ON Semiconductor®

Energy Efficient Innovations

Applications ▶ Tools
♠ About Products Search XREF

Home > Support > Design Support > Design Resources & Documents > Evaluation/Development Tools

NCP1615GEVB: High Voltage PFC Controller with Current Controlled Frequency Foldback **Evaluation Board**

The NCP1615C is a high voltage PFC controller designed to drive PFC boost stages based on an innovative Current Controlled Frequency Foldback (CCFF) method. In this mode, the circuit classically operates in critical conduction mode (CrM) when the inductor current exceeds a programmable value. When the current is below this preset level, the NCP1615C linearly decays the frequency down to a minimum of about 26 kHz when the input current is zero. CCFF maximizes the efficiency at both nominal and light load. In particular, the standby losses are reduced to a minimum. An innovative circuitry allows near—unity power factor even when the switching frequency is reduced.

The integrated high voltage startup circuit eliminates the need for external startup components and consumes negligible power during normal operation. Housed in a SOIC-16 package, the NCP1615C also incorporates the features necessary for robust and compact PFC stages, with few external components.

Evaluation/Development Tool Information							
Product	Status	Compliance	Short Description	Parts Used	Action		
NCP1615GEVB	Active	Pb-free	High Voltage PFC Controller with Current Controlled Frequency Foldback Evaluation Board	NCP1615CDR2G	>> Contact Local Sales Office >> Inventory		

Technical Documents							
Туре	Document Title	Document ID/Size	Rev				
Eval Board: BOM	NCP1615GEVB Bill of Materials	NCP1615GEVB_BOM_ROHS - 118 KB	0				
Eval Board: Gerber	NCP1615GEVB Gerber Layout Files (Zip Format)	NCP1615GEVB_GERBER - 84 KB	0				
Eval Board: Schematic	NCP1615GEVB Schematic	NCP1615GEVB_SCHEMATIC - 72 KB	0				
Eval Board: Test Procedure	NCP1615GEVB Test Procedure	NCP1615GEVB_TEST_PROCEDURE - 325 KB	0				
Video	Off-line Power Supply Solutions with the NCP1615GEVB Evaluation Board	TND6098/D	1				

Previously Viewed Products Select Product... Design Support >> Technical Documentation >> Design Resources & Documents >> Technical Support >> Sales Support Featured Video Off-line Power Supply Solutions with the NCP1615GEVB **Evaluation Board** Full screen is unavailable Learn More More Videos

Privacy Policy | Terms of Use | Site Map | Careers | Contact Us | Terms and Conditions | Mobile Portal | Mobile App

Copyright © 1999-2016 ON Semiconductor

