

FP1206

High frequency, high current power inductors

Product features

- 8.0 x12.0 x 6.0mm surface mount package
- Ferrite core material
- High current carrying capacity, low core losses
- Designed for high speed, high current switch mode applications
- Controlled DCR tolerance for sensing circuits
- Inductance range from 120nH to 400nH
- Current range from 24 to 88 amps
- Frequency range up to 1MHz

Applications

- Multi-phase regulators
- Voltage Regulator Module (VRM)
- Desktop and server VRMs and EVRDs
- Data networking and storage systems
- Graphics cards and battery power systems
- Point of load modules
- DCR current sensing

Environmental data

- Storage temperature range (component): -40 °C to +125 °C
- Operating temperature range: -40 °C to +125 °C (ambient plus self-temperature rise)
- Solder reflow temperature: J-STD-020 (latest revision) compliant

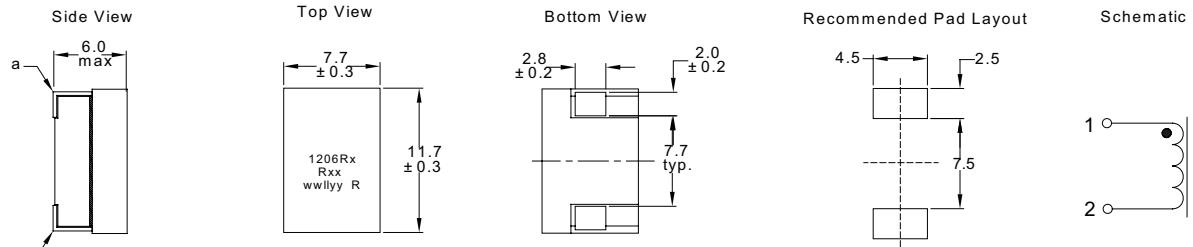
Product Specifications							
Part Number ⁷	OCL ¹ ± 10% (nH)	FLL ² Min. (nH)	I _{rms} ³ (Amps)	I _{sat} ⁴ (Amps) @25°C	I _{sat} ⁵ (Amps) @125°C	DCR (mΩ) @20°C	K-factor ⁶
FP1206R1-R12-R	120	86	50	88	65	0.43 ± 6.5%	358
FP1206R1-R15-R	150	108		70	51		358
FP1206R1-R25-R	250	180		43	32		358
FP1206R1-R30-R	300	216		34	26		358
FP1206R1-R40-R	400	288		24	19		358

1 Open Circuit Inductance (OCL) Test Parameters: 100kHz, 0.1V_{rms}, 0.0Adc

2 Full Load Inductance (FLL) Test Parameters: 100kHz, .01V_{rms}, I_{sat}¹

3 I_{rms}: DC current for an approximate temperature rise of 40°C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow, and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 125°C under worst case operating conditions verified in the end application.

4 I_{sat}¹: Peak current for approximately 20% rolloff at +25°C.


5 I_{sat}²: Peak current for approximately 20% rolloff at +125°C.

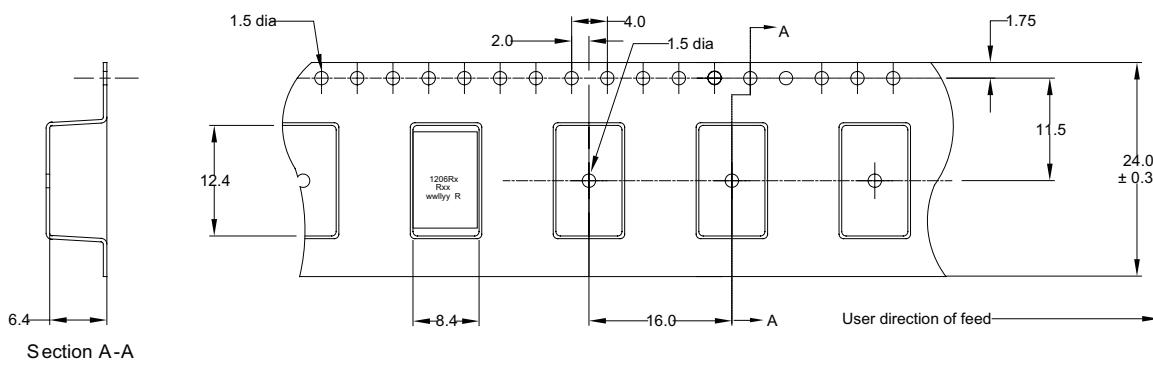
6 K-factor: Used to determine B_{p-p} for core loss (see graph). B_{p-p} = K * L * ΔI * 10³. B_{p-p} (Gauss), K: (K-factor from table), L: (Inductance in nH), ΔI (Peak-to-peak ripple current in amps).

7 Part Number Definition: FP1206Rx-Rxx-R

- FP1206 = Product code and size
- Rx= DCR indicator
- Rxx= Inductance value in uH, R = decimal point
- -R suffix = RoHS compliant

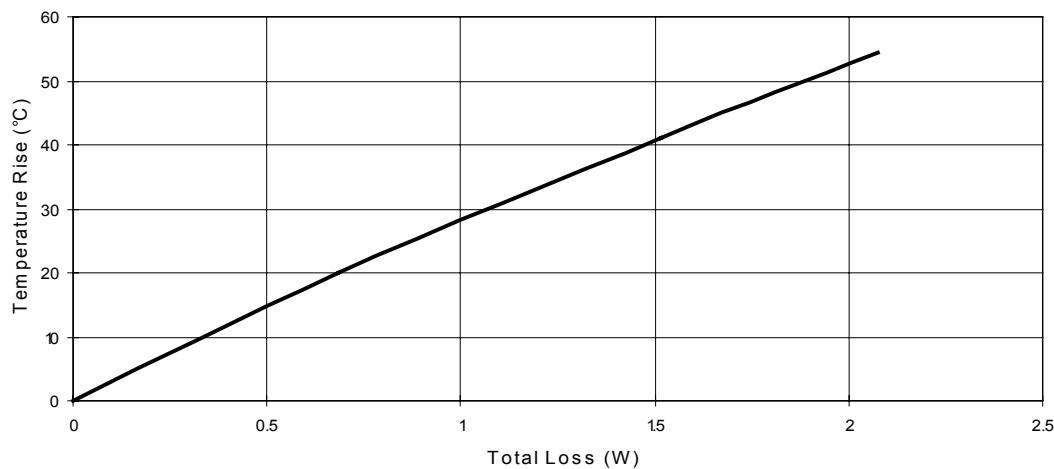
Dimensions- mm

The nominal DCR is measured between points "a" and "b"

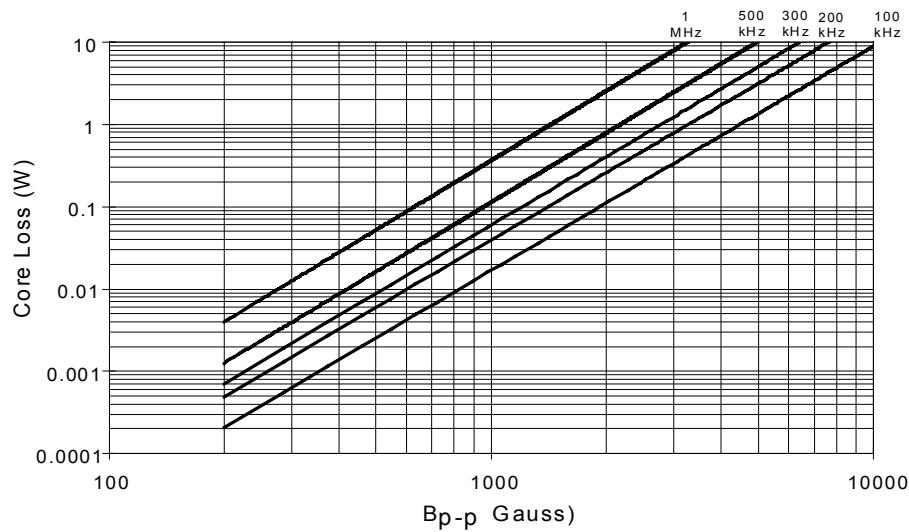

Part Marking: 1206Rx (Rx is the DCR indicator)

Rxx = Inductance value in μH. (R = Decimal point).

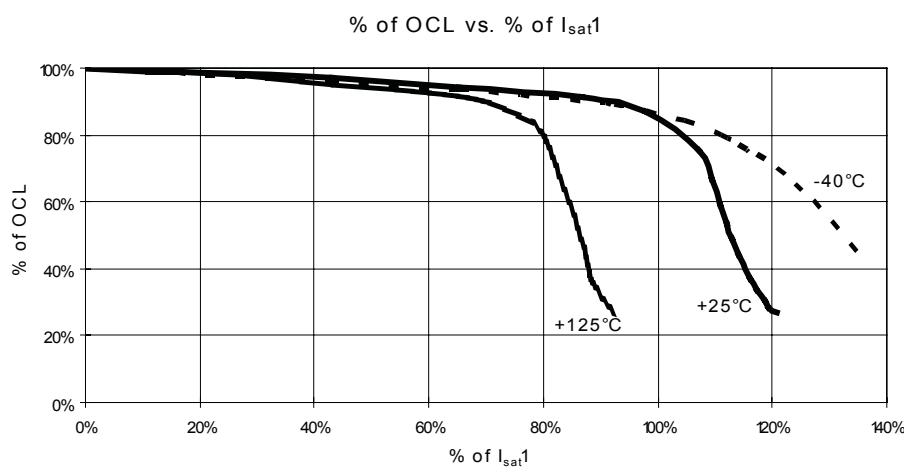
wwyy = Date code


R = Revision level

Packaging information - mm



Supplied in tape-and-reel packaging, 620 parts per reel, 13" diameter reel.


Temperature rise vs total loss

Core loss vs B_{p-p}

Inductance characteristics

Solder Reflow Profile

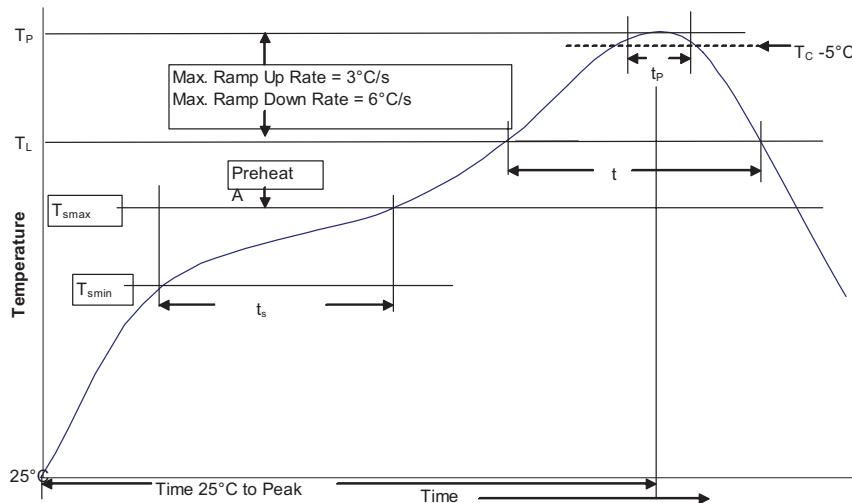


Table 1 - Standard SnPb Solder (T_c)

Package	Volume mm ³	Volume mm ³
Thickness	<350	≥350
<2.5mm	235°C	220°C
≥2.5mm	220°C	220°C

Table 2 - Lead (Pb) Free Solder (T_c)

Package	Volume mm ³	Volume mm ³	Volume mm ³
Thickness	<350	350 - 2000	>2000
<1.6mm	260°C	260°C	260°C
1.6 - 2.5mm	260°C	250°C	245°C
>2.5mm	250°C	245°C	245°C

Reference JDEC J-STD-020

Profile Feature	Standard SnPb Solder	Lead (Pb) Free Solder
Preheat and Soak		
• Temperature min. (T_{smin})	100°C	150°C
• Temperature max. (T_{smax})	150°C	200°C
• Time (T_{smin} to T_{smax}) (t_s)	60-120 Seconds	60-120 Seconds
Average ramp up rate T_{smax} to T_p	3°C/ Second Max.	3°C/ Second Max.
Liquidous temperature (T_L)	183°C	217°C
Time at liquidous (t_L)	60-150 Seconds	60-150 Seconds
Peak package body temperature (T_p)*	Table 1	Table 2
Time (t_p)** within 5 °C of the specified classification temperature (T_c)	20 Seconds**	30 Seconds**
Average ramp-down rate (T_p to T_{smax})	6°C/ Second Max.	6°C/ Second Max.
Time 25°C to Peak Temperature	6 Minutes Max.	8 Minutes Max.

* Tolerance for peak profile temperature (T_p) is defined as a supplier minimum and a user maximum.

** Tolerance for time at peak profile temperature (t_p) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.

Eaton
Electronics Division
1000 Eaton Boulevard
Cleveland, OH 44122
United States
www.eaton.com/electronics

© 2017 Eaton
All Rights Reserved
Printed in USA
Publication No. 4366 BU-SB09349
June 2017

Eaton is a registered trademark.

All other trademarks are property
of their respective owners.