

**Radiation Hardended, 100V,
Single 10A, Solid State Relay**

RDHA710FR10A1NK

Product Summary

Part Number	Voltage	Current	Configuration	Rad Level
RDHA710FR10A1NK	100V	10A	Single DC	100K

Description

The RDHA710FR10A1NX is a radiation hardened Solid State Relay in a hermatic package. It is configured as a single pole single throw (SPST) normally open relay. This device is characterized for 100KRad (Si) total ionizing dose. The output MOSFET utilizes International Rectifier's R6 Technology.

Features:

- Total Dose Capability to 100KRad (Si)
- Optically Coupled
- 1000VDC Input-to-Output and Pin-to-Case Isolation
- Hermetically Sealed Ceramic Package

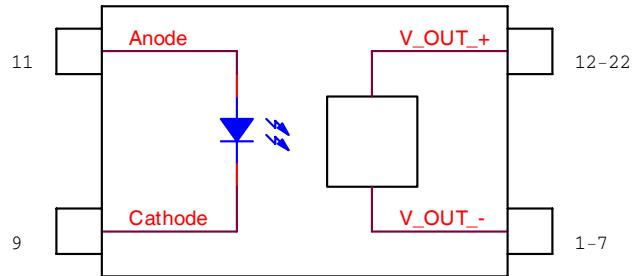
Absolute Maximum Ratings @ $T_j = 25^\circ\text{C}$ (unless otherwise specified)

Parameter	Symbol	Value	Units
Output Withstand Voltage	V_O (OFF)	100	V
Output Current \textcircled{S}	I_O	10	A
Peak Output Current \textcircled{S}	$I_{O\text{ pk}}$	20	
Input Forward Current	I_F	40	mA
Peak Input Forward Current ($t \leq 1.0\text{ms}$)	$I_{F\text{ pk}}$	100	
Peak Input Reverse Voltage ($t \leq 1.0\text{ms}$)	V_R	5.0	V
Power Dissipation	P_{DISS}	4.0	W
Operating Temperature Range	T_J	-55 to +125	$^\circ\text{C}$
Storage Temperature Range	T_S	-65 to +150	
Lead Temperature	T_L	300	
Weight		2.5 (Typ)	g

For notes, please refer to page 2

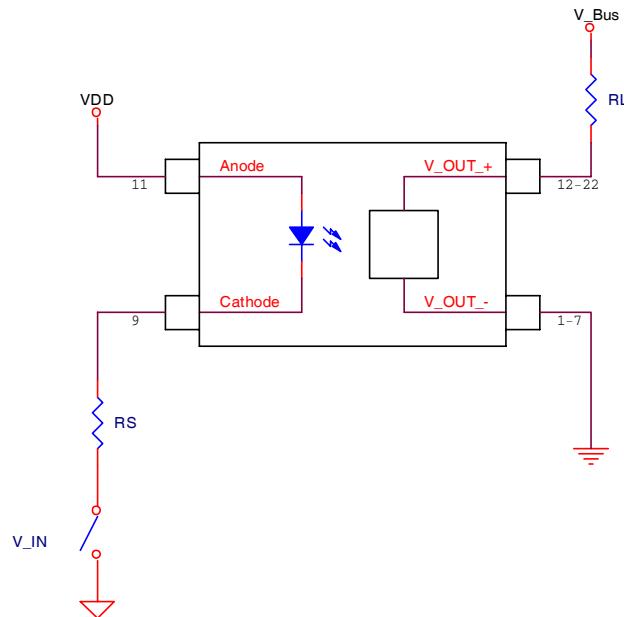
www.irf.com

1

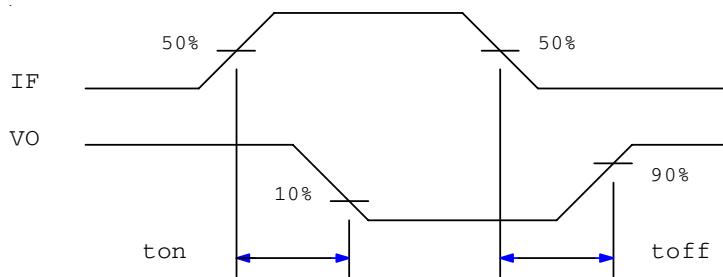

05/18/12

Electrical Characteristics @ $-55^{\circ}\text{C} \leq T_{\text{C}} \leq +125^{\circ}\text{C}$ (Unless Otherwise Specified)

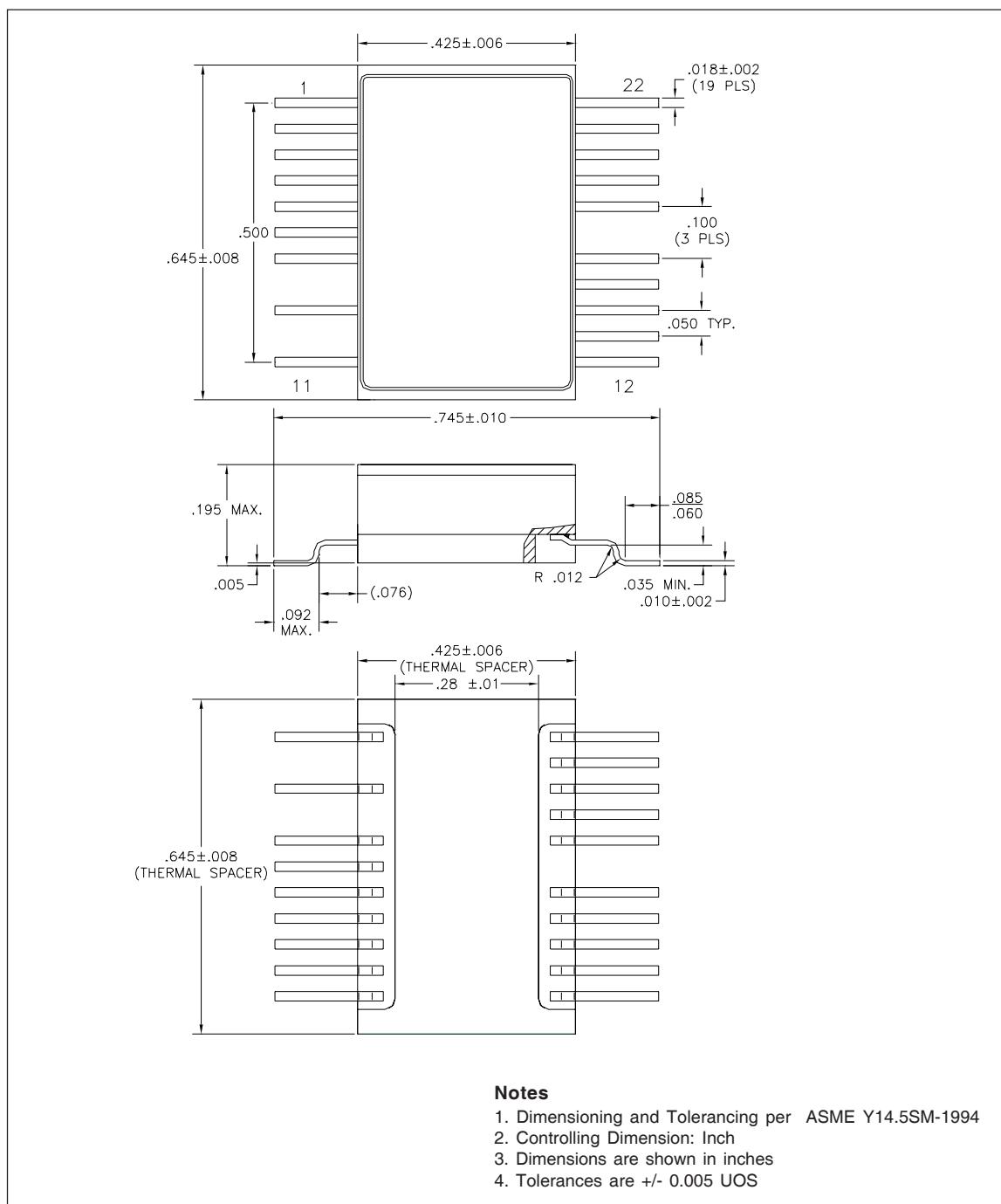
Parameter	Group A Subgroups	Test Conditions	Symbol	Min.	Typ.	Max.	Units
Output On-Resistance	1	$I_F = 10\text{mA}$, $I_O = 4.0\text{A}$	$R_{\text{DS(ON)}}$	--	0.012	0.020	Ω
	2			--	0.018	0.040	
Output Leakage Current	1	$I_F = 0$, $V_{\text{OUT}} = 100\text{V}$	I_O	--	--	10	μA
	2			--	--	25	
Input Forward Voltage	1, 2, 3	$I_F = 10\text{mA}$	V_F	1.0	--	1.85	V
Input-to-Output Leakage Current	1	$V_{\text{I-O}} = 1000\text{Vdc}$, dwell = 5s	$I_{\text{L-O}}$	--	--	1.0	μA
Pin-to-Case Leakage Current			I_{CASE}	--	--	1.0	
Turn-On Time ②③④	9, 10, 11	$I_F = 0$ to 10mA , $V_{\text{Bus}} = 28\text{V}$, $I_O = 2.5\text{A}$, Duty Cycle $\leq 1.0\%$	t_{on}	--	--	8.0	ms
Turn-Off Time ②③④	9, 10, 11	$I_F = 0$ to 10mA , $V_{\text{Bus}} = 28\text{V}$, $I_O = 2.5\text{A}$, Duty Cycle $\leq 1.0\%$	t_{off}	--	--	0.3	
Output Capacitance ①		$I_F = 0$, $V = +25\text{V}$, $f = 1\text{MHz}$, $T_{\text{C}} = 25^{\circ}\text{C}$	C_{OSS}	--	1600	--	pF
Thermal Resistance ①			R_{THJC}	--	--	5.0	$^{\circ}\text{C/W}$
MTBF		MIL-HDBK-217F, $T_{\text{C}} = 25^{\circ}\text{C}$		6.5	--	--	MHrs


Notes for Maximum Ratings and Electrical Characteristic Tables

- ① Specification is guaranteed by design.
- ② Optically coupled Solid State Relays (SSRs) have relatively slow turn-on and turn-off times. Care must be taken to insure that transient currents do not cause a violation of SOA. If transient conditions are present, IR recommends a complete simulation to be performed by the end user to ensure compliance with SOA requirements as specified in the IRHNA67160 data sheet.
- ③ Reference Fig. 2 for Switching Test Circuit and Fig. 3 for Switching Test Wave Form.
- ④ Turn-on Time (t_{on}) includes the turn-on delay and rise time; Turn-off Time (t_{off}) includes the turn-off delay and fall time.
- ⑤ While the SSR design meets the design requirements specified in MIL-PRF-38534, the end user is responsible for product derating, as applicable for the application.



Pins 8, 10, and 17 are no connects.


Fig 1: Block Diagram

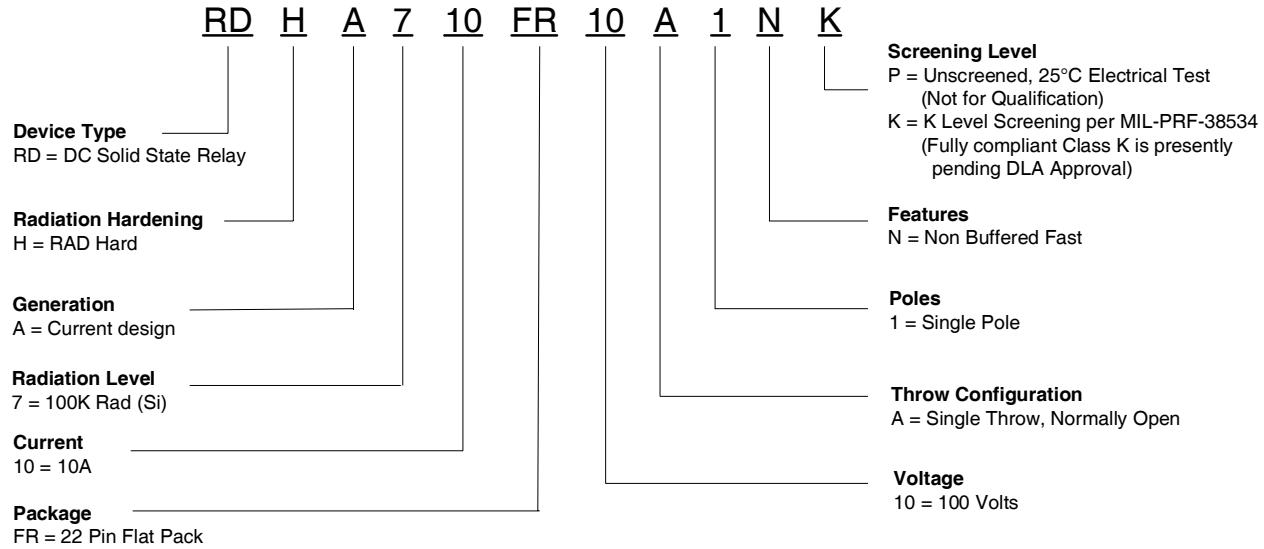

Fig 2: Switching Test Circuit

Fig 3: Switching Test Waveform

Case Outline and Dimensions - Package - 22 Pin Flat Pack

Part Numbering Nomenclature

International
 Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 05/2012