}				126		
	Q2	~K55				39	<u></u>	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

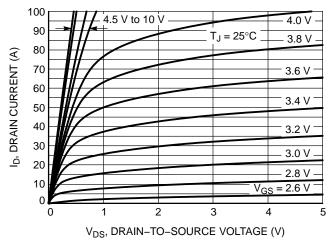
5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.

6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Co	ondition	Min	Тур	Max	Unit
CHARGES, CAPACITANCES	& GATE	RESISTANC	E		•	•		
Total Oata Ohanna	Q1	_				10.9		
Total Gate Charge	Q2	$Q_{G(TOT)}$				11		1
Threshold Cata Charge	Q1	0				1.2		nC
Threshold Gate Charge	Q2	Q _{G(TH)}	V - 45 V V	- 15 \/: L - 10 A		1.6		
Coto to Source Charge	Q1	0	$v_{GS} = 4.5 \text{ v}, v_{DS}$	_i = 15 V; I _D = 10 A		3.4		
Gate-to-Source Charge	Q2	Q_{GS}				4.4		
Gate to Drain Charge	Q1	0				5.4		
Gate-to-Drain Charge	Q2	Q_GD				2.9		
Total Cata Charge	Q1	0	V 10 V V	- 15 V: I 10 A		22.2		200
Total Gate Charge	Q2	Q _{G(TOT)}	v _{GS} = 10 v, v _{DS}	= 15 V; I _D = 10 A		24.2		nC
Cata Dagistanas	Q1	R_{G}	т.	25.00		1.0		0
Gate Resistance	Q2		1 _A =	25°C		1.0		Ω
SWITCHING CHARACTERIS	TICS (No	te 6)						
Turn On Dolov Time	Q1					9.4		
Turn-On Delay Time	Q2 t _{d(ON)}	^t d(ON)				10.7		
Dia a Tima	Q1					19		
Rise Time	Q2	t _r	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 15 \text{ A}, R_{G} = 3.0 \Omega$		4.8]	
Tura Off Dalay Tiras	Q1		$I_D = 15 A,$	$R_G = 3.0 \Omega$		16		ns
Turn-Off Delay Time	Q2	t _d (OFF)				19.3		1
Fall Time	Q1					4.6		1
Fall Time	Q2	t _f				4.7		
SWITCHING CHARACTERIS	TICS (No	te 6)						
Turn On Dolov Time	Q1					6.8		
Turn-On Delay Time	Q2	t _{d(ON)}				7.5		1
Diag Time	Q1	4			17		1	
Rise Time	Q2	t _r	V _{GS} = 10 V,	V _{DS} = 15 V,		2.7]
Tura Off Dalay Tiras	Q1		$V_{GS} = 10 \text{ V},$ $I_{D} = 15 \text{ A},$	$R_G = 3.0 \Omega$		20.6		ns
Turn-Off Delay Time	Q2	t _{d(OFF)}				24.8		1
	Q1					2.64		1
Fall Time	Q2	t _f				2.88		1
DRAIN-SOURCE DIODE CH	ARACTE	RISTICS						
			$V_{GS} = 0 \text{ V},$ $T_{J} = 25^{\circ}\text{C}$			0.82		
Famound V. II	Q1		$I_S = 10 \text{ A}$	T _J = 125°C		0.64		1
Forward Voltage	-	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.8		V
	Q2		I _S = 10 A	VGS = U V,		0.62		1

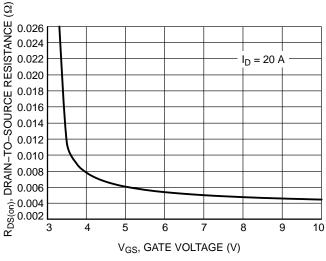
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	ol Test Condition		Тур	Max	Unit	
DRAIN-SOURCE DIODE CHA	RACTE	RISTICS						
Doverno Docovery Time	Q1	tpp tpp			29		ns	
Reverse Recovery Time	Q2		ta		16.7			
Chargo Timo	Q1	to			14.2			
Charge Time	Q2	tb			19.5			
Disabassa Tisa	Q1		$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 100 \text{ A/}\mu\text{s}, I_S = 10 \text{ A}$		15.0			
Discharge Time	Q2		LD			36.2		1
Dayaraa Dagayary Charga	Q1					18.1		
Reverse Recovery Charge	Q2	Q_{RR}			27.4		nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS - Q1


100

90 $V_{DS} = 5 V$ 80 ID, DRAIN CURRENT (A) 70 60 50 40 30 20 $T_J = 125^{\circ}C$ 10 $T_J = -55^{\circ}C$ $T_J = 25^{\circ}C$ 0.5 2.5 3.0 3.5 4.0 1.0 1.5 2.0 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 3. On-Region Characteristics

Figure 4. Transfer Characteristics

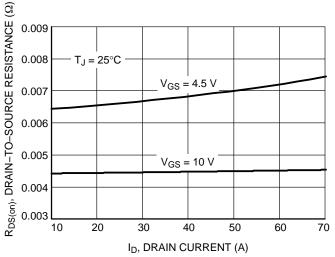
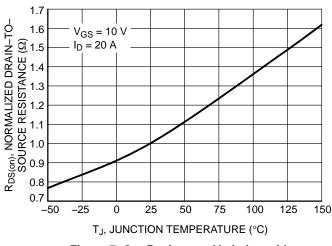



Figure 5. On-Resistance vs. Gate-to-Source Voltage

Figure 6. On-Resistance vs. Drain Current and Gate Voltage

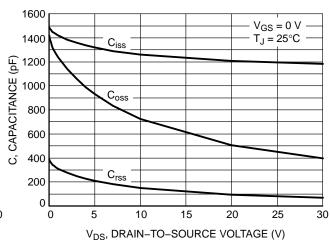


Figure 7. On–Resistance Variation with Temperature

Figure 8. Capacitance Variation

TYPICAL CHARACTERISTICS - Q1

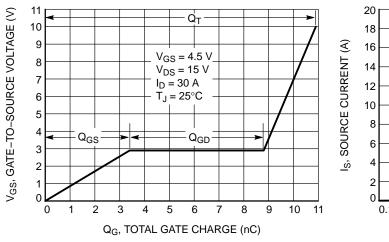


Figure 9. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

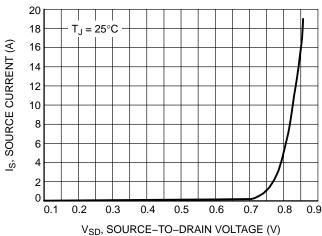


Figure 10. Diode Forward Voltage vs. Current

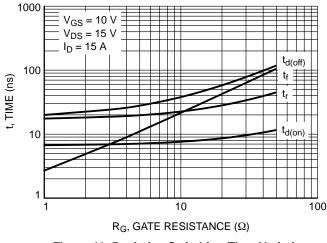


Figure 11. Resistive Switching Time Variation vs. Gate Resistance

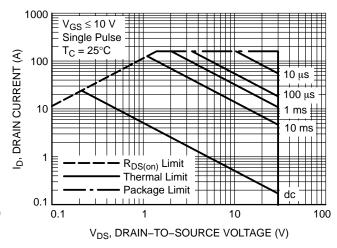


Figure 12. Maximum Rated Forward Biased Safe Operating Area

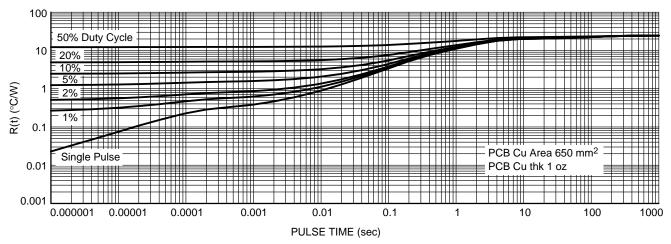


Figure 13. Thermal Characteristics

TYPICAL CHARACTERISTICS - Q2

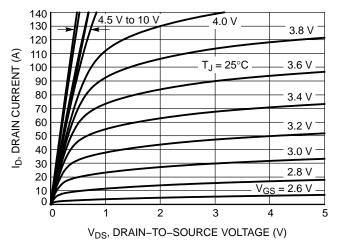


Figure 14. On-Region Characteristics

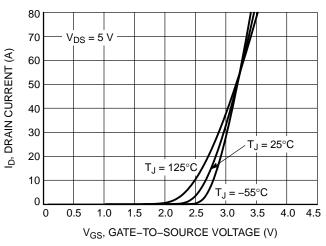


Figure 15. Transfer Characteristics

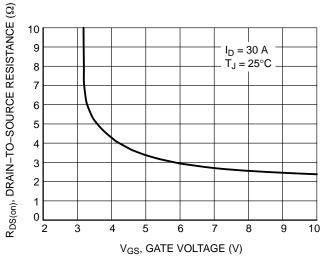


Figure 16. On-Resistance vs. Gate-to-Source Voltage

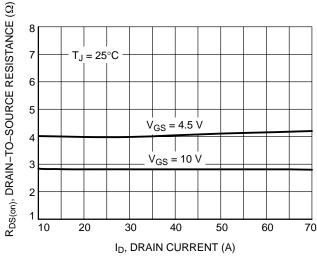


Figure 17. On-Resistance vs. Drain Current and Gate Voltage

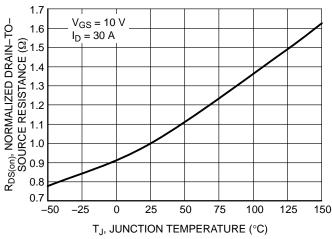


Figure 18. On–Resistance Variation with Temperature

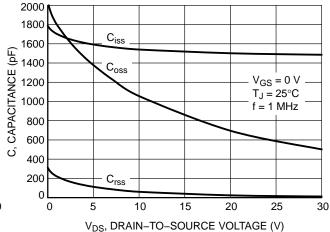


Figure 19. Capacitance Variation

TYPICAL CHARACTERISTICS - Q2

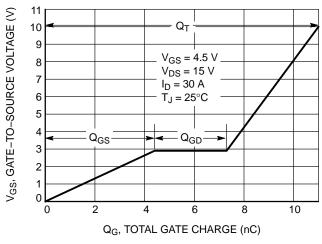


Figure 20. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

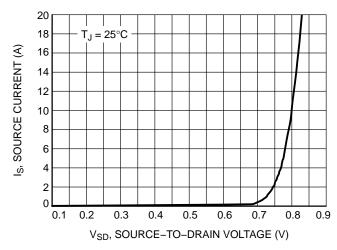


Figure 21. Diode Forward Voltage vs. Current

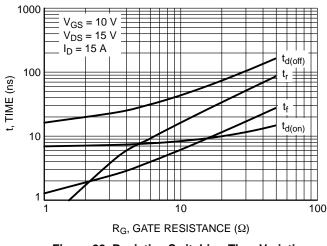


Figure 22. Resistive Switching Time Variation vs. Gate Resistance

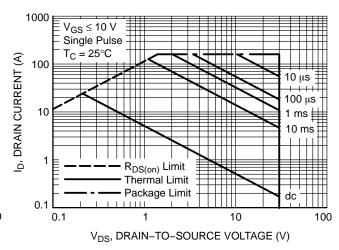


Figure 23. Maximum Rated Forward Biased Safe Operating Area

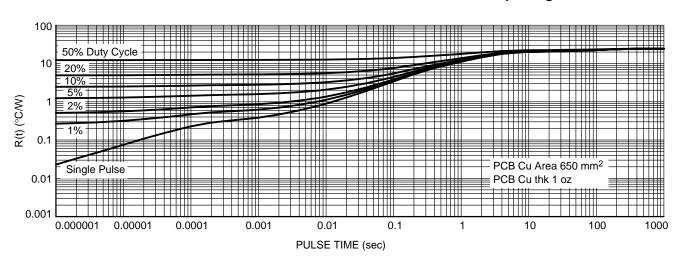
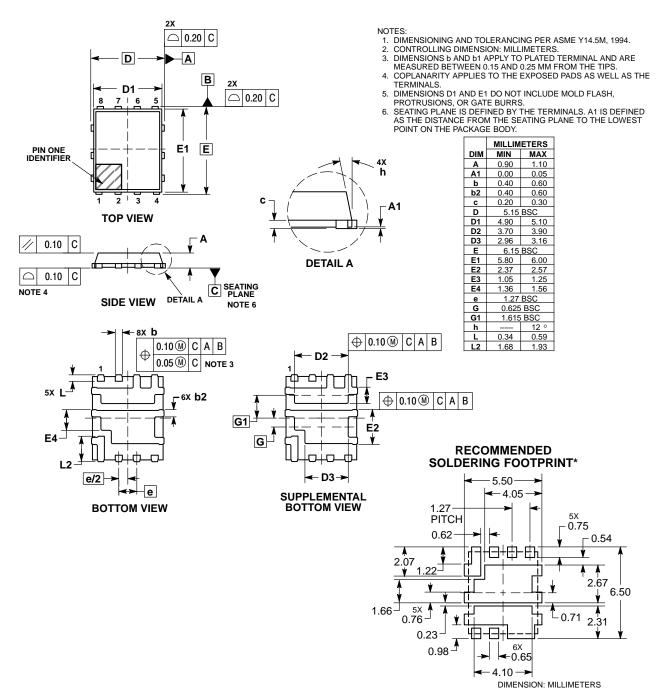


Figure 24. Thermal Characteristics

ORDERING INFORMATION


Device	Package	Shipping [†]
NTMFD4C88NT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NTMFD4C88NT3G	DFN8 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DFN8 5x6, 1.27P PowerPhase FET

CASE 506CR ISSUE C

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the interpretability are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negl

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NTMFD4C88N/D