

Automotive-grade N-channel 300 V, 53 A, 0.037 Ω typ., MDmeshTM V Power MOSFET in a D²PAK package

Datasheet - production data

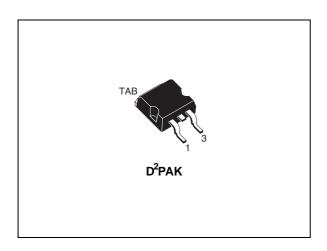
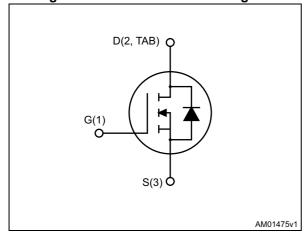



Figure 1. Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STB46N30M5	300 V	0.04 Ω	53 A

- Designed for automotive applications and AEC-Q101 qualified
- Amongst the best R_{DS(on)} * area
- High dv/dt capability
- Excellent switching performance
- Easy to drive
- 100% avalanche tested

Applications

· Switching applications

Description

This device is an N-channel MDmesh™ V Power MOSFET based on an innovative proprietary vertical process technology, which is combined with STMicroelectronics' well-known PowerMESH™ horizontal layout structure. The resulting product has extremely low onresistance, which is unmatched among siliconbased Power MOSFETs, making it especially suitable for applications which require superior power density and outstanding efficiency.

Table 1. Device summary

Order code	Marking	Packages	Packaging
STB46N30M5	46N30M5	D ² PAK	Tape and reel

Contents STB46N30M5

Contents

1	Electrical ratings 3	3
2	Electrical characteristics4	ļ
	2.1 Electrical characteristics (curves)	3
3	Test circuits9)
4	Package mechanical data10)
5	Packaging mechanical data14	ļ
6	Revision history	5

STB46N30M5 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	53	Α
I _D	Drain current (continuous) at T _C = 100 °C	34	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	212	Α
P _{TOT}	Total dissipation at T _C = 25 °C	250	W
dv/dt (2)	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Tj	Max. operating junction temperature	150	°C

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol Parameter		Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	30	°C/W

^{1.} When mounted on 1 inch² FR-4, 2 Oz copper board

Table 4. Thermal data

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T _j max)	16	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	550	mJ

^{2.} $I_{SD} \leq 53 \text{ A, di/dt} \leq 400 \text{ A/µs, } V_{DS(peak)} < V_{(BR)DSS,} V_{DD} = 240 \text{ V}$

Electrical characteristics STB46N30M5

2 Electrical characteristics

 $(T_C = 25 \, ^{\circ}C \text{ unless otherwise specified}).$

Table 5. On /off states

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage (V _{GS} = 0)	I _D = 1 mA	300			V
lana	Zero gate voltage	V _{DS} = 300 V			1	μΑ
IDSS	drain current (V _{GS} = 0)	V _{DS} = 300 V, T _C =125 °C			100	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 26.5 \text{ A}$		0.037	0.04	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	4240	-	pF
C _{oss}	Output capacitance	$V_{DS} = 100 \text{ V, f} = 1 \text{ MHz,}$	-	205	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	9.5	-	pF
C _{o(tr)} (1)	Equivalent capacitance time related	$V_{DS} = 0$ to 240 V, $V_{GS} = 0$	-	373	-	pF
C _{o(er)} (2)	Equivalent capacitance energy related	V _{DS} = 0 to 240 V, V _{GS} = 0	-	202	-	pF
R _g	Gate input resistance	f = 1 MHz, gate DC Bias = 0, test signal level = 20 mV, I _D = 0	-	1.4	1	Ω
Qg	Total gate charge	V _{DD} = 240 V, I _D = 24 A,	-	95	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	23	-	nC
Q _{gd}	Gate-drain charge	(see Figure 16)	-	37	-	nC

^{1.} $C_{o(tr)}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS} .

57

4/17 DocID026126 Rev 2

^{2.} $C_{o(er)}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS} .

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(v)}	Voltage delay time		-	66	-	ns
t _{r(v)}	Voltage rise time	$V_{DD} = 240 \text{ V}, I_D = 32 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	15	-	ns
t _{f(i)}	Current fall time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see <i>Figure 15</i>)	-	24	-	ns
t _{c(off)}	Crossing time	,	-	22.5	-	ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		53	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		212	Α
V _{SD} (2)	Forward on voltage	I _{SD} = 53 A, V _{GS} = 0	-		1.5	V
t _{rr}	Reverse recovery time	40.4.17/1/4.400.47/	-	223		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 48 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 20</i>)	-	2.5		μC
I _{RRM}	Reverse recovery current	Tobbo de i (edd rigerio 19)	-	23		Α
t _{rr}	Reverse recovery time	I _{SD} = 48 A, di/dt = 100 A/μs	-	280		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$	-	3.9		μC
I _{RRM}	Reverse recovery current	(see Figure 20)	-	28		Α

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STB46N30M5

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

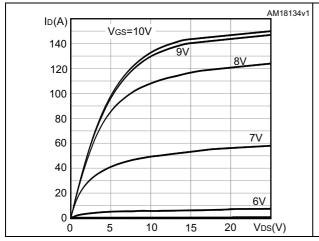


Figure 4. Output characteristics

100

VDS(V)

Figure 5. Transfer characteristics

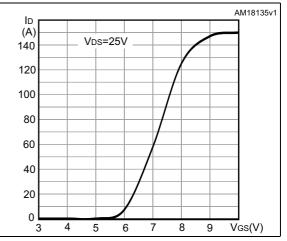
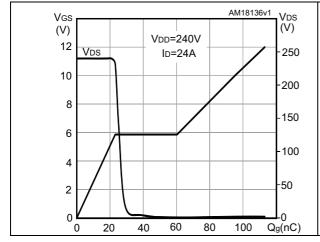
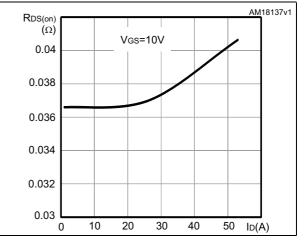
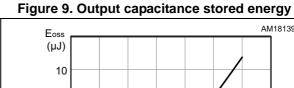
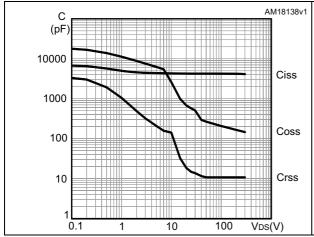




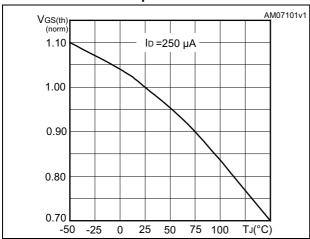
Figure 6. Gate charge vs gate-source voltage


Figure 7. Static drain-source on-resistance



6/17 DocID026126 Rev 2

Figure 8. Capacitance variations



AM18139v1 8 6 4 2 50 100 150 200 250 300 V_{DS}(V)

Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on-resistance vs temperature

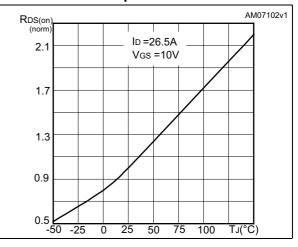
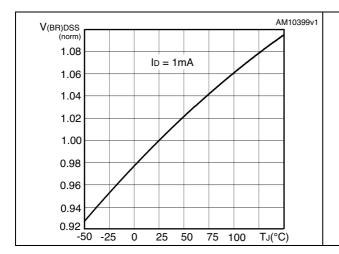
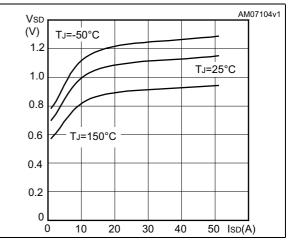
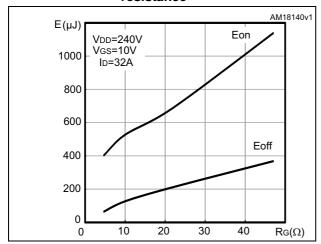




Figure 12. Normalized V_{(BR)DSS} vs temperature


Figure 13. Source-drain diode forward characteristics

Electrical characteristics STB46N30M5

Figure 14. Switching losses vs gate resistance ⁽¹⁾

1. Eon including reverse recovery of a SiC diode

57/

STB46N30M5 Test circuits

3 Test circuits

Figure 15. Switching times test circuit for resistive load

Figure 16. Gate charge test circuit

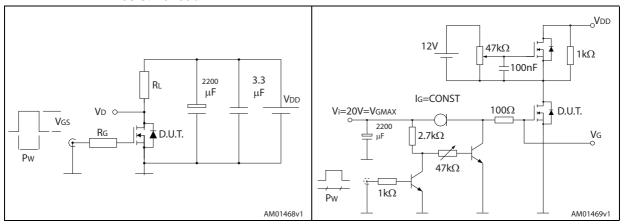


Figure 17. Test circuit for inductive load switching and diode recovery times

Figure 18. Unclamped inductive load test circuit

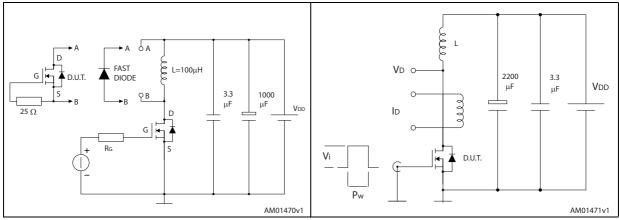
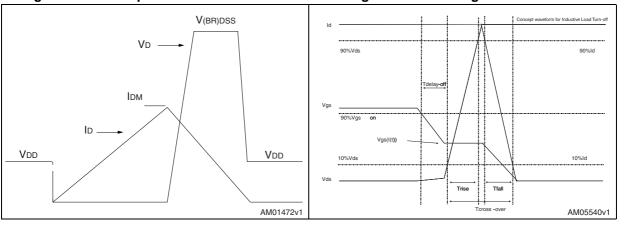



Figure 19. Unclamped inductive waveform

Figure 20. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

57/

10/17 DocID026126 Rev 2

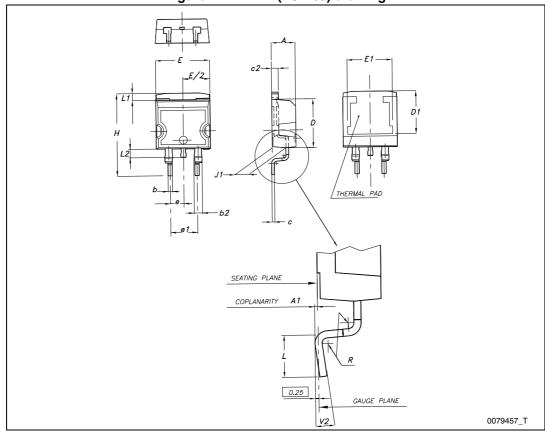


Figure 21. D²PAK (TO-263) drawing

Table 9. D²PAK (TO-263) mechanical data

Dim		mm	
Dim. —	Min.	Тур.	Max.
Α	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
Е	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

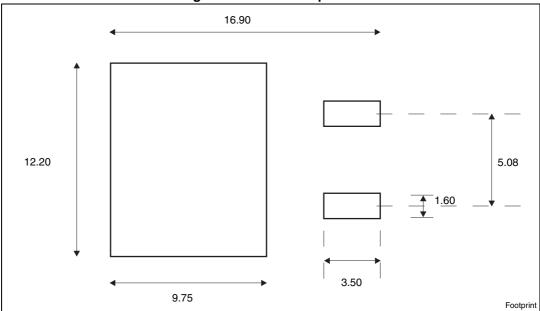


Figure 22. D²PAK footprint^(a)

a. All dimension are in millimeters

DocID026126 Rev 2

Packaging mechanical data 5

10 pitches cumulative tolerance on tape +/- 0.2 mm Top cover B1 D1 A0 including draft and radii concentric around B0 User direction of feed Bending radius User direction of feed

Figure 23. Tape

AM08852v1

REEL DIMENSIONS

40mm min.

Access hole

At slot location

Full radius

Tape slot in core for tape start 25 mm min. width

AM08851v2

Figure 24. Reel

Table 10. D2PAK (TO-263) tape and reel mechanical data

Таре				Reel	
Dim.	mm		Dim.	m	nm
Dilli.	Min.	Max.	Dilli.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
Е	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1		Base qty	1000
P2	1.9	2.1		Bulk qty	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Revision history STB46N30M5

6 Revision history

Table 11. Document revision history

Date	Revision	Changes
24-Mar-2014	1	Initial release.
11-Apr-2014	2	Document status promoted from preliminary data to production data Minor text changes

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID026126 Rev 2 17/17