MOSFET – Power, **N-Channel with Schottky Barrier Diode, Schottky** Diode, μCool, WDFN **2X2 mm**

30 V, 4.6 A, 2.0 A

Features

- WDFN Package Provides Exposed Drain Pad for Excellent Thermal Conduction
- Co-Packaged MOSFET and Schottky For Easy Circuit Layout
- $R_{DS(on)}$ Rated at Low $V_{GS(on)}$ Levels, $V_{GS} = 1.5 \text{ V}$
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- Low VF Schottky
- This is a Pb-Free Device

Applications

- DC-DC Converters
- Li-Ion Battery Applications in Cell Phones, PDA's, Media Players
- Color Display and Camera Flash Regulators

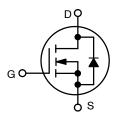
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltag	е		V_{DSS}	30	V
Gate-to-Source Voltage)		V_{GS}	±8.0	V
Continuous Drain	Steady	T _J = 25°C	I _D	3.7	Α
Current (Note 1)	State	T _J = 85°C		2.7	
	t ≤ 5 s	T _J = 25°C		4.6	
Power Dissipation (Note 1)	Steady State	T 05°C	P _D	1.5	W
,	t≤5s	$T_J = 25^{\circ}C$		2.3	
Continuous Drain		T _J = 25°C	I _D	2.5	Α
Current (Note 2)	Steady	T _J = 85°C		1.8	
Power Dissipation (Note 2)	State	T _J = 25°C	P _D	0.71	
Pulsed Drain Current	t _p =	10 μs	I _{DM}	20	Α
Operating Junction and Storage Temperature			T_J , T_{STG}	–55 to 150	°C
Source Current (Body Diode) (Note 2)			I _S	2.4	Α
Lead Temperature for Set (1/8" from case for 10 s)		urposes	T _L	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1

ON Semiconductor®


http://onsemi.com

MOSFET

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)
	70 mΩ @ 4.5 V	
30 V	90 mΩ @ 2.5 V	4.6 A
	125 mΩ @ 1.8 V	
	250 mΩ @ 1.5 V	

SCHOTTKY DIODE

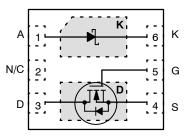
V _R MAX	V _F TYP	I _F MAX
30 V	0.47 V	2.0 A

N-CHANNEL MOSFET

SCHOTTKY DIODE

MARKING DIAGRAM

CASE 506AN


JL = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Downloaded from Arrow.com.

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

SCHOTTKY DIODE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V_{RRM}	30	V
DC Blocking Voltage	V _R	30	V
Average Rectified Forward Current	I _F	2.0	Α

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	R_{\thetaJA}	83	
Junction-to-Ambient $-t \le 5$ s (Note 3)	R_{\thetaJA}	54	°C/W
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ heta JA}$	180	

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

Parameter	Symbol	Test Condition	ıs	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 25$	0 μΑ	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA, Ref to	25°C		18.1		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}		T _J = 25°C			1.0	μΑ
		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$	T _J = 85°C			10	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm$	8.0 V			100	nA
ON CHARACTERISTICS (Note 5)	•						•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 25$	60 μA	0.4	0.7	1.0	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.8		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 4.5, I _D = 2.	0 A		47	70	mΩ
		V _{GS} = 2.5, I _D = 2.	0 A		56	90	1
		V _{GS} = 1.8, I _D = 1.	8 A		88	125	1
		V _{GS} = 1.5, I _D = 1.	5 A		133	250	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 2	.0 A		4.5		S
CHARGES, CAPACITANCES AND GA	ATE RESISTAN	CE					
Input Capacitance	C _{ISS}				427		pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 N V _{DS} = 15 V	ИHz,		51		1
Reverse Transfer Capacitance	C _{RSS}	VDS = 10 V			32		1
Total Gate Charge	Q _{G(TOT)}				5.4	6.5	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} =	15 V,		0.5		1
Gate-to-Source Charge	Q_{GS}	I _D = 2.0 A	,		0.8		1
Gate-to-Drain Charge	Q_{GD}				1.24		1

 R_G

3.7

Ω

Gate Resistance

^{5.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
6. Switching characteristics are independent of operating junction temperatures.

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

Parameter	Symbol	Test Condition	าร	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS	(Note 6)	•					•
Turn-On Delay Time	t _{d(ON)}				4.8		ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DD} =	V_{GS} = 4.5 V, V_{DD} = 15 V, I_{D} = 2.0 A, R_{G} = 2.0 Ω		9.2		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 2.0 \text{ A}, R_G = 2$			14.2		1
Fall Time	t _f				1.7		1
DRAIN-SOURCE DIODE CHARA	CTERISTICS						•
Forward Recovery Voltage	V _{SD}	V 0V/10 00A	T _J = 25°C		0.78	1.2	
		V _{GS} = 0 V, IS = 2.0 A	T _J = 125°C		0.62		V
Reverse Recovery Time	t _{RR}				10.5		
Charge Time	t _a	$V_{GS} = 0 \text{ V}, d_{ISD}/d_t = 100 \text{ A}/\mu\text{s},$			7.6		ns
Discharge Time	t _b	I _S = 2.0 A	, .		2.9		1
Reverse Recovery Time	Q _{RR}	1			5.0		nC

- 5. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.1 A		0.34	0.39	V
Forward Voltage		I _F = 1.0 A		0.47	0.53	
Maximum Instantaneous	I _R	V _R = 30 V		17	20	μΑ
Reverse Current		V _R = 20 V		3.0	8.0	
		V _R = 10 A		2.0	4.5	

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 85^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.1 A		0.22	0.35	V
Forward Voltage		I _F = 1.0 A		0.40	0.50	
Maximum Instantaneous	I _R	V _R = 30 V		0.22	2.5	mA
Reverse Current		V _R = 20 V		0.11	1.6	
		V _R = 10 V		0.06	1.2	

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 125°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.1 A		0.2	0.29	V
Forward Voltage		I _F = 1.0 A		0.4	0.47	
Maximum Instantaneous	I _R	V _R = 30 V		2.0	20	mA
Reverse Current		V _R = 20 V		1.1	10.9	
		V _R = 10 V		0.63	8.4	

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Capacitance	С	$V_R = 5.0 \text{ V, f} = 1.0 \text{ MHz}$		38		pF

- 7. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- 8. Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz cu.
- 9. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 10. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

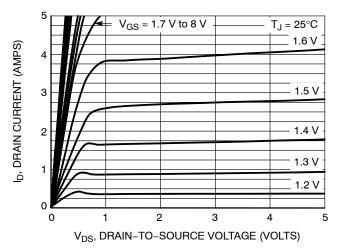


Figure 1. On-Region Characteristics

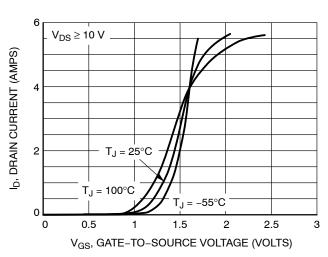


Figure 2. Transfer Characteristics

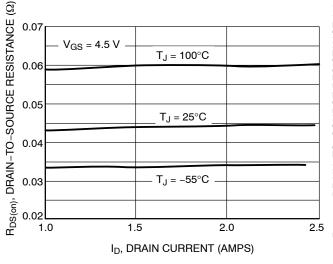


Figure 3. On-Resistance versus Drain Current

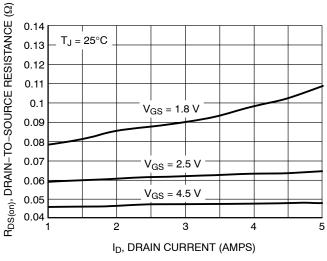


Figure 4. On-Resistance versus Drain Current and Gate Voltage

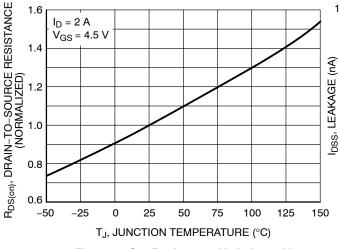


Figure 5. On–Resistance Variation with Temperature

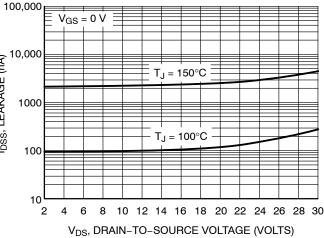
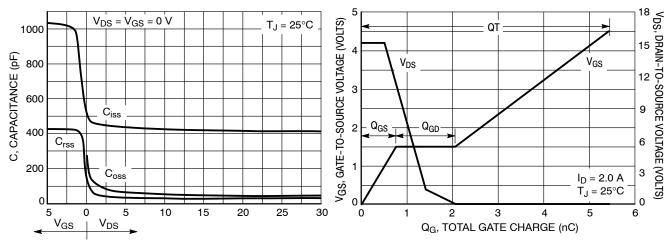



Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

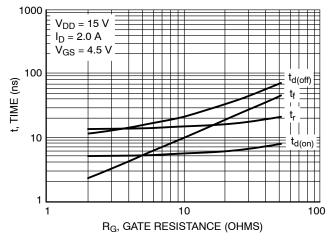


Figure 9. Resistive Switching Time Variation versus Gate Resistance

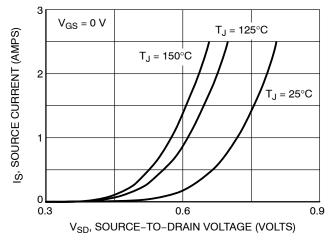


Figure 10. Diode Forward Voltage versus Current

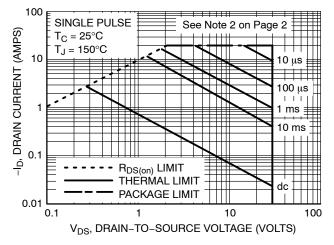


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

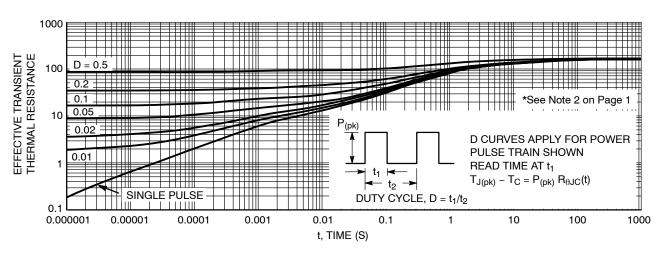
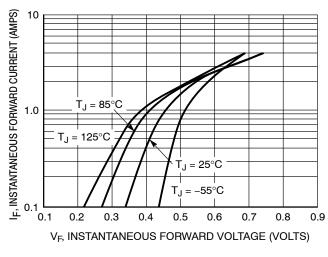



Figure 12. Thermal Response

TYPICAL SCHOTTKY PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

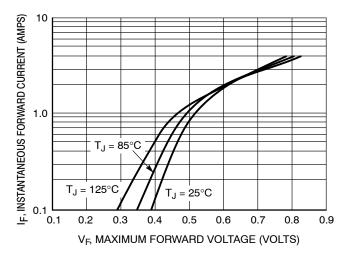
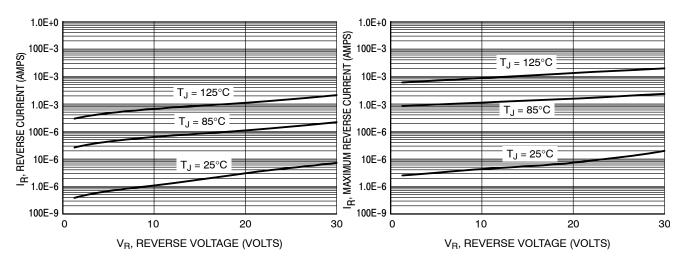



Figure 13. Typical Forward Voltage

Figure 14. Maximum Forward Voltage

Figure 15. Typical Reverse Current

Figure 16. Maximum Reverse Current

ORDERING INFORMATION

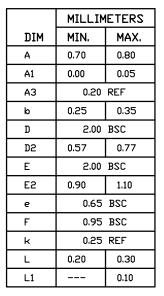
Device	Package	Shipping [†]
NTLJF4156NT1G	WDFN6 (Pb-Free)	3000 / Tape & Reel
NTLJF4156NTAG	WDFN6 (Pb-Free)	3000 / Tape & Reel

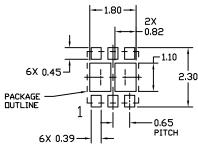
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

PIN ONE REFERENCE

□ 0.10 C

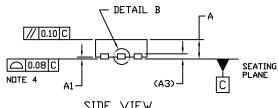

0.10 C


WDFN6 2x2, 0.65P CASE 506AN

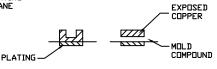
DATE 25 JAN 2022

NOTES:

- DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
- 4. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.


RECOMMENDED MOUNTING FOOTPRINT SOLDERMASK DEFINED

ISSUE H В


TOP VIEW

A

DETAIL A OPTIONAL CONSTRUCTIONS

SIDE VIEW

DETAIL B OPTIONAL CONSTRUCTIONS

♦ 0.10 ® CAB
T D ZX D2
DETAIL A + 0.10 @ CAB
к — 6 — 14 6 — 6 к ю
e 0.10 C A B
BOTTOM VIEW

GENERIC MARKING DIAGRAM*

XX = Specific Device Code = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DESCRIPTION:	WDFN6 2x2, 0.65P		PAGE 1 OF 1
DOCUMENT NUMBER:	98AON20861D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

